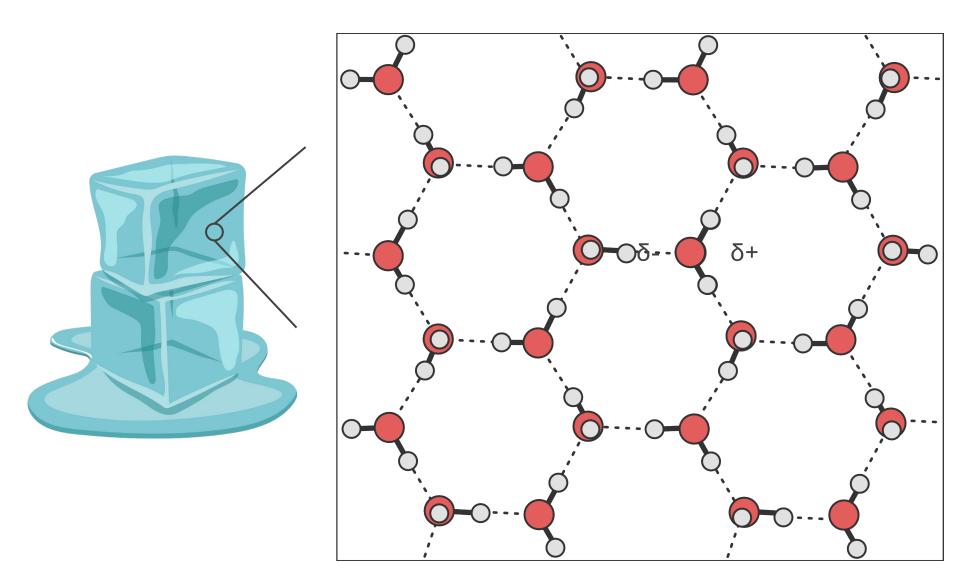


Pushing the limits of computational chemistry: the phase diagram of water

<u>Massimo Bocus</u>, Tom Braeckevelt, Pieter Dobbelaere, Arnout Maet, Wim Temmerman, Sander Vandenhaute, Siebe Vanlommel, Jelle Vekeman, <u>Veronique Van Speybroeck*</u>

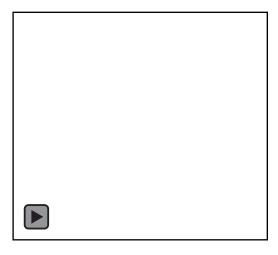
Center for Molecular Modeling, Ghent University
massimo.bocus@ugent.be, veronique.vanspeybroeck@ugent.be



Ice Ih, i.e. "just ice"

The phase diagram of water is amazingly complex





Most lattices have a

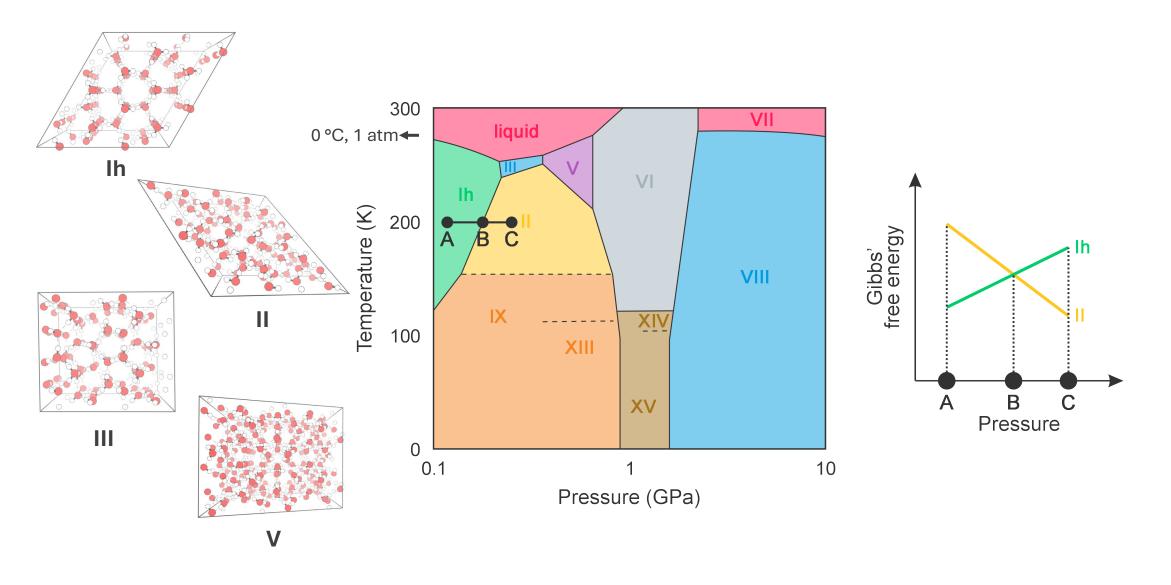
proton-ordered

and a

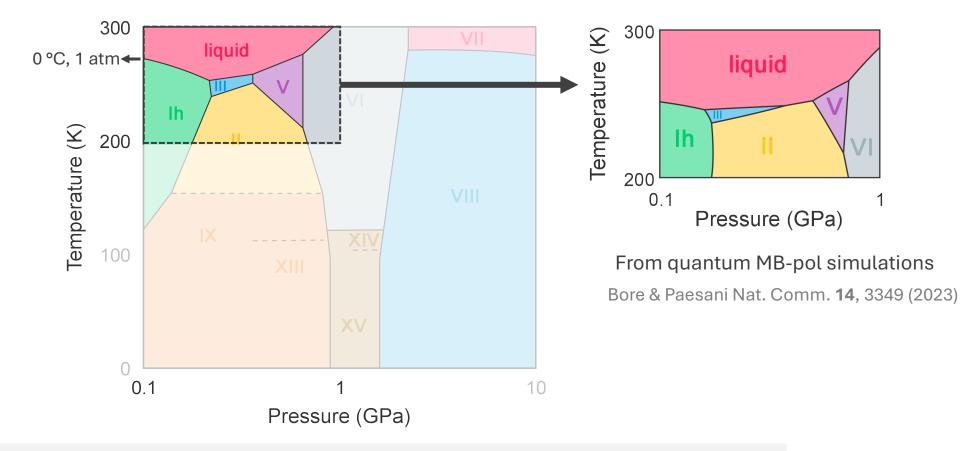
proton-disordered

phase
(e.g. III → IX)

Building a phase diagram requires the calculation of Gibbs' free energies



The state-of-the-art covers a "limited" range of temperatures and pressures



Our goal:

Obtaining an **accurate phase diagram** of water from **first-principles** over an unprecedented broad range of temperatures and pressures.

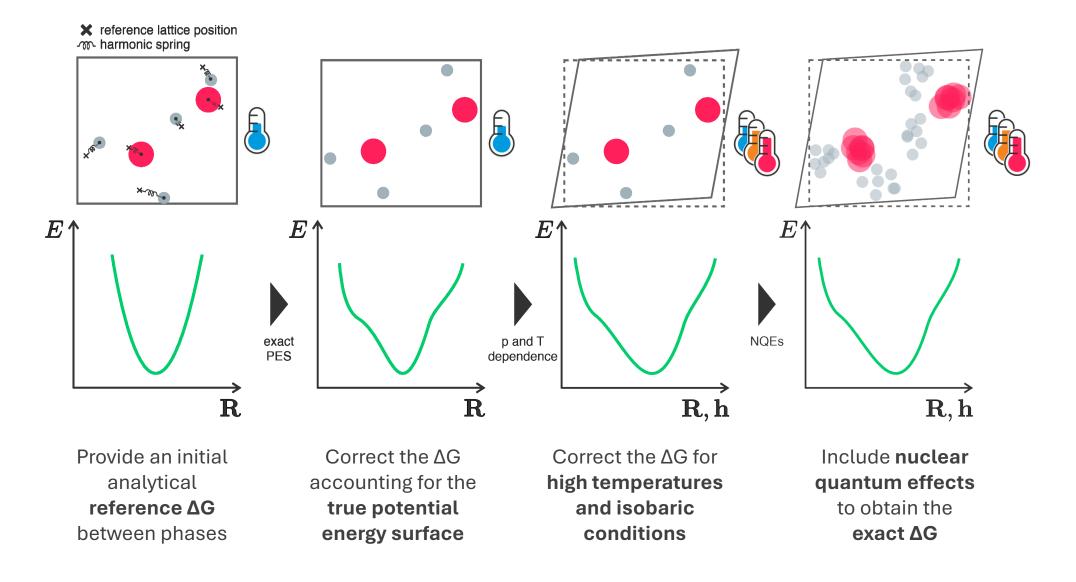
Outline

Thermodynamic integration to compute exact Gibbs' free energies

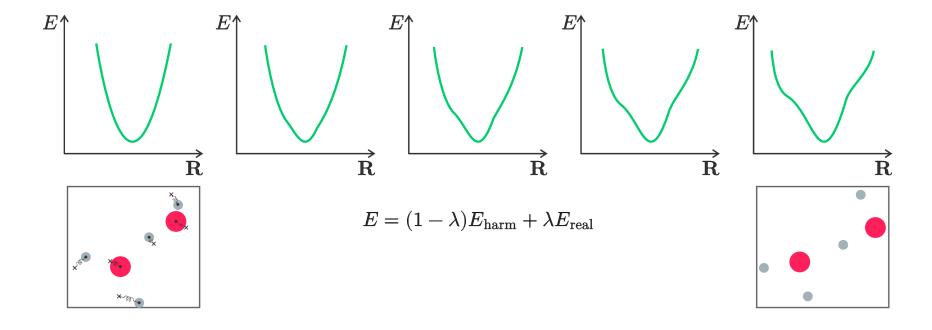
Machine learning potentials are necessary to perform the simulations

The theoretical phase diagram of water

The central problem: an absolute reference for the Gibbs' free energy is unknown



Thermodynamic integration to compute the free energy difference between two states



Each point requires a long molecular dynamics to converge the ensemble average.

Typical values are 15 MDs of more than 100 ps per correction.

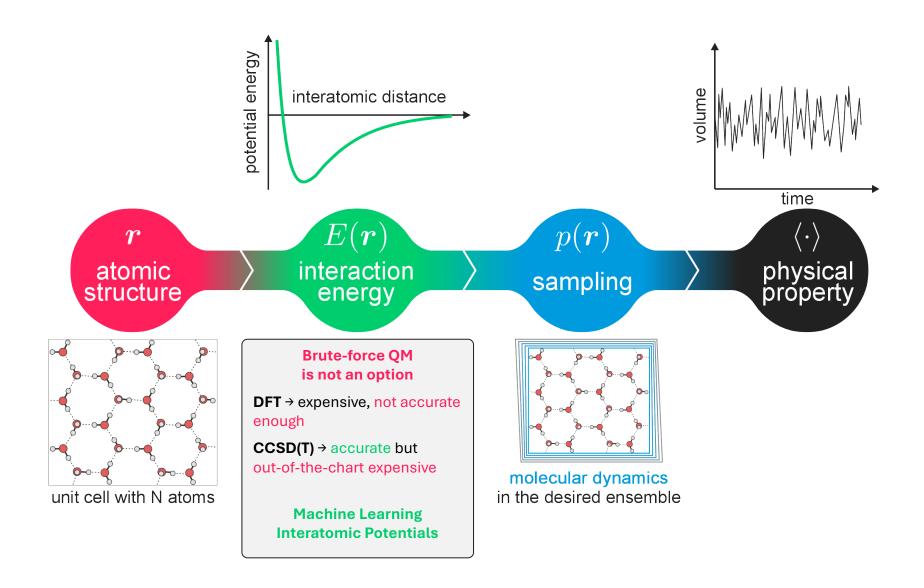
Outline

Thermodynamic integration to compute exact Gibbs' free energies

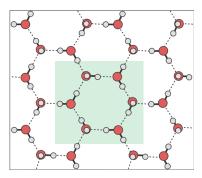
Machine learning potentials are necessary to perform the simulations

The theoretical phase diagram of water

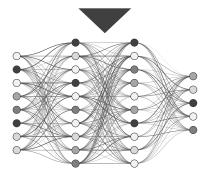
Computing the interaction energy is the bottleneck of molecular modeling



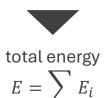
MLPs can learn an ab initio PES

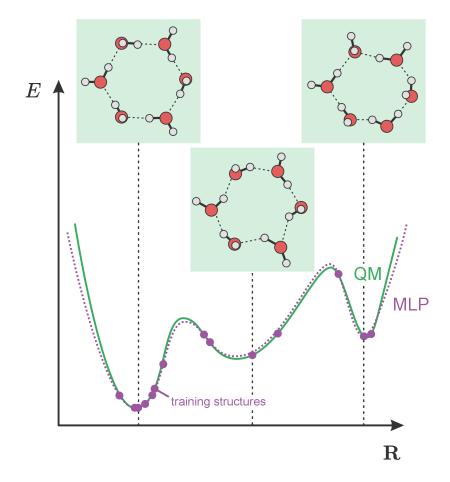


input structure



graph neural network (MACE) trained on QM-evaluated structures





- Training structures from **active learning** and literature.
- Reference level of theory **revPBE-D3**/TZV2P (GGA DFT).
- In progress: level of theory enhancement to CCSD(T).

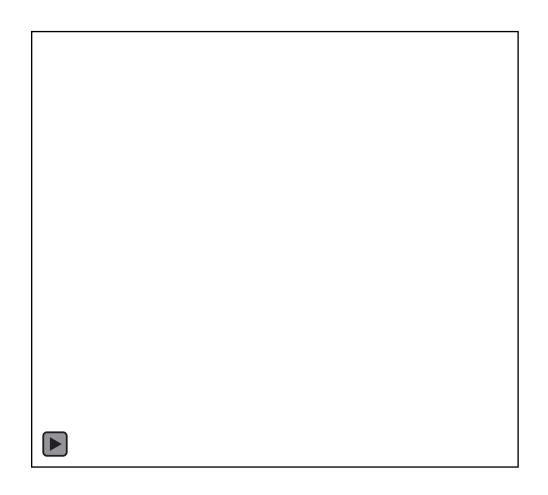
Outline

Thermodynamic integration to compute exact Gibbs' free energies

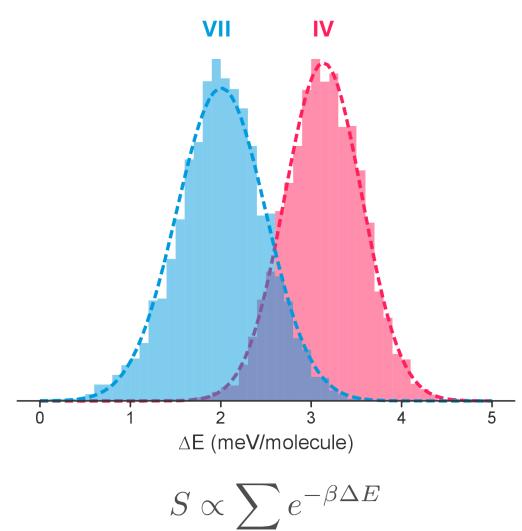
Machine learning potentials are necessary to perform the simulations

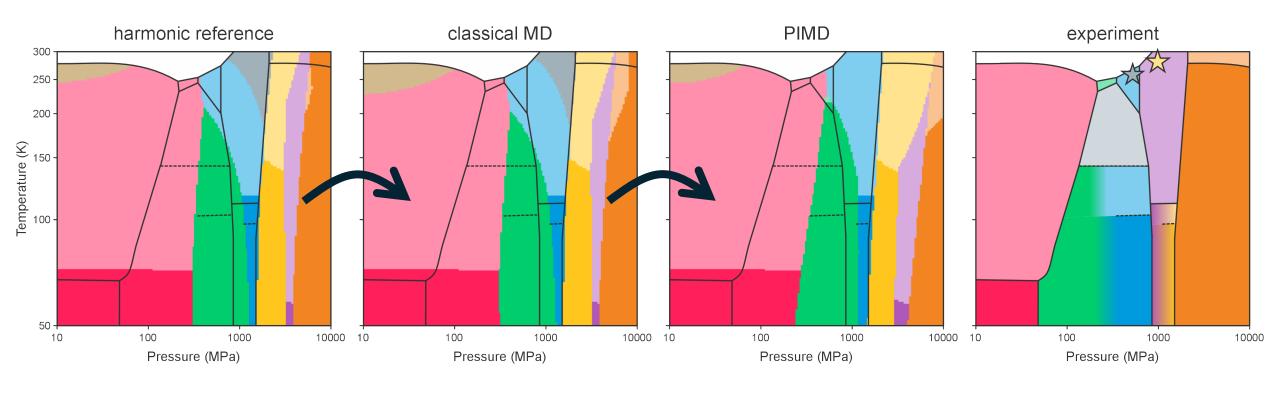
The theoretical phase diagram of water

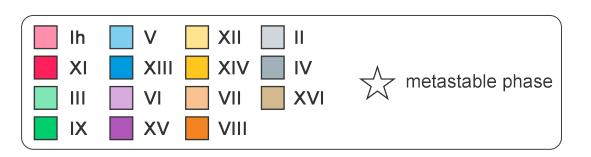
Intermezzo: how proton disorder is taken into account



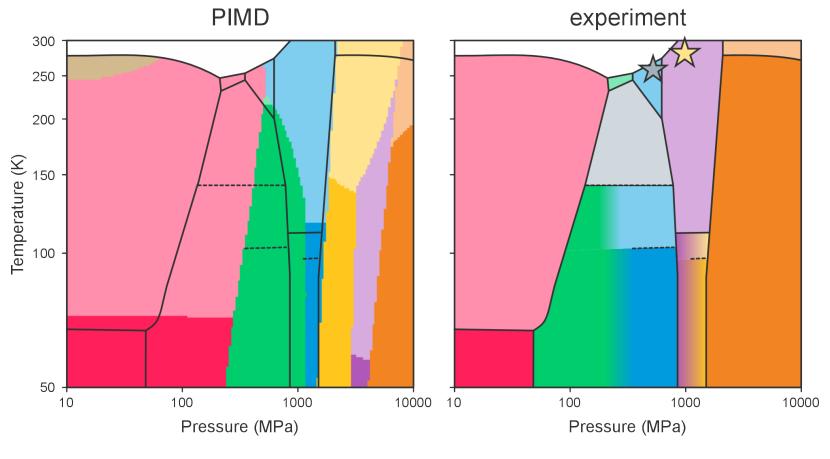
Proton-disordered structures are **generated randomly** and **optimized** to retrieve their energy w.r.t. the proton-ordered phase

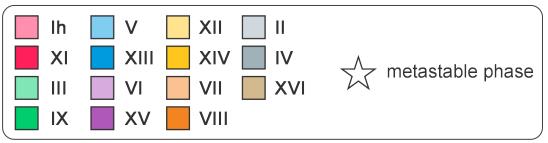




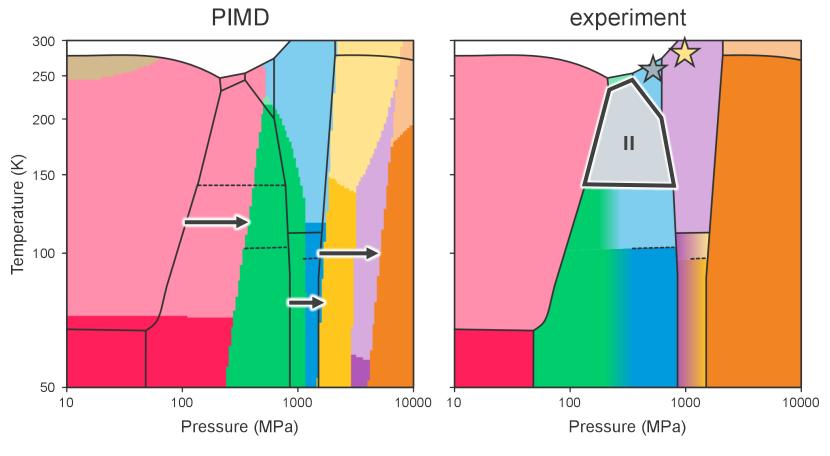


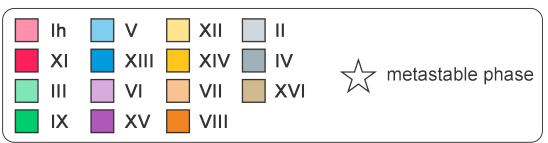
1. General features are quite consistent (cell flexibility and NQEs have limited effect).





- **1.** General features are quite consistent (cell flexibility and NQEs have limited effect).
- 2. Almost all main phases are **present** and in the **right location**.

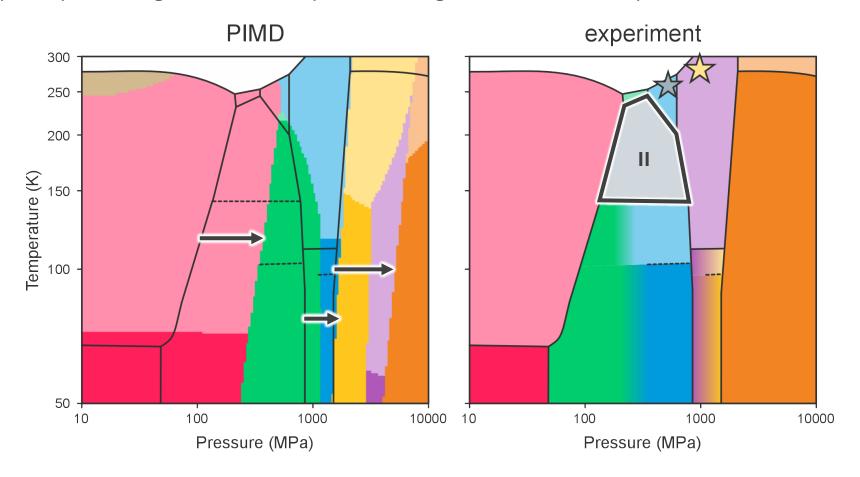




- **1.** General features are quite consistent (cell flexibility and NQEs have limited effect).
- 2. Almost all main phases are present and in the right location.

Coexistence lines are systematically shifted to high pressures.

Where is II?



Train on **CCSD(T)** data to improve the agreement with experiment.

- **1.** General features are quite consistent (cell flexibility and NQEs have limited effect).
- 2. Almost all main phases are present and in the right location.

Coexistence lines are systematically shifted to high pressures.

Where is II?

Contributors (in alphabetical order):

Massimo Bocus

Tom Braeckevelt

Pieter Cnudde

Pieter Dobbelaere

Mieke De Schepper

Arnout Maet

Jenna Mancuso

Siddarth Ravichandran

Principal investigator: Veronique Van Speybroeck Berd Schmidt
Wim Temmerman
Sander Vandenhaute
Siebe Vanlommel
Jelle Vekeman

Cosspia

Computational Screening of Sustainable Polymers for Industrial Applications

30/09/2025 EuroHPC User Days 2025

Dr. Javier Ortín-Fernández, Application Engineer

Challenges for the chemical industry

Industry has a continuous need to improve its products.

Performance drivers:

- Improvement of already existing products
- Competition within the market

Sustainability drivers:

- Sustainable raw materials
- Environmentally and health-safe
- Biodegradable

Cost drivers:

- Cheap raw materials
- Simple synthesis

Sustainable polymers are hard to develop

Home Care

Persona I Care

Packaging & Plastics

Adhesives & Sealants

Food Additives

Need for sustainable alternatives

Challenges in polymer testing

Design limitations

Our solution: digital pipeline to develop polymers

Molecular Dynamics

Artificial Intelligence

Scalable: assessment of thousands of polymer candidates

Consistent: reproducible and standardized predictions.

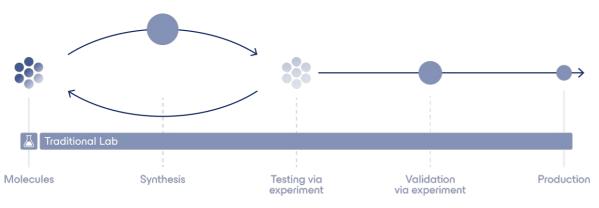
Digital: entirely *in-silico*.

Sustainable: Minimizes chemical waste and resource use.

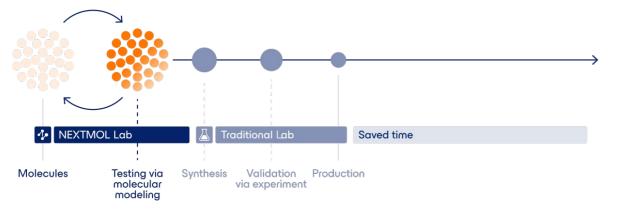
Efficient: Reduces R&D costs while speeding up innovation

Digital lab vs traditional lab

TRADITIONAL LAB



LAB WITH NEXTMOL



The "traditional" (experimental) lab

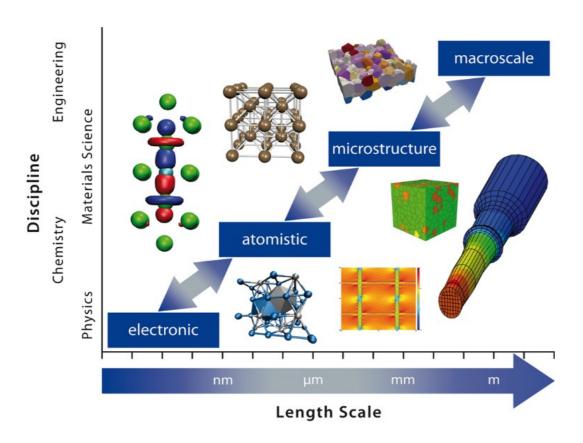
- Synthesis and experimental characterization and testing
- If the test is not successful, the same process has to be iterated.
- Inefficient, slow, tedious and error-prone.

The digital lab

- All testing is digital. Only the most promising candidates are synthesized and tested experimentally.
- More trial systems in less time, making the process faster, cheaper and more efficient.

The first ingredient: computational modeling

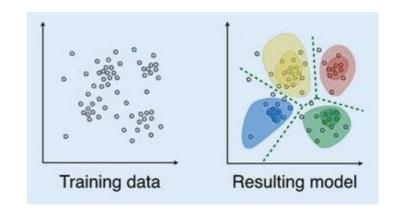
Modeling is a multiscale problem that spans more than ten orders of magnitude. For CoSSPIA we used atomistic modeling based on classical **Molecular Dynamics**.



The second ingredient: data-driven ML

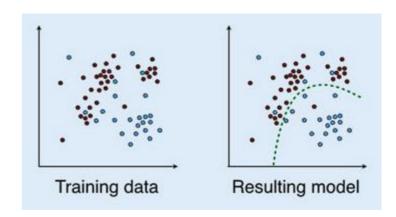
Unsupervised Learning

- No labeled data required.
- Chemical space insights: visualize and understand relevant regions.
- Smart prioritization & exploration: focus computational (and experimental) work on key areas of interest.



Supervised Learning

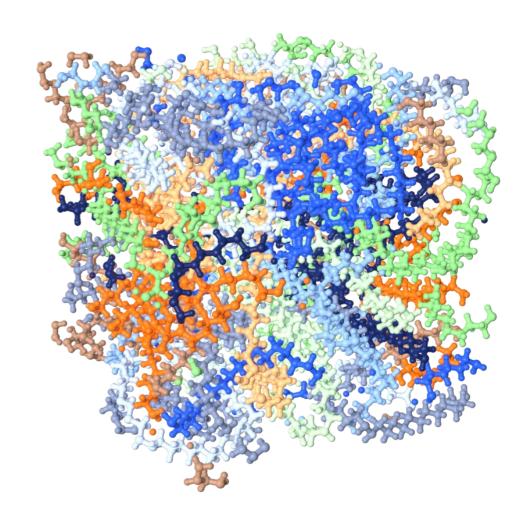
- Predictive: discover well-performing candidates.
- Structure–activity insights: identify key relationships.
- Main challenge: large, high-quality datasets.



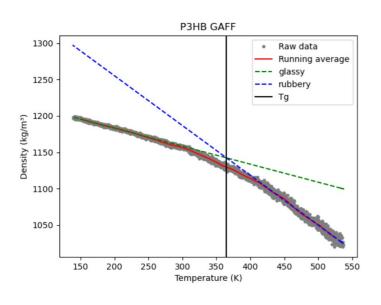
Computational descriptors

Within CoSSPIA we focused on the following physico-chemical descriptors of polymers:

- Glass transition temperature (Tg),
- Viscosity,
- Young's modulus,
- Solubility,
- Interfacial tension.



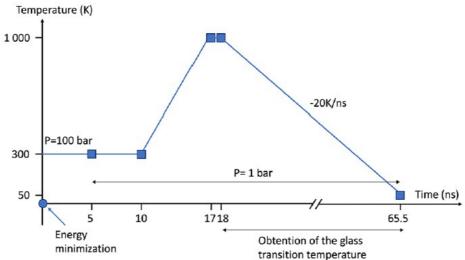
MD simulation to predict the Tg of polymers

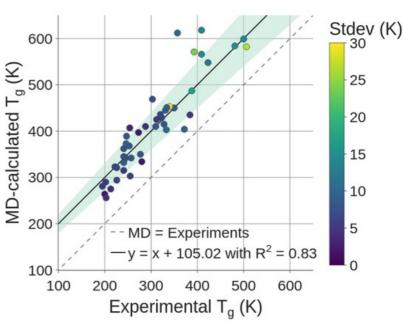


Four replicas per polymer

Annealing Molecular Dynamics Simulations

Corresponds to transition from glassy to rubbery

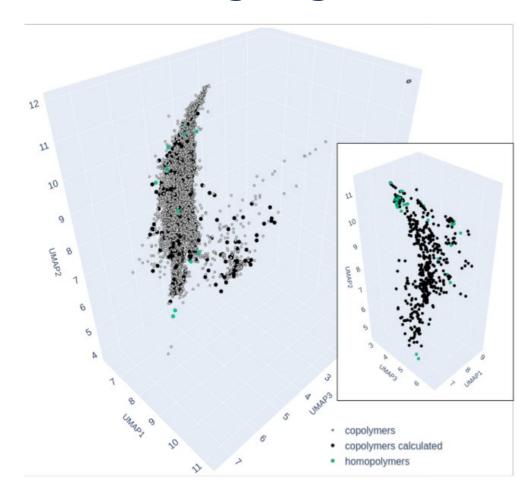




Simulations reproduce the experimental trends

They display a constant offset

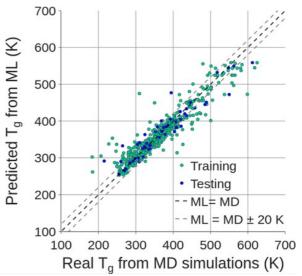
HT screening to generate data and train an ML model



Low MAE, small ovefitting



Model generates almost identical results to MD



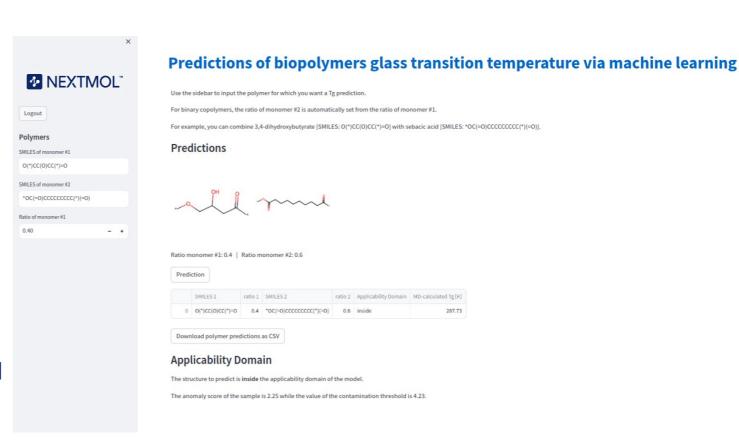
~15.000 polymers generated, ~500 polymers selected for MD

Glass transition temperature of polymers

- Model works for homopolymers and binary copolymers.
- Input: SMILES code of monomers and mixing ratio in copolymers.
- Almost instantaneous prediction.
- Allows rapid screening of thousands to millions of polymers in short time.
- The tool is accessible via a simple and intuitive web app:

https://biopolymer-ml-pub.nextmol.com/

 Predictive ML models for other properties are under preparation.



Conclusions

- Industry Challenge: Need for high-performance, sustainable, cost-effective polymers.
- **Problem:** Traditional polymer development is slow, costly, inefficient, and limited by experimental capacity constraints.
- **Our solution:** Digital pipeline combining Molecular Dynamics (MD) and Machine Learning (ML) for *in-silico* polymer design.

Benefits:

- Scalable, predictive, and sustainable approach.
- Reduces R&D costs and chemical waste.
- Accelerates innovation.

Key achievements of CoSSPIA:

- High-throughput screening of thousands of polymers.
- Database of physico-chemical descriptors.
- ML models that can predict key physico-chemical descriptors for millions of polymers.
- Impact: Enables rapid, large-scale screening and supports circular economy goals.

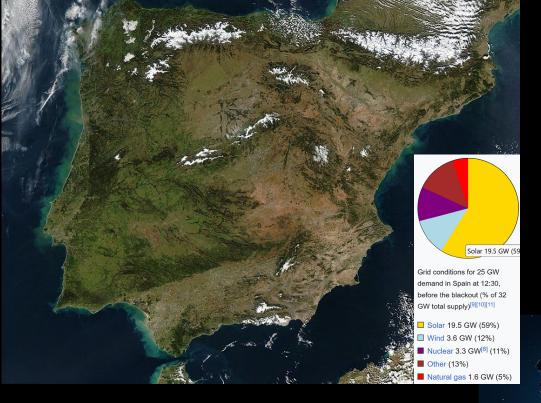
Designing the next molecules the world

nextmol.com

NEXTMOL

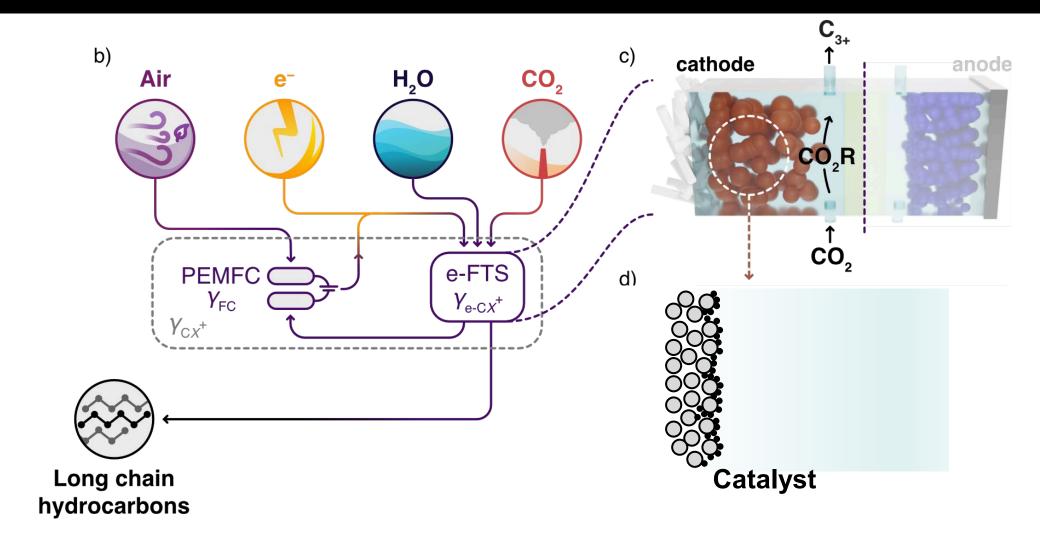
Advanced modeling of Materials for Energy transformations

Núria López



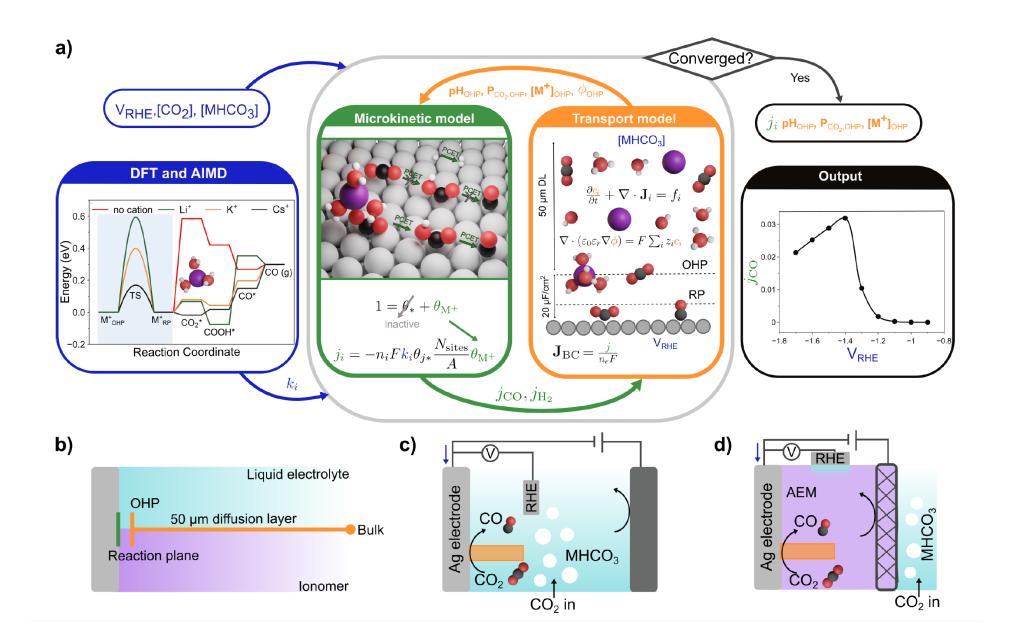
9. ÉLÉCTRICA DE ESPAÑA - www.ree.es - Todos los derechos reservado

Power-to-X



Copper

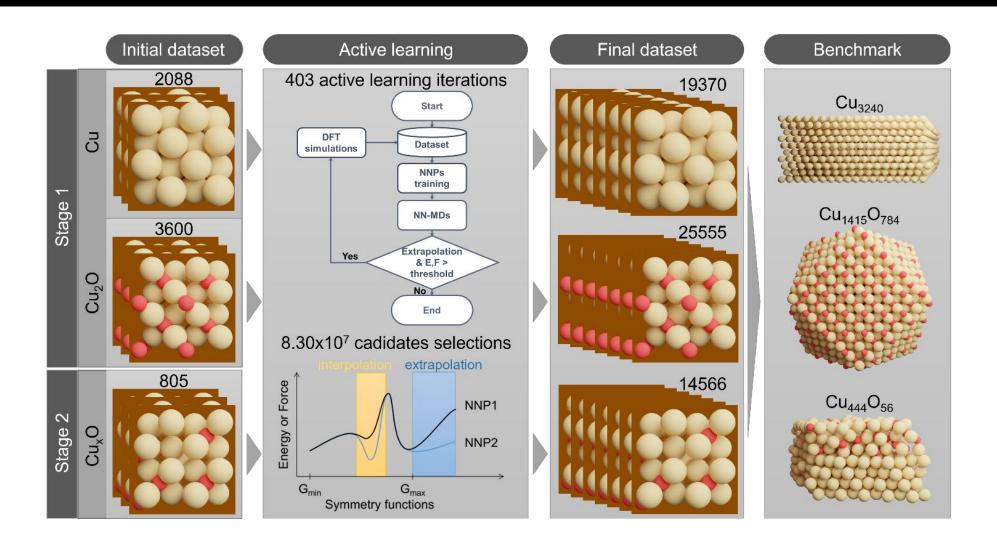
Cation effects beyond DFT



Dynamics models OD-Cu



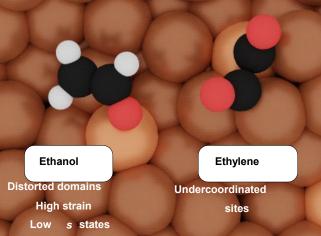
Dynamics with ML potentials



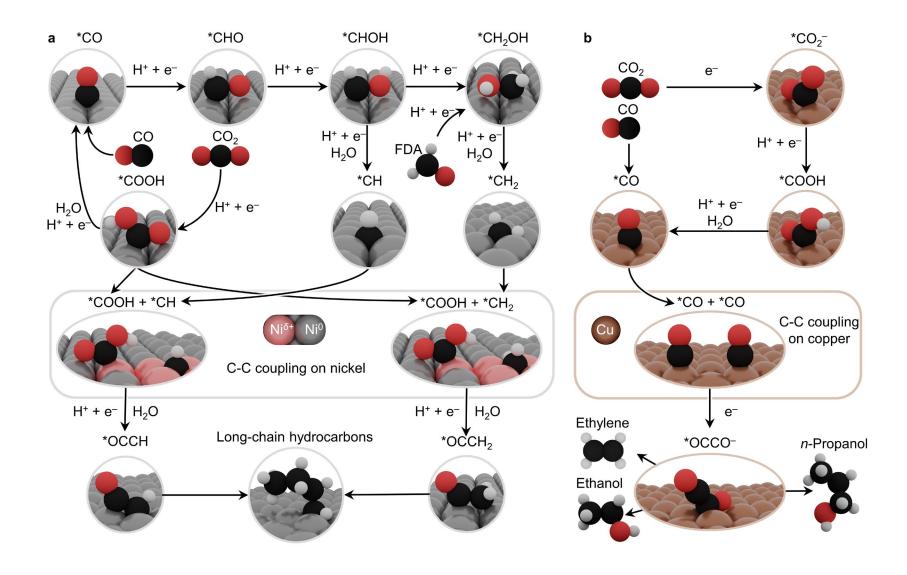
Nature Catal. (2024)

Reactivity OD-Cu

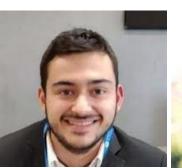




Up to C6



Federico Dattila



Rodrigo

Enric Ibañez-Alè

Hind Benzidi

Zan Lian

Ranga R. Seemakurthi

S. Haussener

J. Pérez-Ramírez

B. S. Yeo

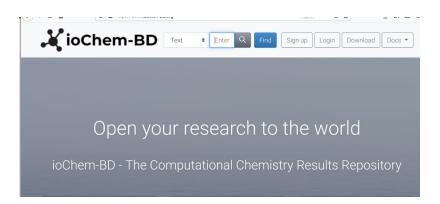
M. T. M. Koper

R. Buonsanti

M. Lingenfelder

P. Garcia de Arquer

EuroHPC Joint Undertaking



DESIGNING POINT-DEFECTS IN LOW-DIMENSIONAL MATERIALS WITH QUANTUM CHARACTERISTICS

MARCO GOVONI

Department of Physics, Computer Science, Mathematics University of Modena and Reggio Emilia, Italy

OVERVIEW

Goals & Opportunities

Optically active spin defects in semiconductors are interesting platforms for the development of solid-state quantum technologies

- two-level system in material
- operates at room temperature

Quantum sensing & metrology

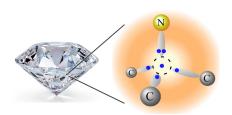
Nanoscale sensors

Nat. Commun. 15, 4722 (2024)

Quantum communication

Single-photon emitters for quantum internet

Nature 526, 682 (2015)



NV- in diamond

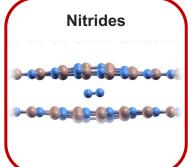
G. Kucsko et al. Nature 500, 54 (2013)

B. Hensen, et al. Nature 526, 682 (2015)

S. J. Whiteley, et al. Nature Physics 15, 490 (2019)

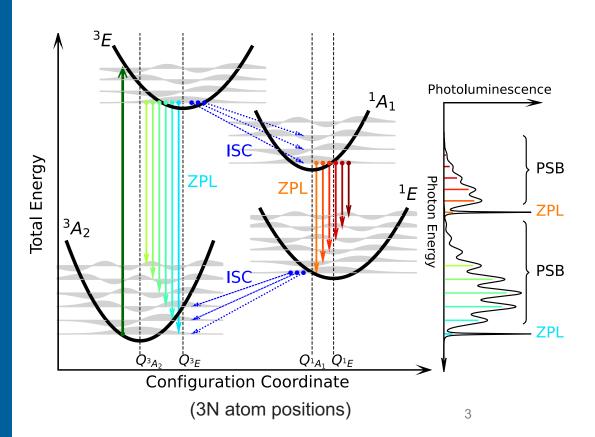
G. Wolfowicz, et al., Nat. Rev. Mater. 6, 906 (2021)

Silicon Carbide





COMPUTATIONAL CHALLENGES



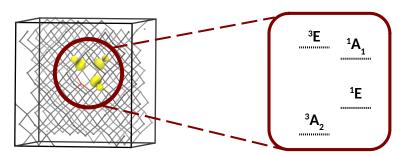
To simulate photo-luminescence we compute:

- 1) Excitation energies
 - → multiconfigurational excited states
- Optimization of atom positions in excited potential energy surfaces (PES)
 - → Forces for excited states

EXCITATION ENERGIES

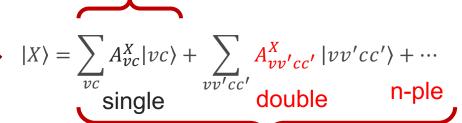
Spin defect

Many-body spectrum



Density Functional Theory (DFT)

TD-DFT / BSE

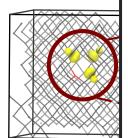


Full Configuration Interaction (FCI)

Walker, Saitta, Gebauer, Baroni, Phys. Rev. Lett. 96, 113001 (2006)
Rocca et al., J. Chem. Phys. 128 154105 (2008), J. Chem. Phys. 113
164109 (2010), Phys. Rev. B 85 045116 (2012)
Nguyen, Ma, Govoni, Gygi, Galli, Phys. Rev. Lett. 122, 237402 (2019)
Bockstedte, Schütz, Garratt, Ivady, Gali, npj Comput Mater 3, 31 (2018)
Ma, Govoni, Galli, npj Comput Mater 6, 85 (2020)
Ma, Sheng, Govoni & Galli, JCTC 17, 2116 (2021)
Sheng, Vorwerk, Govoni, Galli, JCTC 18, 3512 (2022)
Jin, Yu, Govoni, Xu, Galli, JCTC 19, 8689 (2023)
Yu, Jin, Galli, Govoni, JCTC 20, 10899 (2024)
Chen, Yu, Jin, Govoni, Galli, JCTC 21 (2025)

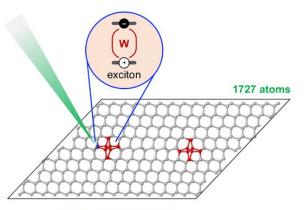
EXCITA

Spin defe



Density Functiona Theory (DFT)

Large scale MBPT calculation



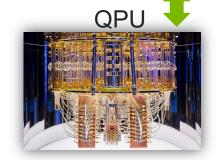
NV-@dislocation in diamond

G₀**W**₀-**BSE** without empty states **5 min** on 64 GPU nodes

Yu, Jin, Galli, Govoni, JCTC 20, 10899 (2024)

Hybrid classical/quantum computing

CPU/GPU



Huang, Govoni, Galli, PRX Quantum 3, 010339 (2022) Huang, Sheng, Govoni, Galli, JCTC 19, 1487 (2023) $\langle cc' \rangle + \cdots$

n-ple

on (FCI)

t. 96, 113001 (2006)
J. Chem. Phys. 113
B 85 045116 (2012)
122, 237402 (2019)
It Mater 3, 31 (2018)
It Mater 6, 85 (2020)
TC 17, 2116 (2021)
CTC 18, 3512 (2022)
CTC 19, 8689 (2023)

JCTC 20, 10899 (2024)

EXCITED STATES FORCES

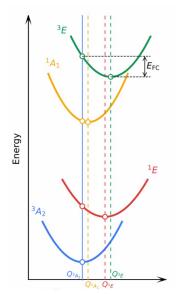
■ TDDFT w/ Tamm-Dancoff approx.

$$(D + K^{1e} - K^{1d})X_I = \boldsymbol{\omega}_I X_I$$

■ TDDFT analytical forces on nuclei

$$\nabla_R \omega_I = \int d\mathbf{r} \nabla_R V_{ext}(\mathbf{r}) \left[\Delta \rho^a(\mathbf{r}) + \Delta \rho^z(\mathbf{r}) \right]$$

We use the generalized Lagrangian framework to obtain TDDFT/BSE forces



Density variation obtained from the virtual manyfold

Triplet excited states

Spin-conserving + states

Singlet excited states

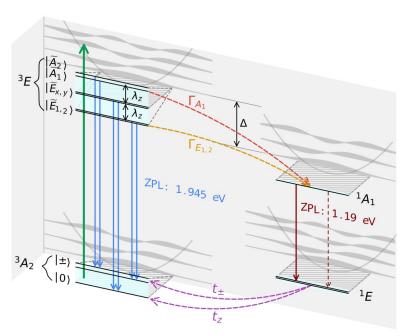
Hutter, J. Chem. Phys 118, 3928 (2003) Jin, Yu, Govoni, Xu, Galli, JCTC 19, 8689 (2023)

EXCIT

- TDDFT w
- TDDFT a

We use Lagrangi obtain TD

Intersystem crossing rates



Jin et al., PRL 135, 036401 (2025)

Hutter, J. Chem. Phys Jin, Yu, Govoni, Xu, Galli, JCTC 19, 8689 (2023)

 $\frac{Q_{^3A_2}}{Q_{^1A_1}} \frac{1}{Q_{^1E}} \xrightarrow{Q_{^3E}}$

 $ho^{\mathbf{z}}(\mathbf{r})]$

ndy–Schaefer ector correction

riplet xcited tates

singlet xcited states

CODES

Density functional theory (DFT) calculations with periodic boundary conditions

https://www.quantum-espresso.org/

- KS-DFT with plane-waves
- ONCV pseudopotentials
- Density Functional Perturbation Theory

Giannozzi, et al., J. Phys. Condens. Matter 21, 395502 (2009) Giannozzi, et al., J. Phys.:Condens.Matter 29, 465901 (2017) Giannozzi, et al., J. Chem. Phys. 152, 154105 (2020)

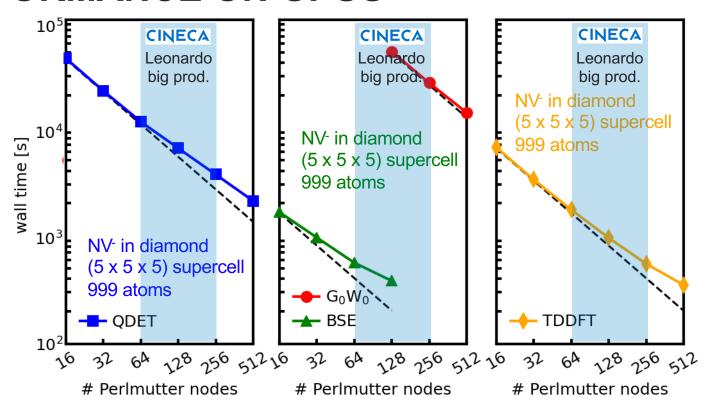
Excited states for large systems

https://west-code.org/

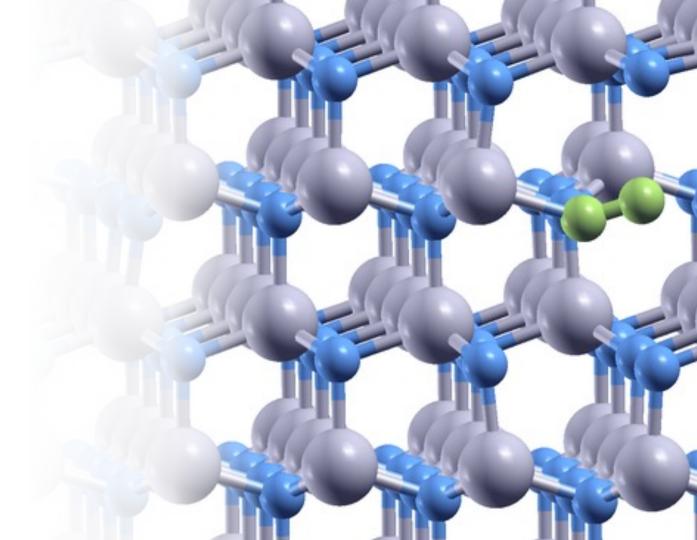
- Many-body perturb. Theory: GW-BSE
- Time-dependent DFT (w/ spin-flip)
- Quantum Embedding (FCI-in-DFT)

Govoni, Galli, JCTC 11, 2680 (2015)
Yu, Jin, Galli, Govoni, JCTC 20, 10899 (2024)
Chen, Yu, Jin, Govoni, Galli, JCTC 21 (2025)

PERFORMANCE ON GPUS



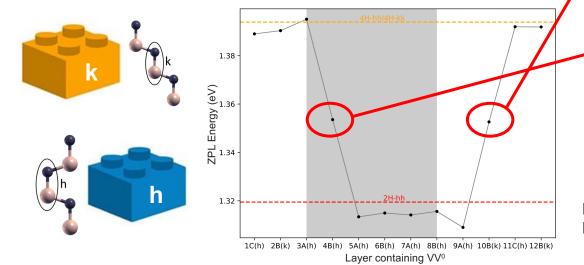
Results from the EuroHPC allocation

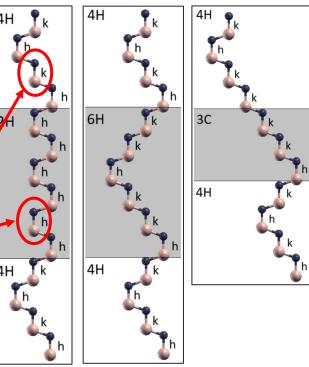


EFFECT OF LOCAL ENVIRONMENT IN SILICON CARBIDE

Silicon carbide exhibits polytypism, can it be leveraged to tailor defect properties?

 Developed a model based on local environment to describe the influence of heteropolytypism on VV⁰



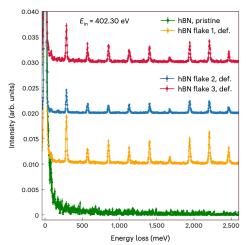


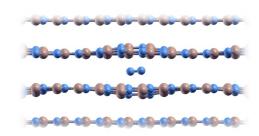
Experimental collab.: Heremans (Argonne National Lab), manuscript in preparation

SINGLE PHOTON EMISSION IN NITRIDE

MATERIALS

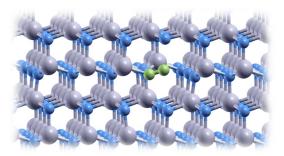
- Several quantum technologies rely on quantum emitters capable of producing single photons
- Vibrational modes of molecular-like defects influence single photon emission in hBN, GaN, AIN





Explained microscopic origin of excitation patterns in hBN, reconciling RIXS and PL spectra

Pelliciari et al., Nature Materials 23, 1230 (2024)

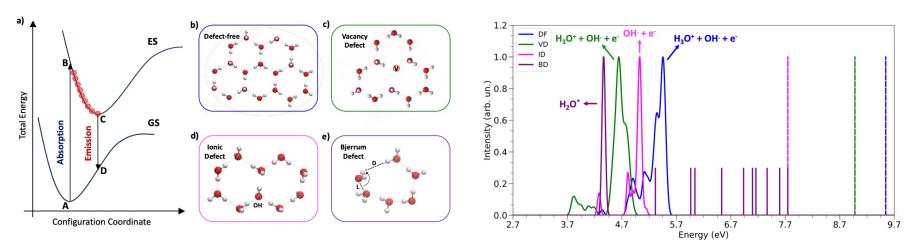


Proposed a similar mechanism to explain excitation patterns in wurtzite lattices (AIN, GaN)

Experimental collaborators: Pelliciari (Brookhaven National Lab), Grosso (City U. New York), manuscript in preparation

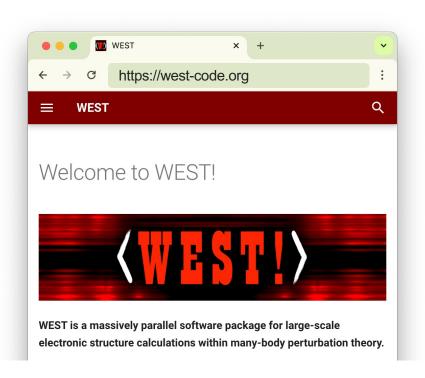
PHOTOCHEMISTRY OF ICE

- UV light drives fundamental atmospheric & planetary processes in ice
- Vacancies, ionic species, and orientational defects influence UV absorption and emission, controlling the formation of photoproducts in ice



M. Monti, Y. Jin, G.D. Miron, A. Kundu, M. Govoni, G. Galli, A. Hassanali, under review, arXiv:2506.16568

GET STARTED WITH THE WEST CODE



New release! GPU-enabled TDDFT/BSE/Embedding + TDDFT forces

v6.2.1 (July 2025)

- Website: https://west-code.org
- Git repository: https://github.com/west-code-development
- Tutorials: https://west-code.org/doc/West/latest/tutorial

ACKNOWLEDGMENTS

- Collaborators (theory/code):
 - Giulia Galli (U. Chicago)
 - Yu Jin (U. Chicago)
 - Victor Yu (Argonne National Lab)
 - Ali Hassanali (ICTP)
 - Marta Monti (ICTP)
- Collaborators (experimental):
 - Joe Heremans (Argonne National Lab)
 - Jonathan Pelliciari (Brookhaven National Lab)
 - Gabriele Grosso (CUNY)
- Computational facilities used:
 - CINECA/Leonardo, NERSC/Perlmutter

Funding

