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Ice Ih, i.e. “just ice”
2

δ+δ-



Ih

II

0 °C, 1 atm

The phase diagram of water is amazingly complex

Figure adapted from Hansen Nat. Comm. 12, 3161 (2021)
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Most lattices have a 
proton-ordered 

and a 
proton-disordered 

phase
(e.g. III → IX)
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Building a phase diagram requires the calculation of Gibbs’ free energies

Figure adapted from Hansen Nat. Comm. 12, 3161 (2021)
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The state-of-the-art covers a “limited” range of temperatures and pressures

Bore & Paesani Nat. Comm. 14, 3349 (2023)
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0 °C, 1 atm

From quantum MB-pol simulations

Our goal:
Obtaining an accurate phase diagram of water from first-principles over an 

unprecedented broad range of temperatures and pressures.



Outline

Thermodynamic integration to compute exact Gibbs’ free energies

Machine learning potentials are necessary to perform the simulations

The theoretical phase diagram of water
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The central problem: an absolute reference for the Gibbs’ free energy is unknown

Provide an initial 
analytical 

reference ΔG 
between phases

Include nuclear 
quantum effects 

to obtain the 
exact ΔG

Correct the ΔG for 
high temperatures 

and isobaric 
conditions

Correct the ΔG 
accounting for the 

true potential 
energy surface
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Thermodynamic integration to compute the free energy difference between two states
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Each point requires a long molecular dynamics to converge the ensemble average.

Typical values are 15 MDs of more than 100 ps per correction.



Outline

Thermodynamic integration to compute exact Gibbs’ free energies

Machine learning potentials are necessary to perform the simulations

The theoretical phase diagram of water
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Computing the interaction energy is the bottleneck of molecular modeling

Brute-force QM 
is not an option

DFT → expensive, not accurate 
enough

CCSD(T) → accurate but 
out-of-the-chart expensive

Machine Learning 
Interatomic Potentials

Van Speybroeck Phil. Trans. R. Soc. A 381, 20220239 (2023)
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MLPs can learn an ab initio PES

graph neural network (MACE)
trained on QM-evaluated structures

total energy

𝐸𝐸 = �
𝑖𝑖
𝐸𝐸𝑖𝑖

input structure

• Training structures from active learning and literature.

Cheng et al. Proc. Natl. Acad. Sci. U. S. A. 116, 1110-1115 (2019)

• Reference level of theory revPBE-D3/TZV2P (GGA DFT).

• In progress: level of theory enhancement to CCSD(T).



Outline

Thermodynamic integration to compute exact Gibbs’ free energies

Machine learning potentials are necessary to perform the simulations

The theoretical phase diagram of water
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Intermezzo: how proton disorder is taken into account

VII IV

Proton-disordered structures are generated randomly
and optimized to retrieve their energy
w.r.t. the proton-ordered phase
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The computed phase diagram is in semi-quantitative agreement with the experiment

1. General features are quite consistent (cell flexibility and NQEs have 
limited effect).

Experimental diagram from Hansen Nat. Comm. 12, 3161 (2021)
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The computed phase diagram is in semi-quantitative agreement with the experiment

1. General features are quite consistent (cell flexibility and NQEs have 
limited effect).

2. Almost all main phases are present and in the right location.

Experimental diagram from Hansen Nat. Comm. 12, 3161 (2021)
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The computed phase diagram is in semi-quantitative agreement with the experiment

1. General features are quite consistent (cell flexibility and NQEs have 
limited effect).

2. Almost all main phases are present and in the right location.

Coexistence lines are systematically shifted to high pressures.

Where is II?

II

Experimental diagram from Hansen Nat. Comm. 12, 3161 (2021)
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The computed phase diagram is in semi-quantitative agreement with the experiment

1. General features are quite consistent (cell flexibility and NQEs have 
limited effect).

2. Almost all main phases are present and in the right location.

Coexistence lines are systematically shifted to high pressures.

Where is II?

II

Train on CCSD(T) data 
to improve the agreement 
with experiment.

Experimental diagram from Hansen Nat. Comm. 12, 3161 (2021)
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Challenges for the chemical industry

Industry has a continuous need to improve its products.
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• Improvement of already existing products
• Competition within the market

Sustainability drivers:
• Sustainable raw materials
• Environmentally and health-safe
• Biodegradable

Cost drivers: 
• Cheap raw materials
• Simple synthesis



Sustainable polymers are hard to develop
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Challenges in 
polymer testing

Home 
Care

Persona
l

Care

Packaging
&

Plastics

Adhesives
&

Sealants

Food 
Additives

Need for sustainable 
alternatives

Design 
limitations



Our solution: digital pipeline to develop polymers
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Molecular 
Dynamics

Artificial 
Intelligence

Scalable: assessment of thousands of polymer candidates

Consistent: reproducible and standardized predictions.

Digital: entirely in-silico.

Sustainable: Minimizes chemical waste and resource use.

Efficient: Reduces R&D costs while speeding up innovation



Digital lab vs traditional lab
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The “traditional” (experimental) lab

• Synthesis and experimental characterization 
and testing

• If the test is not successful, the same 
process has to be iterated.

• Inefficient, slow, tedious and error-prone.

The digital lab

• All testing is digital. Only the most 
promising candidates are synthesized and 
tested experimentally.

• More trial systems in less time, making the 
process faster, cheaper and more efficient.



The first ingredient: computational modeling
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Modeling is a multiscale problem that spans more than ten orders of magnitude.
For CoSSPIA we used atomistic modeling based on classical Molecular Dynamics.



The second ingredient: data-driven ML
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Unsupervised Learning
• No labeled data required.
• Chemical space insights: visualize and understand relevant 

regions.
• Smart prioritization & exploration: focus computational (and 

experimental) work on key areas of interest.

Supervised Learning
• Predictive: discover well-performing candidates.
• Structure–activity insights: identify key relationships. 
• Main challenge: large, high-quality datasets.



Computational descriptors
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Within CoSSPIA we focused on the 
following physico-chemical descriptors of 
polymers:

 Glass transition temperature (Tg),

 Viscosity,

 Young’s modulus,

 Solubility,

 Interfacial tension.



MD simulation to predict the Tg of polymers
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The change in the slope 
indicates the Tg

Corresponds to transition 
from glassy to rubbery

Annealing Molecular 
Dynamics Simulations

Four replicas 
per polymer

Simulations reproduce 
the experimental trends

They display a constant 
offset



HT screening to generate data and train an ML model
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~15.000 polymers generated,
~500 polymers selected for MD

Low MAE,
small ovefitting

Model generates 
almost identical 

results to MD



Glass transition temperature of polymers
CO

N
FI

D
EN

TI
AL

 - 
N

O
T 

FO
R 

D
IS

TR
U

BT
IO

N

• Model works for homopolymers and 
binary copolymers.

• Input: SMILES code of monomers and 
mixing ratio in copolymers.

• Almost instantaneous prediction.

• Allows rapid screening of thousands to 
millions of polymers in short time.

• The tool is accessible via a simple and 
intuitive web app:

• Predictive ML models for other 
properties are under preparation.

https://biopolymer-ml-pub.nextmol.com/

https://biopolymer-ml-pub.nextmol.com/


Conclusions
• Industry Challenge: Need for high-performance, sustainable, cost-effective polymers.

• Problem: Traditional polymer development is slow, costly, inefficient, and limited by 
experimental capacity constraints.

• Our solution: Digital pipeline combining Molecular Dynamics (MD) and Machine 
Learning (ML) for in-silico polymer design.

• Benefits:
 Scalable, predictive, and sustainable approach.
 Reduces R&D costs and chemical waste.
 Accelerates innovation.

• Key achievements of CoSSPIA:
 High-throughput screening of thousands of polymers.
 Database of physico-chemical descriptors.
 ML models that can predict key physico-chemical descriptors for millions of polymers.

• Impact: Enables rapid, large-scale screening and supports circular economy goals.
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Designing the next 
molecules the world 
needs!javier.ortin@nextmol.com

nextmol.com



Advanced modeling of Materials for Energy
transformations

Núria López





Power-to-X

Catalyst



Copper



Cation effects beyond DFT



Dynamics models OD-Cu






Dynamics with ML potentials

Nature Catal. (2024)



Reactivity OD-Cu

Ethanol Ethylene

Distorted domains

High strain
Low s states

Undercoordinated 
sites

Nature Energ. (2024)



Up to C6

ACIE (2020)
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DESIGNING POINT-DEFECTS IN 
LOW-DIMENSIONAL
MATERIALS WITH QUANTUM 
CHARACTERISTICS
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OVERVIEW
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Quantum sensing 
& metrology

Quantum 
communication

NV- in diamond

Optically active spin defects in 
semiconductors are interesting platforms 
for the development of solid-state quantum 
technologies 
§ two-level system in material 
§ operates at room temperature 

Goals & 
Opportunities

Nanoscale sensors Single-photon emitters 
for quantum internet

Nature 526, 682 (2015) Nat. Commun. 15, 4722 (2024)

h
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Silicon Carbide Nitrides Ice

G. Kucsko et al. Nature 500, 54 (2013)
B. Hensen, et al. Nature 526, 682 (2015)

S. J. Whiteley, et al. Nature Physics 15, 490 (2019)
G. Wolfowicz, et al., Nat. Rev. Mater. 6, 906 (2021)



COMPUTATIONAL CHALLENGES
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To simulate photo-luminescence 
we compute:

1) Excitation energies 
à multiconfigurational 
excited states

2) Optimization of atom 
positions in excited potential 
energy surfaces (PES)  
à Forces for excited 
states 

(3N atom positions)



EXCITATION ENERGIES
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single double

Walker, Saitta, Gebauer, Baroni, Phys. Rev. Lett. 96, 113001 (2006)
Rocca et al., J. Chem. Phys. 128 154105 (2008), J. Chem. Phys. 113 

164109 (2010), Phys. Rev. B 85 045116 (2012)
Nguyen, Ma, Govoni, Gygi, Galli, Phys. Rev. Lett. 122, 237402 (2019)

Bockstedte, Schütz, Garratt, Ivady, Gali, npj Comput Mater 3, 31 (2018)
Ma, Govoni, Galli, npj Comput Mater 6, 85 (2020)

Ma, Sheng, Govoni & Galli, JCTC 17, 2116 (2021)
Sheng, Vorwerk, Govoni, Galli,  JCTC 18, 3512 (2022)

Jin, Yu, Govoni, Xu, Galli, JCTC 19, 8689 (2023)
Yu, Jin, Galli, Govoni, JCTC 20, 10899 (2024)
Chen, Yu, Jin, Govoni, Galli, JCTC 21 (2025)

n-ple

Density 
Functional 

Theory (DFT)

Full Configuration Interaction (FCI)

TD-DFT / BSE

https://www.quantum-espresso.org/ https://west-code.org/
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Spin defect                 Many-body spectrum
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# 𝑣𝑣$𝑐𝑐$ +⋯	

single double n-ple

Density 
Functional 

Theory 
(DFT)

Full Configuration Interaction (FCI)

TD-DFT / BSE

Intersystem 
crossing rates

Hybrid 
classical/quantum 

computing
CPU/GPU

QPU

Huang, Govoni, Galli, PRX Quantum 3, 010339 (2022)
Huang, Sheng, Govoni, Galli, JCTC 19, 1487 (2023)

Large scale MBPT 
calculation

G0W0-BSE without empty states 
5 min on 64 GPU nodes  

Yu, Jin, Galli, Govoni, JCTC 20, 10899 (2024)



EXCITED STATES FORCES

§ TDDFT w/ Tamm-Dancoff approx.

§ TDDFT analytical forces on nuclei
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(𝐷 + 𝐾!" − 𝐾!#)𝑋$ = 𝝎$𝑋$

𝛁%𝝎𝑰 	= ∫ 𝑑𝒓	𝛁%𝑉"'((𝒓) Δ𝜌) 𝒓 + Δ𝜌*(𝒓)

Hutter, J. Chem. Phys 118, 3928 (2003)
Jin, Yu, Govoni, Xu, Galli, JCTC 19, 8689 (2023)

We use the generalized 
Lagrangian framework to 
obtain TDDFT/BSE forces

Triplet 
excited 
states

Singlet 
excited 
states

Handy–Schaefer 
Z-vector correction

Density variation obtained 
from the virtual manyfold



EXCITED STATES FORCES

§ TDDFT w/ Tamm-Dancoff approx.

§ TDDFT analytical forces on nuclei
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𝛁%𝝎𝑰 	= ∫ 𝑑𝒓	𝛁%𝑉"'((𝒓) Δ𝜌) 𝒓 + Δ𝜌*(𝒓)

Hutter, J. Chem. Phys 118, 3928 (2003)
Jin, Yu, Govoni, Xu, Galli, JCTC 19, 8689 (2023)

We use the generalized 
Lagrangian framework to 
obtain TDDFT/BSE forces

Triplet 
excited 
states

Singlet 
excited 
states

Handy–Schaefer 
Z-vector correction

Density variation obtained 
from the virtual manyfold

Intersystem crossing rates 

Jin et al., PRL 135, 036401 (2025)



CODES
§ Density functional theory (DFT) calculations with periodic boundary conditions 

§ Excited states for large systems
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• KS-DFT with plane-waves
• ONCV pseudopotentials
• Density Functional Perturbation Theory

• Many-body perturb. Theory: GW-BSE
• Time-dependent DFT (w/ spin-flip) 
• Quantum Embedding (FCI-in-DFT)

https://www.quantum-espresso.org/

https://west-code.org/

Giannozzi, et al., J. Phys. Condens. Matter 21, 395502 (2009)
Giannozzi, et al., J. Phys.:Condens.Matter 29, 465901 (2017)

Giannozzi, et al., J. Chem. Phys. 152, 154105 (2020)

Govoni, Galli, JCTC 11, 2680 (2015)
Yu, Jin, Galli, Govoni, JCTC 20, 10899 (2024)
Chen, Yu, Jin, Govoni, Galli, JCTC 21 (2025)



NV- in diamond
(5 x 5 x 5) supercell
999 atoms

NV- in diamond
(5 x 5 x 5) supercell
999 atomsNV- in diamond

(5 x 5 x 5) supercell
999 atoms

Leonardo
big prod.

Leonardo
big prod.

Leonardo
big prod.

NERSC/Perlmutter node: 1 AMD EPYC Milan (64 cores) + 4 NVIDIA A100 GPUs
CINECA/Leonardo: 1 Intel Ice Lake (32 cores) + 4 NVIDIA A100 GPUs

PERFORMANCE ON GPUS



Results from 
the EuroHPC 

allocation
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EFFECT OF LOCAL ENVIRONMENT IN SILICON 
CARBIDE
§ Silicon carbide exhibits polytypism, can it be 

leveraged to tailor defect properties?
§ Developed a model based on local environment to 

describe the influence of heteropolytypism on VV0

Experimental collab.: Heremans (Argonne 
National Lab), manuscript in preparation
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SINGLE PHOTON EMISSION IN NITRIDE 
MATERIALS

§ Several quantum 
technologies rely on 
quantum emitters 
capable of producing 
single photons 

§ Vibrational modes of 
molecular-like 
defects influence 
single photon 
emission in hBN, 
GaN, AlN

Experimental collaborators: Pelliciari (Brookhaven National Lab), Grosso (City U. New York), manuscript in preparation

Explained microscopic origin of 
excitation patterns in hBN, 

reconciling RIXS and PL spectra

Proposed a similar mechanism 
to explain excitation patterns in 

wurtzite lattices (AlN, GaN)

Pelliciari et al., Nature Materials 23, 1230 (2024)



PHOTOCHEMISTRY OF ICE 
§ UV light drives fundamental atmospheric & planetary processes in ice
§ Vacancies, ionic species, and orientational defects influence UV absorption and 

emission, controlling the formation of photoproducts in ice
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M. Monti, Y. Jin, G.D. Miron, A. Kundu, M. Govoni, G. Galli, A. Hassanali, under review, arXiv:2506.16568



GET STARTED WITH THE WEST CODE

§ New release! GPU-enabled 
TDDFT/BSE/Embedding + TDDFT 
forces

v6.2.1 (July 2025)

§ Website: https://west-code.org

§ Git repository: https://github.com/west-
code-development

§ Tutorials: https://west-
code.org/doc/West/latest/tutorial
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https://west-code.org

https://west-code.org/
https://west-code.org/
https://west-code.org/
https://github.com/west-code-development
https://github.com/west-code-development
https://github.com/west-code-development
https://github.com/west-code-development
https://github.com/west-code-development
https://west-code.org/doc/West/latest/tutorial
https://west-code.org/doc/West/latest/tutorial
https://west-code.org/doc/West/latest/tutorial
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