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Translated profile

e Main services
o Language services (Translation, Transcreation, Subtitling, Dubbing)
o Human-Al Symbiosis in Translation
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e Al experience (products, services, research):
o ModernMT/Lara: Machine translation/LLM solutions
o Matecat: Computer-assisted translation system
o Matesub / Matedub: Al-based Subtitling / Dubbing

o Meetween: multimodal real time video communication translation
o DVPs: multimodal foundation model for communication

o First Application Transformer 2017
@
O

_argest translation dataset and highest quality in the world
Best FP7 and H2020 Language Al Research in Europe
e Matecat - ModernMT (2010 / 2018)
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Voice for Purpose: Giving voice to those who cannot speak

e Give expressive voices to people affected by:
Motor neuron conditions (ALS, SMA), Lanynx Cancer, Stroke, Cerebral Palsy, Autism.
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e Main project features
o User profiling and medical assistance
o Voice Donation, Voice Self-Donation
o EXxpressive Al voice model creation
o Real time delivery of expressive Al speech to users
e |nnovations
o Voice donation: social platform to support people in need of voice
o Cloud-based: infrastructure for delivery to any device
o Expressive Al voices: high quality, real time voice rendering

e Large social footprint: 5000+ donors, 100+ users
e Findings: measured users preference for self-donated or donated voices over standard impersonal voices




Voice for Purpose: Testimonial

Voice
for Purpose.




The Voice for Purpose project - Phase 2

1. Improve input speed/fatigue for people using AAC with eye-gaze => e LLM track
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Research Problems: }

. Reduce the dataset recording for personal voices
mprove models prosody

mprove multilingual performance

Reduce number of voice models to maintain

=> e Audio track

BwN R




LLM track

Task Reproduce Speakfaster paper by Google, and replicate it in multiple languages.

Concept: Predict sentences from word initials, minimizing number of clicks cognitive effort => increase speed

Conversational context:
where 1s the doq?

uiner where is the dog?

g User’s intended phrase:

1 saw him playing in
the bedroom

User abbreviates phrase
and types abbreviation
l 2
| | A - ishpitb Expand  Spell
Initials-only abbreviation
ishoith |
l L:l \ Partoer | where is the dog?
{o Call KeywordAE LLM | . .
| without keyword i saw him playing in the backyard \ L D)) ‘ | saw him playing in the bedroom | ) ‘
l i saw him playing in the back ‘ 4 ‘ i see him playing in the backyard <) ‘
LLM-generated :
‘ expansions I'm sure he's playing in the backyard I 4 l
[ ishpith Expand  Spell X



https://www.nature.com/articles/s41467-024-53873-3

LLM track

Models tested for prediction:
Open source

- Llama 8B, base and instruct

- Qwen 1B, 3B, 7B, base and instruct
- Microsoft Phi-3-small 7B

- OpenHermes 2.5 Mistral 7B

Close source

- GPT 4.1 and 4.1 mini

Tested: temperature manipulation, few shot, prompt engineering, and oversampling.
Current results: Llama 8B base doubles accuracy over baseline (10% => 20%)
Ongoing: Finetune Llama 8B and 70B base on LEONARDO.

Expected accuracy improvement: 300% compared with non finetuned (20% => 60% accuracy)
Expected Keystrokes reduction: 63%, lowering patient fatigue (SOTA reduces by 48%)
Speed improvement goal: Goal: 30%-50%



TTS track

e Baseline: Fastpitch (0.08b) finetuned: 150h of voice datasets and 2h of specific users’ voices
e New model: XTTS v2 (0.5B) finetuned: 150h of voice datasets. Condit. 2min of specific user’s voice

e Tested on 34 speakers, incl. professional voice actors, healthy people, voice impaired people

Results

e WER (Whisper): XTTS: WER 1.5% Fastpitch 2.4%
e UTMOS: XTTS vs Fastpitch: +0.5 pts avg

e XTTS produces more fluent, multilingual voices, with less data

Male-Italian Female-Spanish



® Per-file AUTMOS distribution (includes zeros, zoomed)
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Bl XTTS v2 rates better than Fastpitch on the 1-5 UTMOS scale

. Fastpitch rates better than XTTS v2 on the 1-5 UTMOS scale




Computing Resource usage

Al and Data Intensive Applications Access call
Awarded 200k hours on LEONARDO (Cineca, IT): study new, large voice and language models models.

e Llama 8B o XTTS:
o single training 32 gpus 1 day: 800 h o Single fine-tuning: 24h on 4 GPUs (per
o Hyperparameter optimisations (guess): encoder and decoder), i.e. 192h
2,500 h o 34 trainings resulting in: 34 * 192 h = 6528 h
o Hyperparameter optimisations: 5000 h
e Llama 70B
o single training 64 gpus 5 days: 8,040 h o KoelTTS
o 10 languages: 8,040 * 10 = 80,400 h o Single training: 32 GPUs for 5 days: 3,840 h
o Hyperparameter optimisations (guess): o 10 language specific models: 10 * 3,840 h =
10,000 h 38,400 h
e total LLM track =92,900 h o One big model covering all languages: 64

GPUs for 7 days: 10,752 h
o Hyperparameter optimisations: 25,000 h

e Total TTS track: 85,680 h
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Thank you

Any guestions?
We’'re here for you.

Fabio Minazzi
Director of Audiovisual
fablo@translated.com

@ translated.
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ModTox: A Platform for toxicity predictions from simulations of high risk
off - target proteins

L2



Outline nostrum

» Model for small molecule toxicity
 High risk off-target proteins

= MD simulations

 Database creation

 Data analysis

© NBD | Nostrum Biodiscovery 2023
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Model for small molecule toxicity

Toxicity ~ f(potency, promiscuity) + other pathways

¢

average on -target
binding affinity

© NBD | Nostrum Biodiscovery 2023
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Model for small molecule toxicity

average off -target
binding affinity

1

Toxicity ~ f(potency, promiscuity) + other pathways

© NBD | Nostrum Biodiscovery 2023
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Model for small molecule toxicity

Toxicity ~ f(potency, promiscuity) + other pathways

Acetaminophen "'
4@4'\'7]/0'#3 N-acetyl p-benzoquinone
O

(Paracetamol) ‘ © undesired on - target effect

metabolites
N
LN Acetaminophen sulfate
T e Y nophen su

‘ Jk[ Acetaminophen glucoronide

HO" i “OH '*v “NH TCHy

© NBD | Nostrum Biodiscovery 2023
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Model for small molecule toxicity

Toxicity ~ other pathways

Maximizing potency
+

Reduced risk of
side - effects

Lower risk of »
off - target interactions

=

»

Increased selectivity
Minimizing promiscuity

© NBD | Nostrum Biodiscovery 2023
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|ldentification of high risk off - targets

» Minimal panel from industry . set of unintended biological targets that pharma companies use for early safety
screening (AstraZeneca, GlaxoSmithKline, Novartis and Pfizer)
» High risk off -targets (HROTSs) frequently limiting maximum recommended therapeutic dose . Found high risk

off - targets identifying the proteins that bound most often to high promiscuous, low dose drugs.

lon channels Enzymes Nuclear receptors
(kinases)

Estimation of Maximum Recommended Therapeutic Dose Using Predicted Promiscuity and Potency. Clinical Trans/ational Sci 2016
Reducing Safety-Related Drug Attrition: The Use of in Vitro Pharmacological Profiling. Nat Rev Drug Discov 2012

© NBD | Nostrum Biodiscovery 2023
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ModTox database and platform

HPC

MD
simulations

S R

— AL

Barcelona
Supercomputing

Center

Centro Nacional de Supercomputacion

» Generate conformational ensembles through all -atom MD simulations of off - target proteins

© NBD | Nostrum Biodiscovery 2023
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ModTox database and platform

ModTox
Database

HPC

MD
simulations

— AL

Barcelona
Supercomputing
Center
Centro Nacional de Supercomputacion
MDDBx
» Generate conformational ensembles through all -atom MD simulations of off - target proteins
 Connect ModTox to the Molecular Dynamics DataBase (MDDB)

© NBD | Nostrum Biodiscovery 2023



ModTox database and platform

ModTox
Database

HPC

MD

simulations

Tl e R R AT e R

M R Ty e e N ey T e

F Ny ol U i e P o B el S
AL 7

Barcelona
Supercomputing
Center

Centro Nacional de Supercomputacion M D D B

Molecular Dynamics Data Bank

» Generate conformational ensembles through all - atom MD simulations of off
 Connect ModTox to the Molecular Dynamics DataBase (MDDB)

 Create analysis and models to assess toxicity of new compounds

© NBD | Nostrum Biodiscovery 2023

ModTox
Platform

- target proteins
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MD simulations: BioBB pipeline

MD
simulations

i ey
R T TR

« Automation achieved through BioBBs - python library to build
biomolecular simulation workflows

1. Obtain initial structure — PDB or AF2
2. Fix defects

3. Prepare simulation

4. Minimization, equilibration and production — 3 replicas x500 ns

5.Post-processing and clustering

Biobb Workflow

SEQUENCE biebb_pdb  STRUCTURE biobb_gromacs o ~ren vp Piobb_gromacs

(UNIPROT ID) > Wild-type  seeii>

biobb_mutate  (,,tant) biobb_md

No Structural Info.

© NBD | Nostrum Biodiscovery 2023
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SETUP  piosbuma SIMULATION

biobb analysis

GROMACS.

FAST. FLEXIBLE. FREE.

o
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ModTox database in MDDB

MDDB~

Molecular Dynamics Data Bank

= MDDB is a European initiative to build a federated database of MD simulations

 The trajectory is loaded into a localdatabase,then connected to a globalserver

 Simple analysis are readily available

MD pOSit Quality control

RMSDs

Collection RMSD per residue
Q e.g. Orozco lab [modtox RMSD pairwise
Radius of gyration
accession name preview analyses Fluctuation
PCA
Trajectory Distance per residue Electrostatic p. surface Energies Fluctuation

MDDB ModTox Carbonic
Anhydrases 1AZM_326
(Test)

=
=
ol
e
]

Hydrogen bonds PCA Pockets Radius of gyration RMSd pairwise

Clusters

RMSd per residue RMSds Solvent accessible surface Dihedral energies

© NBD | Nostrum Biodiscovery 2023

Solvent accessible surface

Interactions

Distance per residue
Electrostatic p. surface
Hydrogen bonds

Energies

Other

Pockets

<
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Analysis and models

- Extract representative conformations from binding sites

- Test toxicity model on a set of active and decoy ligands

© NBD | Nostrum Biodiscovery 2023

Representative
Original conformations

trajectory

Toxicity ~ f(potency, promiscuity) + other pathways

o

nostrum

biodiscovery
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Analysis and models

- Extract representative conformations from binding sites

- Test toxicity model on a set of active and decoy ligands

- Train surrogate models to approximate affinity to HROTs

- Use DSD models to screen compounds during HTVS

© NBD | Nostrum Biodiscovery 2023
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Representative
conformations

Original
trajectory

Toxicity ~ f(potency, promiscuity) + other pathways

3D docking Surrogate model

AFFINITY

Affinity to HROTs

¢

Minimize promiscuity

Affinity to target

¢

Ma ximize potency

14
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Porting Epistasis Detection Methods ¢
to EuroHPC Supercomputers
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@inesc id SNP association studies and applications

Search for statistical associations between genetic markers and a given trait

Processing over case-control datasets Useful for a number of use cases
case: individual with the trait under study Personalized medicine, drug development,
control: individual that does not have the trait mitigate the spread of viruses, forensics

Datasets represent bi-allelic SNPs
SNP: Single nucleotide polymorphism
Major allele: most frequent, minor allele: least frequent

SNPs have three possible genotypes
homozygous major, heterozygous, and homozygous minor

1-Oct-25 Porting Epistasis Detection Methods to EuroHPC Supercomputers



@inesc id Epistasis detection and high-order searches

Looking into SNPs 1-by-1 does not uncover all genotype-phenotype associations

SNPs interact in non-linear ways Computationally demanding
epistasis: trait is multi-SNP dependent Especially if performing high-order searches
SNP X

for each SNP| Kl Count genotypes

combination

SNPY

P2 Apply scoring function

Reduce scores

SNP Z

Challenge: Combinations grow exponentially with
the number of SNPs (M) and interaction order (k)

3| 1-Oct-25 Porting Epistasis Detection Methods to EuroHPC Supercomputers



@inesc id Core operations for evaluating SNP combinations

Datasets often encode genotype using integers to denote the three possible
alleles, i.e. homozygous major (0), heterozygous (1), and homozygous minor (2)

controls cases
POPC ~
X0 0 1 X0 0 0 0 1
[x1 1 0 T ] " T T T ] X1 0 1 0 0
X2 0 0 00 01 02 10 1 12 20 21 22 ( X2 1.0 10|
'Yo 1 o0 ‘ ‘ ‘ ‘ ’ ’ ] o | . YO 0 1 0 0
YI 0 0 S 1 0 |
Y2 0 1 v Y2 0 0 0o 1

\———— POPC

BOOST [1] introduced dataset binarization using 1-bit per SNP/genotype tuple

Genotype counts calculated applying k-1 AND per 1 POPC instruction to process sample packs

4 | 1-Oct-25 Porting Epistasis Detection Methods to EuroHPC Supercomputers



@inesc id Use of GPUs and other parallel accelerators

GPUs are suitable for data-parallel apps
Makes GPUs a good choice for epistasis searches

Recent approaches tend to rely on GPUs
Although SoA uses also other devices (e.g. IPU)

Examples of GPU SoA approaches:
GBOOST [2]: extends BOOST to GPUs
MPI3SNP [3]: performs 3rd-order searches
CUDA-Episdet [4]: > 80% POPC peak
Cross-DPC-Episdet [5]: HW interoperability

GPUs also have native support for binary operations such as AND and POPC
POPC is slower than AND on GPUs, but use of bitwise operations still enables faster processing

1-Oct-25 Porting Epistasis Detection Methods to EuroHPC Supercomputers




@inesc id Acceleration of core operations using tensor cores
CoMet [6] relies on 16-bit multiply-add on the tensor cores in Volta GPUs
Processing blocks of data from multiple SNPs and samples using matrix multiplication

Tensor-Episdet [7] uses XOR+POPC on the tensor cores in Turing GPUs
Deriving AND+POPC at low cost and implementing technique that infers most genotypes

— {0,0} —

: : X0 YO

Genotype inference enables reconstructing full —=— {»(_”1} — {1’9}‘ =

tables (2x3X values) from 2x2* genotype counts X1 =——~=—Y1
2x4 in 2nd- ' - T et g

x4 in 2nd-order searches and 2x8 in 3rd-order searches @ ____________________________________ @

6 | 1-Oct-25 Porting Epistasis Detection Methods to EuroHPC Supercomputers



éinesc id Tensor cores for third-order searches and beyond

Tensorized 1-bit processing enabled 18x higher 3rd-order performance per GPU
Despite the Titan RTX being similar in FP16 compute throughput to the Tesla V100 (=130 TFLOPS)

Approach (# nodes x) GPU config. |Performance |Performance/node |Performance/GPU
CoMet [6] (4373 x) 6 Tesla V100 81611 18.66 3.1
Tensor-Episdet [7] | (1 x) 1 Titan RTX 54.54 54.54 54.54

Performance: SNP combinations processed per second scaled to the sample size

Epi4Tensor [8] does 4th order using AND+POPC introduced in Ampere

Over 70% of the peak tensor throughput, but requirements impractical for full-scale searches

7 | 1-Oct-25 Porting Epistasis Detection Methods to EuroHPC Supercomputers



@inesc id Porting GPU-accelerated codes to supercomputers

Processing potential of supercomputers is often achieved with GPU accelerators
Most recent TOP500 list ranks nine supercomputers with GPUs as the ten most powerful systems

Approach Order(s) Prog. model(s) Targeted hardware

CUDA-Episdet [4] 2nd, 3rd OpenMP, CUDA  |Any NVIDIA GPU (Maxwell to Ampere)
Tensor-Episdet [7] 2nd, 3rd CUDA Turing GPUs (also supports Ampere)
Epi4Tensor [8] 4th OpenMP, CUDA  |Ampere GPUs (also supports Turing)
Crossarch-Episdet [9] |2nd, 3rd OpenMP, SYCL CPU/GPU with SYCL support via oneAPI
Some supercomputers (e.g. LUMI) use MeluXina GPU-accelerated partition
GPUs from vendors other than NVIDIA (200 x) AMD EPYC 7452 + 4 x A100 SXM4 40GB

Most codes have been developed in CUDA

and target single-GPU/single-node systems —LAINET AU R TR

(2978 x) AMD EPYC 7A53 + 4 x AMD MI250X

8 | 1-Oct-25 Porting Epistasis Detection Methods to EuroHPC Supercomputers



@inesc id NVIDIA A100 (MeluXina) and AMD MI250X (LUMI)

TFLOPS / TOPS

9

A100 SXM4 40GB

108 compute units @ 1.41 GHz

40 GB @ 1.56 TB/s

MI250X

2 x 110 compute units @ 1.70 GHz
2x64 GB @ 3.28 TB/s

The MI250X is a
MCM with 2 GPU
dies, seen from a

software perspective

as two GPUs

Both the A100 and the MI250X favour matrix in relation to vector throughput

The next-generation GPUs further amplify this gap, offering even greater speedups for matrix
computations, which makes it increasingly important to prioritize matrix-based workloads

GPU/ Vector Matrix Vector Matrix Vector Matrix Matrix Matrix Matrix
Precision FPo64 FP64 FP32 FP32 FP16 FP16 INT8 INT4 INT1

A100 9.7 19.5 19.5 N/A 78 312 624 1248 4992
MI250X 47.9 95.7 47 .9 95.7 N/A 383 383 383 N/A

1-Oct-25

Porting Epistasis Detection Methods to EuroHPC Supercomputers




@inesc id Adding support for AMD GPUs through HIP

10 |

All three CUDA codes were converted to HIP for compatibility with LUMI

HIPIFY + microarchitecture specific modifications + adaptations to HIP/ROCm software stack

Tensor-Episdet and Epi4Tensor rely on CUTLASS for 1-bit on tensor cores
Scalability tests used FP16 via hipBLAS on the MI250X, which lacks tensorized 1-bit support

The MI250X supports integer ops at the same peak throughput as FP16
Precision tuning considering the INT8 data type, which is also supported through hipBLAS

1-Oct-25 Porting Epistasis Detection Methods to EuroHPC Supercomputers



@inesc id Implementing intra/inter-parallelization with MPI

Both intra-node and inter-node parallelization are implemented via MPI
Performed at the level of loop iterations, with each iteration treated as a distinct work unit

lterations in vector codes process the same number of combinations
Load balance achieved statically assigning work to as many MPI processes as there are GPUs

In matrix methods an SNP block pairs
with itself and higher-index blocks

Dynamic scheduling via an extra MPI process
handles the variable amount of combinations

1-Oct-25 Porting Epistasis Detection Methods to EuroHPC Supercomputers



@inesc id Speedups and performance for single-node runs

Close to linear speedups, i.e. 4x on MeluXina and 8x on LUMI, are achieved
Using MPI to separately address each GPU die of the MI250X enabled its efficient utilization

10.00

2 7.96 7.89 7.89
& s.00 i
—
s 6.00
> 3.98 4.01 4.01 4.00
o 4.00
=
5
19,
Qo
Vi 0.00
CUDA-Episdet Crossarch-Episdet Tensor-Episdet Epi4Tensor HIP-Episdet Crossarch-Episdet Tensor-Episdet Epi4Tensor
MeluXina GPU LUMI-G

Speedups for single-node runs with CUDA-Episdet (8192 SNPs), Crossarch-Episdet (8192 SNPs), Tensor-Episdet (16384 SNPs) and Epi4Tensor
(2048 SNPs). Tensor-Episdet and Epi4Tensor have been executed with 524288 samples on MeluXina, all other runs process 32768 samples.

Performance with tensor cores is higher than that of CUDA/stream core methods
CUDA/HIP-Episdet: 10.96 (MeluXina) / 17.86 (LUMI); Crossarch-Episdet: 10.20 (MeluXina); 11.79 (LUMI)
Tensor-Episdet: 344.43 (MeluXina) / 21.06 (LUMI); Epi4Tensor: 429.58 (MeluXina) / 13.00 (LUMI)

12 | 1-Oct-25 Porting Epistasis Detection Methods to EuroHPC Supercomputers




@inesc id  Third-order searches using CUDA/stream cores

Runs on MeluXina and LUMI using up to 32 and 1024 GPU-accelerated nodes
Parallel efficiency of 96% on 1024 nodes for the SYCL code in comparison to single-node

MeluXina LUMI )
: CUDA/HIP faster despite
v; T 5240 : ) 1333'23 927.71 .
o 8 a0 © % so000 ' better scaling for SYCL
- Al 20.00 — 600.00 486.34
I ¢ 15.00 ¢ 400.00 244.4%
< g 1000 o 20000 100 1.98 3.98 7.95 15.5930.946231122.92 ] '
() o 200 ° 0.00 e e, ™
o 0.00 g 1(8) 2(16) 4(32) 8(64) 16 32 64 128 256 512 lUZ4v
2 Q 1(4) 2(8) 4(16) 8(32) 16 (64) 32 (128) a (128) (256) (512) (1024) (2048) (4096) (8192)
o v Number of Nodes (GPUs) v Number of Nodes (GPUs)

mmm Achieved speedup s |deal speedup mmmm Achieved speedup Ideal speedup 92 . 7 % of C U DA W/ 32 N

1200.00 981.48 Perf: 317.56 vs. 342.61

35.00

@ Y 1000.00
2 o
? Z’S,gg S 800.00
= 20.00 —  600.00 499.45
I ¢ 15.00 ¢ 400.00 5 6351‘30'
O 3 o S 20000 109 200 396 7.92 15.8031.5863.03!25 B
> <  5.00 . =] 0.00 e e ]
[@)) 9 500 . 9 1(8) 2(16) 4(32) 8(64) 16 32 64 128 256 512 1024
4 ) 1(4) 2(8) 4(16) 8(32) 16(64)  32(128) . < (128) (256) (512) (1024) (2048) (4096) (8192)
n Number of Nodes (GPUS) . n Number of Nodes (GPUs)
: 70.1% of HIP w/ 1024N
: . 0
mm Achieved speedup e Ideal speedup s Achieved speedup Ideal speedup

: Perf: 11182.24 vs. 15951.32
Speedups with CUDA/HIP-Episdet and Crossarch-Episdet on multiple nodes (MeluXina: 16384 SNPs x 32768 samples,

LUMI: 32768 SNPs x 32768 samples).
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@inesc id Third-order searches using matrix processing cores

20.00

15.00

10.00

5.00

0.00

Speedup vs. 1 node

20.00

15.00

10.00

5.00

0.00

Speedupvs. 1 node

MeluXina

1(4) 2(8) 4 (16) 8(32) 16 (64)
Number of Nodes (GPUs)
m Achieved speedup s |deal speedup

10.73

7.1¥

3.88 B

1.00 1.98 = f I

et P !

1(8) 2 (16) (32) (64) 16 (128)

Number of Nodes (GPUs)

s Achieved speedup Ideal speedup

Speedups with Tensor-Episdet on multiple nodes (MeluXina: 32768
SNPs x 524288 samples, LUMI: 32768 SNPs x 32768 samples).

14 | 1-Oct-25

Porting Epistasis Detection Methods to EuroHPC Supercomputers

Both LUMI and MeluXina scale similarly
well with the number of targeted GPUs

LUMI does not scale so well per node because it
has more GPU dies per node (8 instead of 4)

Significant performance gap due to the
use of 1-bit (A100) vs. 16-bit (MI250X)

5212.88 (MeluXina) vs. 226.36 (LUMI) tera SNPs
processed per second scaled to the sample size

Precision tuning allowed substantially
increasing performance on AMD GPUs

1.6x faster using INT8 instead of FP16, despite
the same theoretical throughput on the MI250X



éinesc id Fourth-order searches using matrix processing cores

15 |

As in 3rd-order searches, 1-bit resulted in
MeluXina achieving higher performance

Up to 14346.33 (Meluxina) vs. 2456.96 (LUMI)

Runs with higher node counts on LUMI
showcase the scalability of the method
Close to linear improvements up to 128 nodes

Scalability via 2D work decomposition
Avoids balancing work via smaller SNP blocks,
which lowers tensor/matrix core throughput

1-Oct-25 Porting Epistasis Detection Methods to EuroHPC Supercomputers

MeluXina
o 3500 31.72
g 30.00
C  25.00
i
s 20.00
> 15.00
S 10.00
3 g
g 5.00
& 0.0 : .
1(4) 2(8) 4 (16) 8(32) 16 (64) 32(128)
mmm Achieved speedup ssss=[deal speedup

300.00
g 250.00
9 200.00 177.60
— 150.00 121.77
4 100.00 6341 ;

32.12

& 5000 100 201 4.03 806 16.11 =
= | = oy
S 1(8) 2(16) 4(32) 8(64) 16 32 64 128 256
g (128) (256) (512) (1024) (2048)
wn Number of Nodes (GPUs)

Achieved speedup Ideal speedup

Speedups with Epi4Tensor on multiple nodes (MeluXina: 4096
SNPs x 524288 samples, LUMI: 4096 SNPs x 32768 samples).



@inesc id Conclusions and ongoing/future work

16 |

Ported four GPU-accelerated codes to two EuroHPC supercomputers
All were parallelized to leverage multiple GPUs on multiple nodes
Three went through CUDA-to-HIP translation targeting AMD GPUs

Highest-performing codes on AMD GPU accelerators and still improvable
Additional tuning of SYCL code could reduce performance gap with HIP
Matrix methods may benefit from further precision tuning, e.g. using 4-bit

MeluXina achieves higher performance on the codes using tensor cores
Usage of more nodes on LUMI showcases scalability of the ported codes

Ongoing/Future work in the context of GPU-accelerated methods:
Adapting our solutions to newer GPU microarchitectures (CDNA3, Hopper)
Use of Joint Matrix SYCL extension as a means for higher interoperability

1-Oct-25 Porting Epistasis Detection Methods to EuroHPC Supercomputers
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Down syndrome (DS) is a caused by the triplication of
chromosome 21, occurring in 1 out of every 700 to 1,000 live births

Individuals with DS present a characteristic
, with disproportionately smaller hippocampus and
cerebellum, large ventricles and other alterations

Parietal lobe Cerebellumn Ventricles

-

BB v

The structural brain alterations in DS have been associated with cognitive and functional

disabilities from birth, and early dementia in adulthood:
(AD) due to accelerated

neurodegeneration



Among neuroimaging techniques,
for its non-invasive, radiation-free nature and superior soft tissue contrast

3D voxel-based
representation







Brain registration

Deep

Learning
Model

# Brain segmentation

ﬁ Diagnostic classification
o]
ﬁﬁﬁtﬁ Training
But... where can we get
all this data from?

Q “Annotated” data

“Single-Landmark vs. Multi-Landmark Deep Learning Approaches to
Brain MRI Landmarking: a Case Study with Healthy Controls and
Down Syndrome Individuals”

(British Machine Vision Conference 2023)

, - . .
ALZHEIMER'S Disense Alzheimer Biomarker Consortium-Down Syndrome
NEUROIMAGING INITIATIVE

‘biobank

Enabiling schentific discoveries that improve human health

74DN| HHH ABC-DS




Due to their unsupervised nature, generative models avoid the need for large, annotated
datasets of brain MRI scans

Scientific questions:
Can generative models ...
contribute to the discovery of brain biomarkers of DS and AD in DS?

stratify DS individuals depending on their degree of neurodegeneration and other
comorbidities?
allow the generation of realistic synthetic 3D brain imaging?

Unsupervised models:

Autoencoders O PyTO 'C h

Diffusion models

Deployed on Marenostrum 5 ACC nodes at the Barcelona Supercomputing Center @



Data used in the project

Dataset | X | _HCP___| _ SantPau | _ ABCS

Usage VAE Training VAE Training Classification Classification
N° of subjects 580 1113 931 63
Diagnosis EU-HC EU-HC EU(540) / DS(391) DS

Sant Pau Down syndrome subjects

Usage Intellectual disability level in DS Alzheimer’s disease progression in DS

Diagnosis Mild Moderate =~ Severe No deterioration Prodromic Established
N° of subjects 114 214 59 218 36 108



With autoencoders

TRAINING

Reconstruction Loss

-~

EUPLOID CONDITION
(without pathologies)

EUPLOID

Encoder (E) . ,Decoder (D), RECONSTRUCTION

~ -
~ -
~ -

With diffusion models

INFERENCE

-»|]|.- ~ L=
Latent
AU 1o i59)1413 representation (z)
CONDITION
(with or without
: : “EUPLOIDIZED” ALTERATION
neurodegenerative disease)
RECONSTRUCTION DETECTION
L1 * Perceptual Map
DIFFUSION MODEL TRAINING CLASSIFIER TRAINING
Random Timestep T
4
U-Net Class Prediction
P Predicted
q — r:lo'ics: T steps | ® Euploid
Noise O Down Syndrome
J encoding
Diffusion
Encoder
MSE Loss
INFERENCE
L steps L steps
—’
Noise encoding Denoising

Reversed DDIM sampling

Input
(DS Condition)

DDIM sampling

Classifier Guidance

Anomaly Map




Before access to HPC infrastructure (Tesla V100 GPUs): limited to 2D or 2.5D

DS with
no AD

“Towards the Discovery of Down Syndrome Brain
Biomarkers Using Generative Models”
(BICW, European Computer Vision Conference 2024)

DS with
prodromal AD

DS with
AD




Variational Autoencoders to compute 3D brain alteration maps between euploid (EU) and
DS populations

Three sectlonal views of EU vs EU and DS vs EU anomaly maps

A nmaIyM ps Compar| - Axii IVew(SI 96)
nomaly Averags Anomaly Map

A omaIyM ps Compar| - Sagittal Vie: (SI 96) - Coronal Vie (S\ 96)
Anomaly M: nomaly Map nomaly Map
3 ool

Wox:
" . 035
.
“ ) ) 030
> DZS%
&
’ I
X4 5
z
v 015
010
00
a0

Full 3D average brain alteration map between DS and EU populations

Anomaly Maps Compari
Anomaly Map

nnnnnnnnnnnnnn







Study if latent representations learnt by 3D autoencoders are features with diagnostic
potential

VAE Latent Space Representation Latent Space Classification

VAE Loss

Encoder (E) Decoder (D)

Flattened Latent O Class1
representation = :
(N - Dimensions) ® ClassN
Latent

T1 Brain MRI representatlon Reconstruction

(3D Input) (3D Output)

Evaluation:
Qualitative: reconstruction fidelity and embedding interpretability
Quantitative: performance on different classification tasks



Reconstruction fidelity in terms of latent space dimensionality




Embedding interpretability

PCA Component 2

60 -

40 A

20 1

-20 4

PCA of Latent Representations

-80

-60 —-40 =20 0 20 40 60
PCA Component 1

80

B DS-SPMU
@ EU-SPMU
¥ EU-IXI
V¥ EU-HCP



Classification performance
Task 1: Euploid vs Down syndrome

Sant Pau dataset

Latent Space Accuracy (%) | Sensitivity (%) | Specificity (%)

(24, 24,24) - 99.4 99.8 08.7 0.99
(24, 24,24) 2 95.3 95.7 94.9 0.98

Generalisation on ABC-DS dataset

Latent Space Accuracy (%)

(24,24, 24) - 99.7



Classification performance

Task 2: Intellectual disability stratification

Accuracy SenS|t|V|ty (%) Sp@lelClty (%)
(%) Mild Moderate Severe Mild Moderate Severe
7000+ 3.0 44.0 96.8 27.4 95.6 39.9 100 0.89

AUC

Task 3: Alzheimer’s disease progression

Accuracy Sensitivity (%) Specificity (%)

0 . . _ _ AUC
(%) No deter.  Prodromic Established No deter.  Prodromic Established
76050 940 11.1 61.0 61.7 96.9 91.3 0.82




Diffusion Models (DM) can generate high-quality synthetic image data (Midjourney, DALL-

E, Imagen...)
The high dimensionality of 3D medical imaging makes diffusion prohibitive on voxel space

— Latent Diffusion Models (LDM)
Latent representations are learned via pretrained autoencoders

Latent Space Conditioning)
E —I Diffusion Process ———>» Eemantiq
Ma
Denoising U-Net €p 2T Text

Repres
entations

pq

H
denoising step crossattention  switch  skip connection concat ~——
Rombach et al., 2022 - High-Resolution Image Synthesis with Latent Diffusion Models

g
Pixel Space

LDMs can be conditionally guided, for constrained data generation



)

Synthetic 3D brain MRI scan generated by LDM






Access to HPC has made whole-3D brain MRI processing possible
No experience in HPC: overestimation of computational resources

With the support of EPICURE team, we could apply Data Distributed Parallelism strategies
on the autoencoders training, scaling the number of nodes from 1 to 8

Strongly limited by the availability of data

Deeper integration with clinical partners



Congress participations
2"d ADAD-DSAD Conference (Barcelona, Spain)
3rd Facial Genetics Symposium (Leuven, Belgium)

Peer-reviewed conference paper

121 Iberian Conference on Pattern Recognition
and Image Analysis (Coimbra, Portugal)

Journal article
Pattern Analysis and Applications
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