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● Main services
○ Language services (Translation, Transcreation, Subtitling, Dubbing)
○ Human-AI Symbiosis in Translation

● AI experience (products, services, research):
○ ModernMT/Lara: Machine translation/LLM solutions
○ Matecat: Computer-assisted translation system
○ Matesub / Matedub: AI-based Subtitling / Dubbing

○ Meetween: multimodal real time video communication translation 
○ DVPs: multimodal foundation model for communication
○ First Application Transformer 2017
○ Largest translation dataset and highest quality in the world
○ Best FP7 and H2020 Language AI Research in Europe

● Matecat - ModernMT (2010 / 2018)
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Voice for Purpose: Giving voice to those who cannot speak
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● Give expressive voices to people affected by:
Motor neuron conditions (ALS, SMA), Lanynx Cancer, Stroke, Cerebral Palsy, Autism.

● Main project features
○ User profiling and medical assistance
○ Voice Donation, Voice Self-Donation
○ Expressive AI voice model creation
○ Real time delivery of expressive AI speech to users

● Innovations
○ Voice donation: social platform to support people in need of voice
○ Cloud-based: infrastructure for delivery to any device
○ Expressive AI voices: high quality, real time voice rendering

● Large social footprint: 5000+ donors, 100+ users
● Findings: measured users preference for self-donated or donated voices over standard impersonal voices
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Research Problems:

1. Improve input speed/fatigue for people using AAC with eye-gaze 

1. Reduce the dataset recording for personal voices
2. Improve models prosody
3. Improve multilingual performance
4. Reduce number of voice models to maintain
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} ● Audio track

● LLM track



Task Reproduce Speakfaster paper by Google, and replicate it in multiple languages.

Concept: Predict sentences from word initials, minimizing number of clicks cognitive effort => increase speed
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https://www.nature.com/articles/s41467-024-53873-3
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Models tested for prediction: 

Open source

- Llama 8B, base and instruct
- Qwen 1B, 3B, 7B, base and instruct
- Microsoft Phi-3-small 7B
- OpenHermes 2.5 Mistral 7B

Close source

- GPT 4.1 and 4.1 mini

Tested: temperature manipulation, few shot, prompt engineering, and oversampling. 

Current results: Llama 8B base doubles accuracy over baseline (10% => 20%)

Ongoing: Finetune Llama 8B and 70B base on LEONARDO.

Expected accuracy improvement: 300% compared with non finetuned (20% => 60% accuracy) 

Expected Keystrokes reduction: 63%, lowering patient fatigue (SOTA reduces by 48%)

Speed improvement goal: Goal: 30%-50% 

LLM track



● Baseline: Fastpitch (0.08b) finetuned: 150h of voice datasets and 2h of specific users’ voices

● New model: XTTS v2 (0.5B) finetuned: 150h of voice datasets. Condit. 2min of specific user’s voice

● Tested on 34 speakers, incl. professional voice actors, healthy people, voice impaired people

Results

● WER (Whisper): XTTS: WER 1.5% Fastpitch 2.4%

● UTMOS: XTTS vs Fastpitch: +0.5 pts avg

● XTTS produces more fluent, multilingual voices, with less data
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Male-Italian Female-Spanish
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XTTS v2 rates better than Fastpitch on the 1-5 UTMOS scale

Fastpitch rates better than XTTS v2 on the 1-5 UTMOS scale
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● XTTS:

○ Single fine-tuning: 24h on 4 GPUs (per 

encoder and decoder), i.e. 192h

○ 34 trainings resulting in: 34 * 192 h = 6528 h

○ Hyperparameter optimisations: 5000 h

● KoelTTS

○ Single training: 32 GPUs for 5 days: 3,840 h

○ 10 language specific models: 10 * 3,840 h = 

38,400 h

○ One big model covering all languages: 64 

GPUs for 7 days: 10,752 h

○ Hyperparameter optimisations: 25,000 h

● Total TTS track: 85,680 h

Computing Resource usage

● Llama 8B

○ single training 32 gpus 1 day: 800 h

○ Hyperparameter optimisations (guess): 

2,500 h

● Llama 70B

○ single training 64 gpus 5 days: 8,040 h

○ 10 languages: 8,040 * 10 = 80,400 h

○ Hyperparameter optimisations (guess): 

10,000 h

● total LLM track = 92,900 h

AI and Data Intensive Applications Access call
Awarded 200k hours on LEONARDO (Cineca, IT): study new, large voice and language models models. 



HPC very powerful infrastructure to:

- run training of large scale models

- implement flexible research practices in different fields
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Fabio Minazzi
Director of Audiovisual
fabio@translated.com

Thank you

Any questions?
We’re here for you.
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ModTox: A Platform for toxicity predictions from simulations of high risk 
off - target proteins
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Outline

2

▪ Model for small molecule toxicity

▪ Hig h ris k off- ta rg e t prote ins

▪ MD s im ula tions

▪ Da ta ba s e  c re a tion

▪ Da ta  a na lys is
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Model for small molecule toxicity

3

Toxicity ~ f(potency, promiscuity) + other pathways

average on - target 
binding affinity
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Model for small molecule toxicity

4

Toxicity ~ f(potency, promiscuity) + other pathways

average off - target 
binding affinity
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Model for small molecule toxicity
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undesired on - target effect
metabolites

…

Toxicity ~ f(potency, promiscuity) + other pathways

Ac e ta m inop he n

( Pa ra c e ta m ol)
N- a c e tyl p - b e nzoq uinone

Ac e ta m inop he n s ulfa te  

Ac e ta m inop he n g luc oronid e  
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Model for small molecule toxicity

6

Toxicity ~ f(potency, promiscuity) + other pathways

Maximizing potency
+

Minimizing promiscuity 
Increased selectivity

Lower risk of 
off - target interactions

Reduced risk of 
side - effects
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Identification of high risk off - targets

7

▪ Minimal panel from industry : set of unintended biological targets that pharma companies use for early safety 

screening (AstraZeneca, GlaxoSmithKline, Novartis and Pfizer) 

▪ High risk off - targets (HROTs) frequently limiting maximum recommended therapeutic dose : Found high risk 

off - targets identifying the proteins that bound most often to high promiscuous, low dose drugs. 

Estimation of Maximum Recommended Therapeutic Dose Using Predicted Promiscuity and Potency. Clinical Translational Sci 2016
R educing S afety- R elated Drug A ttrition: The Use of in V itro Pharmacological Profiling. Nat Rev Drug Discov 2012

G PC Rs Ion c ha nne ls Enzym e s  
( kina s e s )

Nuc le a r re c e p tors …



www.nos trum b iod is c ove ry .c om© NBD | Nostrum Biodiscovery 2023

ModTox database and platform

8

▪ Generate conformational ensembles through all - atom MD simulations of off - target proteins

HPC
MD 

simulations
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ModTox database and platform

9

▪ Generate conformational ensembles through all - atom MD simulations of off - target proteins

▪ C onne c t Mod Tox to the  Molecular Dynamics DataBase ( MDDB)

HPC
MD 

simulations

ModTox 
Database
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ModTox database and platform

10

▪ Generate conformational ensembles through all - atom MD simulations of off - target proteins

▪ C onne c t Mod Tox to the  Molecular Dynamics DataBase ( MDDB)

▪ C re a te  a na lys is  a nd  models to a s s e s s  toxicity of ne w c om pound s

HPC
MD 

simulations

ModTox 
Database

ModTox 
Platform
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MD simulations: BioBB pipeline

11

Biobb Workflow

▪ Automation achieved through BioBBs - python library to build 
biomolecular simulation workflows 

1. Obtain initial structure → PDB or AF2

2. Fix d e fe c ts  

3. Pre p a re  s im ula tion

4 . Minim iza tion, e q uilib ra tion a nd  p rod uc tion → 3 re p lic a s  x 5 0 0  ns

5 . Pos t- p roc e s s ing  a nd  c lus te ring

MD 
simulations
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ModTox database in MDDB
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▪ MDDB is a European initiative to build a federated database of MD simulations

▪ The  tra je c tory is  loa d e d  into a  loc a l d a ta b a s e , the n c onne c te d  to a  g lob a l s e rve r

▪ Sim p le  a na lys is  a re  re a d ily  a va ila b le
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Analysis and models

13

- Extract representative conformations from binding sites

- Test toxicity model on a set of active and decoy ligands

Original 
trajectory

Representative 
conformations

Toxicity ~ f(potency, promiscuity) + other pathways
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Analysis and models

14

- Extract representative conformations from binding sites

- Test toxicity model on a set of active and decoy ligands

- Train surrogate models to approximate affinity to HROTs

- Use DSD models to screen compounds during HTVS

Original 
trajectory

Representative 
conformations

Toxicity ~ f(potency, promiscuity) + other pathways

3D d oc king

SMILES AFFINITY

Surrog a te  m od e l

Affinity to ta rg e t

Ma xim ize  p ote nc y

Affinity to HROTs

Minim ize  p rom is c uity
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SNP association studies and applications

1-Oct-25 Porting Epistasis Detection Methods to EuroHPC Supercomputers

Search for statistical associations between genetic markers and a given trait 

Processing over case-control datasets
case: individual with the trait under study
control: individual that does not have the trait

Useful for a number of use cases
Personalized medicine, drug development, 
mitigate the spread of viruses, forensics

2  |

Datasets represent bi-allelic SNPs
SNP: Single nucleotide polymorphism
Major allele: most frequent, minor allele: least frequent

SNPs have three possible genotypes
homozygous major, heterozygous, and homozygous minor

SNP: Single nucleotide polymorphism



Epistasis detection and high-order searches

1-Oct-25 Porting Epistasis Detection Methods to EuroHPC Supercomputers

SNP X

SNP Y

SNP Z

 Count genotypes1
2
3

Apply scoring function

Reduce scores

for each SNP

combination

Looking into SNPs 1-by-1 does not uncover all genotype-phenotype associations

SNPs interact in non-linear ways
epistasis: trait is multi-SNP dependent

Computationally demanding
Especially if performing high-order searches 

Challenge: Combinations grow exponentially with 
the number of SNPs (M) and interaction order (k)

3  |



Core operations for evaluating SNP combinations

1-Oct-25 Porting Epistasis Detection Methods to EuroHPC Supercomputers

Datasets often encode genotype using integers to denote the three possible 
alleles, i.e. homozygous major (0), heterozygous (1), and homozygous minor (2)

BOOST [1] introduced dataset binarization using 1-bit per SNP/genotype tuple
Genotype counts calculated applying k-1 AND per 1 POPC instruction to process sample packs

However, there are data 
representations that enable 
more efficient processing

4  |



Use of GPUs and other parallel accelerators

1-Oct-25 Porting Epistasis Detection Methods to EuroHPC Supercomputers

GPUs are suitable for data-parallel apps
Makes GPUs a good choice for epistasis searches

Recent approaches tend to rely on GPUs
Although SoA uses also other devices (e.g. IPU)

Examples of GPU SoA approaches:
GBOOST [2]: extends BOOST to GPUs
MPI3SNP [3]: performs 3rd-order searches
CUDA-Episdet [4]: > 80% POPC peak
Cross-DPC-Episdet [5]: HW interoperability

GPUs also have native support for binary operations such as AND and POPC
POPC is slower than AND on GPUs, but use of bitwise operations still enables faster processing

5  |



Acceleration of core operations using tensor cores

1-Oct-25 Porting Epistasis Detection Methods to EuroHPC Supercomputers

CoMet [6] relies on 16-bit multiply-add on the tensor cores in Volta GPUs
Processing blocks of data from multiple SNPs and samples using matrix multiplication

Tensor-Episdet [7] uses XOR+POPC on the tensor cores in Turing GPUs
Deriving AND+POPC at low cost and implementing technique that infers most genotypes

I

Genotype inference enables reconstructing full 
tables (2×3k values) from 2×2k genotype counts
2×4 in 2nd-order searches and 2×8 in 3rd-order searches

Both calculate 2×2^k contingency table values 
(2×4 in 2nd-order or 2×8 in 3rd-order)
But Tensor-Episdet reconstructs the full tables (2 x 3^k 
values), making it so that any scoring function can be used

Second-order inference: dotted 
lines represent inferred genotypes

image from [7]
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Tensor cores for third-order searches and beyond 

1-Oct-25 Porting Epistasis Detection Methods to EuroHPC Supercomputers

Approach (# nodes ×) GPU config. Performance Performance / node Performance / GPU

CoMet [6] (4373 ×) 6 Tesla V100 81611 18.66 3.11

Tensor-Episdet [7] (1 ×) 1 Titan RTX 54.54 54.54 54.54

Tensorized 1-bit processing enabled 18× higher 3rd-order performance per GPU
Despite the Titan RTX being similar in FP16 compute throughput to the Tesla V100 (≈130 TFLOPS)

Epi4Tensor [8] does 4th order using AND+POPC introduced in Ampere
Over 70% of the peak tensor throughput, but requirements impractical for full-scale searches

Performance: SNP combinations processed per second scaled to the sample size 

7  |



Porting GPU-accelerated codes to supercomputers

8  |

Approach Order(s) Prog. model(s) Targeted hardware

CUDA-Episdet [4] 2nd, 3rd OpenMP, CUDA Any NVIDIA GPU (Maxwell to Ampere)

Tensor-Episdet [7] 2nd, 3rd CUDA Turing GPUs (also supports Ampere)

Epi4Tensor [8] 4th OpenMP, CUDA Ampere GPUs (also supports Turing)

Crossarch-Episdet [9] 2nd, 3rd OpenMP, SYCL CPU/GPU with SYCL support via oneAPI

(200 ×) AMD EPYC 7452 + 4 × A100 SXM4 40GB
MeluXina GPU-accelerated partition

(2978 ×) AMD EPYC 7A53 + 4 × AMD MI250X
LUMI GPU-accelerated partition

1-Oct-25 Porting Epistasis Detection Methods to EuroHPC Supercomputers

(200 ×) AMD EPYC 7452 + 4 × A100 SXM4 40GB

MeluXina GPU partition (Accelerator - GPU)

(2978 ×) AMD EPYC 7A53 + 4 × AMD MI250X

LUMI GPU partition (LUMI-G)

Processing potential of supercomputers is often achieved with GPU accelerators
Most recent TOP500 list ranks nine supercomputers with GPUs as the ten most powerful systems

Some supercomputers (e.g. LUMI) use 
GPUs from vendors other than NVIDIA
Most codes have been developed in CUDA 
and target single-GPU/single-node systems

Most codes have been developed 
in CUDA and target single-GPU or 
single-node 



Both the A100 and the MI250X favour matrix in relation to vector throughput
The next-generation GPUs further amplify this gap, offering even greater speedups for matrix 
computations, which makes it increasingly important to prioritize matrix-based workloads

NVIDIA A100 (MeluXina) and AMD MI250X (LUMI)

1-Oct-25 Porting Epistasis Detection Methods to EuroHPC Supercomputers

A100 MI250X

6912 14080

432 880

40 GB @ 1.56 TB/s 128 GB @ 3.28 
TB/s

Tensor cores are getting larger
XXXX

Boost freq. CUDA/stream 
cores

Tensor/Matrix 
cores

Memory capacity @ 
Bandwidth

A100 1.70GHz 6912 432 40 GB @ 1.56 TB/s
MI250X 1.41GHz 14080 880 128 GB @ 3.28 TB/s

Throughput in TFLOPS (floating-point operations) or TOPS (integer operations)

GPU / 
Precision

Vector
FP64

Matrix
FP64

Vector 
FP32

Matrix
FP32

Vector
FP16

Matrix
FP16 

Matrix
INT8

Matrix
INT4

Matrix
INT1

A100 9.7 19.5 19.5 N/A 78 312 624 1248 4992
MI250X 47.9 95.7 47.9 95.7 N/A 383 383 383 N/A

Both have strong matrix throughput

MI250X has 2× (4×) higher matrix throughput 
in FP16 (BF16, FP32) and adds support for 
other precisions, vector throughput increased 
by 2× (4×) for FP32 (FP64)

TF
LO

P
S

 / 
TO

P
S

MI250X is particularly suited at FP64
However, we are computing with low precision

Vector
INT32

19.5
23.9

A100 SXM4 40GB MI250X

Values announced by the vendors at boost boost clocks

108 compute units @ 1.41 GHz
40 GB @ 1.56 TB/s

2 × 110 compute units @ 1.70 GHz
2 × 64 GB @ 3.28 TB/s

The MI250X is a 
MCM with 2 GPU 
dies, seen from a 
software perspective 
as two GPUs

N/A: not listed by the vendor
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All three CUDA codes were converted to HIP for compatibility with LUMI
HIPIFY + microarchitecture specific modifications + adaptations to HIP/ROCm software stack

Adding support for AMD GPUs through HIP 

10  | 1-Oct-25 Porting Epistasis Detection Methods to EuroHPC Supercomputers

Tensor-Episdet and Epi4Tensor rely on CUTLASS for 1-bit on tensor cores
Scalability tests used FP16 via hipBLAS on the MI250X, which lacks tensorized 1-bit support

The MI250X supports integer ops at the same peak throughput as FP16
Precision tuning considering the INT8 data type, which is also supported through hipBLAS



Implementing intra/inter-parallelization with MPI

11  |

Both intra-node and inter-node parallelization are implemented via MPI
Performed at the level of loop iterations, with each iteration treated as a distinct work unit

Iterations in vector codes process the same number of combinations
Load balance achieved statically assigning work to as many MPI processes as there are GPUs

In matrix methods an SNP block pairs 
with itself and higher-index blocks
Dynamic scheduling via an extra MPI process 
handles the variable amount of combinations

Methods for tensor cores evaluate a variable amount of combinations per iteration
Tensor core based approaches use dynamic scheduling while the others use static scheduling

1-Oct-25 Porting Epistasis Detection Methods to EuroHPC Supercomputers



Speedups and performance for single-node runs

12  |

Speedups for single-node runs with CUDA-Episdet (8192 SNPs), Crossarch-Episdet (8192 SNPs), Tensor-Episdet (16384 SNPs) and Epi4Tensor 
(2048 SNPs). Tensor-Episdet and Epi4Tensor have been executed with 524288 samples on MeluXina, all other runs process 32768 samples.

Performance with tensor cores is higher than that of CUDA/stream core methods
CUDA/HIP-Episdet: 10.96 (MeluXina) / 17.86 (LUMI); Crossarch-Episdet: 10.20 (MeluXina); 11.79 (LUMI)
Tensor-Episdet: 344.43 (MeluXina) / 21.06 (LUMI); Epi4Tensor: 429.58 (MeluXina) / 13.00 (LUMI)

Close to linear speedups, i.e. 4× on MeluXina and 8× on LUMI, are achieved
Using MPI to separately address each GPU die of the MI250X enabled its efficient utilization

1-Oct-25 Porting Epistasis Detection Methods to EuroHPC Supercomputers



Third-order searches using CUDA/stream cores

13  |

CUDA/HIP-Episdet

Speedups with CUDA/HIP-Episdet and Crossarch-Episdet on multiple nodes (MeluXina: 16384 SNPs × 32768 samples, 
LUMI: 32768 SNPs × 32768 samples).

MeluXina LUMI

C
U

D
A

/H
IP

S
Y

C
L

Inter-node parallelization – runs on CUDA/stream cores

1-Oct-25 Porting Epistasis Detection Methods to EuroHPC Supercomputers

Runs on MeluXina and LUMI using up to 32 and 1024 GPU-accelerated nodes
Parallel efficiency of 96% on 1024 nodes for the SYCL code in comparison to single-node 

92.7% of CUDA w/ 32N
Perf: 317.56 vs. 342.61

CUDA/HIP faster despite 
better scaling for SYCL

70.1% of HIP w/ 1024N 
Perf: 11182.24 vs. 15951.32



Third-order searches using matrix processing cores

1-Oct-25 Porting Epistasis Detection Methods to EuroHPC Supercomputers

Epi4Tensor – Fourth-order searches on tensor cores

Tensor-Episdet – Third-order searches on tensor cores

Both LUMI and MeluXina scale similarly 
well with the number of targeted GPUs
LUMI does not scale so well per node because it 
has more GPU dies per node (8 instead of 4)

This is the result of using 
parametrizations that are 
LUMI does not scale so well per node 
because it has more GPU chips per node (2 
instead of 1)

Significant performance gap due to the 
use of 1-bit (A100) vs. 16-bit (MI250X) 
5212.88 (MeluXina) vs. 226.36 (LUMI) tera SNPs 
processed per second scaled to the sample size

Precision tuning on LUMI improved 
performance by 1.6× through the use 
of INT8 instead of FP16 

Precision tuning allowed substantially 
increasing performance on AMD GPUs
1.6× faster using INT8 instead of FP16, despite 
the same theoretical throughput on the MI250X

Speedups with Tensor-Episdet on multiple nodes (MeluXina: 32768 
SNPs × 524288 samples, LUMI: 32768 SNPs × 32768 samples).

MeluXina

LUMI

14  |
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Fourth-order searches using matrix processing cores

MeluXina

LUMI

As in 3rd-order searches, 1-bit resulted in 
MeluXina achieving higher performance
Up to 14346.33 (Meluxina) vs. 2456.96 (LUMI) 

Scalability via 2D work decomposition
Avoids balancing work via smaller SNP blocks, 
which lowers tensor/matrix core throughput

Speedups with Epi4Tensor on multiple nodes (MeluXina: 4096 
SNPs × 524288 samples, LUMI: 4096 SNPs × 32768 samples).

Runs with higher node counts on LUMI 
showcase the scalability of the method
Close to linear improvements up to 128 nodes  

15  |



Ported four GPU-accelerated codes to two EuroHPC supercomputers 
• All were parallelized to leverage multiple GPUs on multiple nodes
• Three went through CUDA-to-HIP translation targeting AMD GPUs

Highest-performing codes on AMD GPU accelerators and still improvable
• Additional tuning of SYCL code could reduce performance gap with HIP
• Matrix methods may benefit from further precision tuning, e.g. using 4-bit

MeluXina achieves higher performance on the codes using tensor cores
• Usage of more nodes on LUMI showcases scalability of the ported codes

Ongoing/Future work in the context of GPU-accelerated methods:
• Adapting our solutions to newer GPU microarchitectures (CDNA3, Hopper)
• Use of Joint Matrix SYCL extension as a means for higher interoperability 

Conclusions and ongoing/future work

1-Oct-25 Porting Epistasis Detection Methods to EuroHPC Supercomputers16  |
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Down syndrome
 Down syndrome (DS) is a complex genetic disorder caused by the triplication of

chromosome 21, occurring in 1 out of every 700 to 1,000 live births
 Individuals with DS present a characteristic craniofacial phenotype that constrains the

growth and shape of the brain, with disproportionately smaller hippocampus and
cerebellum, large ventricles and other alterations

 The structural brain alterations in DS have been associated with cognitive and functional
disabilities from birth, and early dementia in adulthood: after age 40, people with DS are
at ultra-high risk of developing Alzheimer’s disease (AD) due to accelerated
neurodegeneration



Brain magnetic resonance imaging
 Among neuroimaging techniques, brain magnetic resonance imaging (MRI) is the gold

standard for its non-invasive, radiation-free nature and superior soft tissue contrast

3D voxel-based
representation






AI applied to neuroimaging

Deep 
Learning 

Model

Brain registration

Training

“Annotated” data

But… where can we get 
all this data from?

Brain segmentation

Diagnostic classification

“Single-Landmark vs. Multi-Landmark Deep Learning Approaches to 
Brain MRI Landmarking: a Case Study with Healthy Controls and 

Down Syndrome Individuals”
(British Machine Vision Conference 2023)



AI applied to neuroimaging
 Due to their unsupervised nature, generative models avoid the need for large, annotated

datasets of brain MRI scans

 Scientific questions:
 Can generative models …

 contribute to the discovery of brain biomarkers of DS and AD in DS?
 stratify DS individuals depending on their degree of neurodegeneration and other

comorbidities?
 allow the generation of realistic synthetic 3D brain imaging?

 Unsupervised models:
 Autoencoders
 Diffusion models

 Deployed on Marenostrum 5 ACC nodes at the Barcelona Supercomputing Center



AI applied to neuroimaging
 Data used in the project

Dataset IXI HCP Sant Pau ABC-DS
Usage VAE Training VAE Training Classification Classification
Nº of subjects 580 1113 931 63
Diagnosis EU - HC EU - HC EU(540) / DS(391) DS

Dataset Sant Pau Down syndrome subjects
Usage Intellectual disability level in DS Alzheimer’s disease progression in DS
Diagnosis Mild Moderate Severe No deterioration Prodromic Established
Nº of subjects 114 214 59 218 36 108



Towards brain biomarkers discovery
 With autoencoders

 With diffusion models



Towards brain biomarkers discovery
 Before access to HPC infrastructure (Tesla V100 GPUs): limited to 2D or 2.5D

“Towards the Discovery of Down Syndrome Brain 
Biomarkers Using Generative Models”

(BICW, European Computer Vision Conference 2024)



Towards brain biomarkers discovery
 Variational Autoencoders to compute 3D brain alteration maps between euploid (EU) and

DS populations
 Three sectional views of EU vs EU and DS vs EU anomaly maps

 Full 3D average brain alteration map between DS and EU populations






Representation learning for patient stratification
 Study if latent representations learnt by 3D autoencoders are features with diagnostic

potential

 Evaluation:
 Qualitative: reconstruction fidelity and embedding interpretability
 Quantitative: performance on different classification tasks



Representation learning for patient stratification
 Reconstruction fidelity in terms of latent space dimensionality



Representation learning for patient stratification
 Embedding interpretability



Representation learning for patient stratification
 Classification performance

 Task 1: Euploid vs Down syndrome

Sant Pau dataset

Latent Space PCA Accuracy (%) Sensitivity (%) Specificity (%) AUC
(24, 24, 24) - 99.4 99.8 98.7 0.99 
(24, 24, 24) 2 95.3 95.7 94.9 0.98 

Generalisation on ABC-DS dataset

Latent Space PCA Accuracy (%)
(24, 24, 24) - 99.7



Representation learning for patient stratification
 Classification performance

 Task 2: Intellectual disability stratification

 Task 3: Alzheimer’s disease progression

Accuracy 
(%)

Sensitivity (%) Specificity (%)
AUC

Mild Moderate Severe Mild Moderate Severe
70.0 ± 3.0 44.0 96.8 27.4 95.6 39.9 100 0.89 

Accuracy 
(%)

Sensitivity (%) Specificity (%)
AUC

No deter. Prodromic Established No deter. Prodromic Established
76.0 ± 5.0 94.0 11.1 61.0 61.7 96.9 91.3 0.82



Generation of synthetic 3D brain MRI scans
 Diffusion Models (DM) can generate high-quality synthetic image data (Midjourney, DALL-

E, Imagen…)
 The high dimensionality of 3D medical imaging makes diffusion prohibitive on voxel space

→ Latent Diffusion Models (LDM)
 Latent representations are learned via pretrained autoencoders

 LDMs can be conditionally guided, for constrained data generation

Rombach et al., 2022 - High-Resolution Image Synthesis with Latent Diffusion Models



Generation of synthetic 3D brain MRI scans

Synthetic 3D brain MRI scan generated by LDM






Conclusions
 Access to HPC has made whole-3D brain MRI processing possible

 No experience in HPC: overestimation of computational resources

 With the support of EPICURE team, we could apply Data Distributed Parallelism strategies
on the autoencoders training, scaling the number of nodes from 1 to 8

 Strongly limited by the availability of data

 Deeper integration with clinical partners



Scientific outputs
 Congress participations

 2nd ADAD-DSAD Conference (Barcelona, Spain)
 3rd Facial Genetics Symposium (Leuven, Belgium)

 Peer-reviewed conference paper
 12th Iberian Conference on Pattern Recognition

and Image Analysis (Coimbra, Portugal)

 Journal article
 Pattern Analysis and Applications



 EPICURE team at BSC (Guillem Cortiada, Alexandros Paliouras, David Vicente and Gaurav
Saxena)

 EuroHPC JU for awarding the project ID EHPC-AI-2024A02-043 access to MareNostrum5
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