Available online at www.sciencedirect.com

ScienceDirect Procedia

Computer Science

Procedia Computer Science 267 (2025) iii-iv

www.elsevier.com/locate/procedia

Table of Contents

Preface. . . . e 1
Editorial Board 3

The QCD crossover line in a finite volume

Szabolcs Borsanyi, Zoltan Fodor, Jana N. Guenther, Paolo Parotto, Attila Pasztor, Ludovica Pirelli,
Kalman K. Szabo, and Chik HIm Wong e 4

Benchmarking lattice quantum field theory codes across EuroHPC platforms for physics beyond the
standard model on physical systems
Frédéric D.R. Bonnet, Ryan Hill, and Ed Bennett.
14
accLB: A High-Performance Lattice Boltzmann Code for Multiphase Turbulence on Multi-Gpu
Architectures
Marco Lauricella, Aritra Mukherjee, Luca Brandt, Sauro Succi, Daulet Izbassarov, and Andrea Montes-
7)o P 23

Multi-GPU porting of a phase-change cascaded lattice Boltzmann method for three-dimensional pool
boiling simulations
Alessandro Gabbana, Linlin Fei, Xander M. de Wit, Ziqi Wang, Daniel Livescu, and Federico Toschi. 35
Hierarchical Dynamic Load Balancing Strategy for a p-adaptive Discontinuous Galerkin Compressible
LES Solver
Paolo Valvo, and Antonella Abba. 45

Enabling Ginkgo as Numerics Backend in nekRS Employing A Loosely-Coupled Configuration File
Concept

Yu-Hsiang Mike Tsai, Mathis Bode, and Hartwig Anzt. 55
An efficient multigrid solver for finite element methods on multi-GPU systems
Chris N. Richardson, Igor A. Baratta, Joseph P. Dean, Adrian Jackson, and Garth N. Wells 65

Large-scale simulations of lattice QCD for nucleon structure using Nf=2+1+1 favors of twisted mass
fermions

C. Alexandrou, S. Bacchio, L. Chacon, J. Finkenrath, M. Garofalo, C. Iona, B. Kostrzewa, G. Koutsou,

Y. Li, F. Pittler, B. Prasad, A. Sen,and C. Urbach. 75
Production-scale Performance Analysis and Optimization of Vlasiator

Valentin Seitz, Markus Battarbee, Urs Ganse, Vertti Tarvus, Minna Palmroth, and Marta Garcia-Gasulla 85

Towards Exascale Computing for Astrophysical Simulation Leveraging the Leonardo EuroHPC System

Nitin Shukla, Alessandro Romeo, Caterina Caravita, Michael Redenti, Radim Vavrik, Lubomir Riha,

Andrea Mignone, Marco Rossazza, Stefano Truzzi, Luca Tornatore, Antonio Ragagnin, Tiago Castro,

Geray S. Karademir, Klaus Dolag, Pranab J. Deka, Fabio Bacchini, Rostislav-Paul Wilhelm,

Daniele Gregori, and Elisabetta Boella 95

iv Contents

Tailoring Al for Turkish Law: Domain-Specific Fine-Tuning of Small Language Models for Legal

Expertise

New Mind Al Teamottt ettt e e e e e e e 107
Porting Epistasis Detection Methods to EuroHPC Supercomputers

Ricardo Nobre, Aleksandar Ilic, and Leonel Sousa. 119

Pleias 1.0: the First Ever Family of Language Models Trained on Fully Open Data

Pierre-Carl Langlais, Pavel Chizhov, Mattia Nee, Carlos Rosas Hinostroza, Matthieu Delsart, Iréne Girard,

Anastasia Stasenko, and Ivan P. Yamshchikov 129
Automatic detection of agricultural field boundaries and seeded acres using super-resolution Satellite
Earth Observation data and deep learning

Nils Helset, Konstantin Varik, and Alex Melnitchouck. 140
Dynamic Resources Management for Exascale in ADMIRE Framework

Jesus Carretero, David E. Singh, Javier Fernandez-Mufloz, Rocco Sedona, Simone Pernice, Barbara

Cantalupo, Marco Aldinucci, Massimo Torquati, Ahmad Tarraf, Emmanuel Jeannot, and Felix Wolf. . . . 148
Enhancing Financial NLP with Supercomputing: Spell Correction and Domain-Specific BERT
Pretraining

Derya Uysal, Dogacan Toka, Elif Bozkurt, Osman Kumas, and Hasan Hiiseyin Yilmaz.............. 159
An accelerated implementation of Extended Cellular Potts Model for tumor angiogenesis simulations

Luigi D’Onoftio, Pasquale De Luca, Anna Greco, and Livia Marcellino. 170
Investigation of novel epigenetic signals through combinatorial crosstalk between histone isoforms

Hatice Doseme, and Seyit Kale 180
Transforming Computational Power into Environmental Solutions: HPC-driven Research on
Urethanase-mediated Plastic Degradation

Pedro Paiva, Luis M.C. Teixeira, Pedro Ferreira, Daniel E. Otzen, Pedro A. Fernandes, and Maria J. Ramos . . . 190
Quantum Emulators: CPU, single GPU and multiple GPUs performance comparison

Mathilde Chenu o e e e e e 201

Improving the scalability of a high-order atmospheric dynamics solver based on the deal.II library

Giuseppe Orlando, Tommaso Benacchio, and Luca Bonaventura. 210
Towards efficient high-resolution simulations of dust storm formation over large areas in North Africa
using HPC

Samira Karbasi, and Jose A.G. Orza 220

Scalable Detection of Environmental Events on EuroHPC MeluXina

Jini Cheriyan, and Jaime Santos.ottt e 229
The European High Performance Computing Joint Undertaking Infrastructure and Access Modes
State-of-Play

Krishnakshi Bhuyan, Dora Marton, Catarina Guerreiro, and Klara Mestrovié¢. 239

Available online at www.sciencedirect.com

ScienceDirect Procedia

Computer Science

CrossMark

Procedia Computer Science 267 (2025) 1-2

www.elsevier.com/locate/procedia

Preface

It gives me great pleasure to present this 3™ edition of our book of proceedings which gathers some of the very best
work completed using EuroHPC JU resources in 2025. I thank the Editor-in-Chief, Krishnakshi Bhuyan, and the
reviewers for their commitment and effort, which were instrumental in the successful completion of this book of
proceedings.

Central to the activities of EuroHPC JU is the support of the uptake of demand-oriented and user-driven innovation
and talent development.

Since its creation in 2018, EuroHPC JU allows the European Union, and its participating countries, to coordinate their
efforts and pool resources to deploy technological advancements in the field of supercomputing. The success of these
endeavours is measured in the first and foremost in the science and innovations produced using the EuroHPC systems
and in the growing number of scientific and industrial users from across Europe who have accessed and leveraged
these resources to advance scientific, social and business innovation and knowledge.

User support services funded by EuroHPC JU such as National Competence Centres (NCCs) and Centres of
Excellence (CoEs), as well as dedicated skills initiatives such as EPICURE, Minerva, Fortissimo Plus (FFplus) and
Evita, guide new users to EuroHPC supercomputers.

The papers submitted to this publication span a wide range of disciplinary areas such as Computational physics,
astrophysics, engineering, earth sciences and climate, artificial intelligence, and life sciences. As such, they are
testament to the diverse research and innovation environment linked to EuroHPC JU activities.

The papers were also presented at the third EuroHPC User Days which took place on 30 September and 1 October
2025 in Copenhagen, Denmark. EuroHPC User Days is EuroHPC’s annual event bringing together the European user
communities and celebrating innovative research projects undertaken on EuroHPC’s supercomputing infrastructure.

Building on this foundation of user-driven innovation and diverse research support, EuroHPC JU continues to expand
its ecosystem through new strategic initiatives.

In the future, users will have more EuroHPC compute resources to choose from:

e EuroHPC’s Quantum computers will soon come online, opening the way for new applications to span both
HPC and Quantum systems.

e The EuroHPC JU is also overseeing the implementation of 13 Al factories (with more to be announced)
across Europe that offer free, customised support to SMEs and startups. These comprehensive open Al
ecosystems will initially be located around existing EuroHPC supercomputing facilities. They will support
the growth of a highly competitive and innovative Al ecosystem in Europe, further expanding the available
resources for new and existing user communities. They will also contribute to positioning Europe at the
forefront of the emerging field of quantum and hybrid quantum, HPC, and Al innovation.

e The delivery of the Federation Platform will facilitate a single access point to data lakes and data spaces
across Europe by seamlessly integrating both private and public solutions including well-established
platforms like SIMPL, EOSC, and FENIX.

1877-0509 © 2025 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY 4.0 license (https://creativecommons.org/licenses/by/4.0)
Peer-review under responsibility of the scientific committee of the Proceedings of the Third EuroHPC user day
10.1016/j.procs.2025.08.227

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2025.08.227&domain=pdf

Anders Dam Jensen et al. / Procedia Computer Science 267 (2025) 1-2

Annual events like EuroHPC User Days bring to life the work we do at EuroHPC JU. The publication of the
Proceedings creates a record of some of the best papers and shares this work with audiences well beyond the scope of
the event. EuroHPC JU is grateful to all of the researchers who submitted their work to be part of this publication.
Papers were selected on the basis of their work demonstrating the transformative potential of EuroHPC
supercomputers. Peer review of the received manuscripts was performed by an editorial board of scientific reviewers.

EuroHPC JU extends its gratitude to the presenters and the organising partners who contributed to the success of the
EuroHPC User Day 2025. Additionally, we thank Elsevier for their support in enabling this publication.

Anders Dam Jensen, Executive Director, EuroHPC JU

Available online at www.sciencedirect.com

ScienceDirect Procedia

Computer Science

CrossMark

Procedia Computer Science 267 (2025) 3

www.elsevier.com/locate/procedia

Editorial Board

Editor-in-Chief: Krishnakshi Bhuyan - EuroHPC Joint Undertaking
Co-editor: Anders Dam Jensen - EuroHPC Joint Undertaking

Co-editor: Josephine Wood - EuroHPC Joint Undertaking

Scientific Reviewers:

Maria Paola Lombardo - Istituto Nazionale di Fisica Nucleare (INFN)

Isabel Campos Plasencia - Consejo Superior de Investigaciones Cientificas (CSIC)
Luciano Rezolla — Goethe University

Juan Masso Bennasar — Universitat de les Illes Balears (UIB)

Giovanni Ciccotti - Sapienza Universita di Roma

Carlo Massimo Casciola - Sapienza Universita di Roma

Francesco Picano - Universita di Padova

Karla Henriette Loida - Deutsches Zentrum fur Luft

Alessandro Bruno — Quantware B.V.

Tobias Weinzierl - University of Durham

Gokberk Kabacaoglu - University of Durham

George Tambouratzis - Institute of Language and Speech Processing (ILSP)
Sofoklis Kakouros - University of Helsinki

Stefano Vanni - University of Fribourg (UNIFR)

Jocelyne Vreede - University of Amsterdam

Kai Keller - Barcelona Supercomputing Center

Daniel Klocke - Max-Planck-Institut flir Meteorologie

1877-0509 © 2025 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY 4.0 license (https://creativecommons.org/licenses/by/4.0)
Peer-review under responsibility of the scientific committee of the Proceedings of the Third EuroHPC user day
10.1016/j.procs.2025.08.228

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2025.08.228&domain=pdf

Available online at www.sciencedirect.com

ScienceDirect Procedia

Computer Science

CrossMark

Procedia Computer Science 267 (2025) 4-13

www.elsevier.com/locate/procedia
Proceedings of the Third EuroHPC user day
The QCD crossover line in a finite volume

Szabolcs Borsanyi®*, Zoltan Fodor®?¢4, Jana N. Guenther?, Paolo Parotto®, Attila
Pasztor®, Ludovica Pirelli?, Kdlman K. Szab6®d, Chik Him Wong*

“Department of Physics, Wuppertal University, Gaussstr. 20, D-42119, Wuppertal, Germany
b Pennsylvania State University, Department of Physics, State College, PA 16801, USA
CInstitute for Theoretical Physics, ELTE Eétvis Lordnd University, Pdzmdny P. sétdany 1/A, H-1117 Budapest, Hungary
4 Jiilich Supercomputing Centre, Forschungszentrum Jiilich, D-52425 Jiilich, Germany
¢Dipartimento di Fisica, Universita di Torino and INFN Torino, Via P. Giuria 1, I-10125 Torino, Italy

Abstract

We compute the crossover line of strongly interacting matter in the temperature (7') — baryo-chemical potential (up) plane of the
QCD phase diagram. We use large scale lattice QCD simulations at vanishing up to solve the path integral in the transition regime
between T = 120 and 200 MeV. We introduce a high order Taylor scheme for the Polyakov loop and extract the static quark
entropy. The peak position of the latter defines the transition line that we can extract up to 400 MeV in yp. For the simulations the
4HEX staggered action was used with 2+1 flavors at physical quark masses.

© 2025 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY 4.0 license (https://creativecommons.org/licenses/by/4.0)
Peer-review under responsibility of the scientific committee of the Proceedings of the Third EuroHPC user day

Keywords: Lattice QCD ; QCD phase diagram

1. Introduction

Vacuum heated to the extreme temperatures of ~ 10'2 K turns into a new phase where matter and antimatter
and their force carriers form a fluid, the Quark Gluon Plasma (QGP). As its name suggests quark fields constitute
the matter component and gluons mediate their interaction. If we increase the temperature, interactions between
quarks weaken, if we lower the temperature quarks and antiquarks will be confined into hadrons and anti-hadrons,
respectively, forming a weakly interacting gas of baryons and mesons without visible gluonic terms. The transition
from QGP to the hadronic phase has actually happened in our Universe when it was ~ 10 us old. The same transition
has been reproduced several billion times in the Large Hadron Collider (LHC) at CERN as well as in the Relativistic
Heavy Ion Collider (RHIC) at the Brookhaven National Lab (BNL).

There is ample experimental evidence for this transition being an analytical crossover [1, 2, 3]. Theory has pre-
dicted the crossover nature of the transition [4]. In fact, one can apply statical field theory methods to solve the path

* Corresponding author. Tel.: +49-202-439-2635
E-mail address: borsanyi@uni-wuppertal.de

1877-0509 © 2025 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY 4.0 license (https://creativecommons.org/licenses/by/4.0)
Peer-review under responsibility of the scientific committee of the Proceedings of the Third EuroHPC user day
10.1016/j.procs.2025.08.229

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2025.08.229&domain=pdf

Szabolcs Borsanyi et al. / Procedia Computer Science 267 (2025) 4—13 5

— 250 — T -
> r . 1
S 225 ;{Early Universe e B —
- s] 155
= 200 Quark-Gluon Plasma B = 150
(0] E] ()
= F 3 =
=] 175,—10MS E = 145
"a r ’ ————— 1 = 140 | Analytical continuation ===
o E *‘# Lattlce QCD B NLO Taylor-expansion =—=
8_ 150 -] 185 LO Taylor-expansion ===
r 1 170 £ t t t t t t
€ 1251 Bag Model - 165 1ﬁ~+
I<1_) [| Hadron gas ¢ g E 160 %L —J 4 %L
100 [V & E 185 F L B
;) .] gor -0, 1
75 ‘ | = 145 Dyson-Schwinger: Isserstedt et al, 2019 7x\
r] 140 Chemical freezeout: /éndror}ic_ et a:, 30(112 o—i ~
500| ® Experiments 3 135 *Cba ot ol 2014]
L] 130 [Vovchenko et al, 2015 ——
25 E sk STAR, 2017 = _
r 0.1s] 0 50 100 150 200 250 300
i J Y T H I~ IS g [MeV]
0 200 400 600 800 1000 1200

Baryochemical potential u, (MeV

~

Fig. 1. The QCD phase diagram in the 7 — up plane. Left: a version from 2008 [8], right: our recent continuum extrapolated lattice result [9]. The
data points refer to the chemical freeze-out line in both figures. The green band on the right plot is our lattice result, the other lines refer to various
theoretical approaches.

integral of Quantum Chromodynamics (QCD) the underlying theory to strong interactions. Lattice QCD, a com-
putational discipline within theoretical high energy physics, can implement importance sampling to generate field
configurations with the weight given by the Euclidean quantum field theory. With such lattice simulations the central
temperature of the crossover has been determined to be T ~ 155 MeV [5, 6].

The beam energy in collision experiments controls the baryon stopping and through that the excess of quarks
over antiquarks in the plasma. This gave the opportunity for a Beam Energy Scan (BES) program at RHIC, where
the transition could be studied as a function of net baryon density. However, lattice simulations struggle with an
asymmetric setup between matter and antimatter. Most theoretical frameworks introduce a baryo-chemical potential
up as the free energy associated with the shifting of the balance by three quarks. While for vanishing values of up the
statistical weight of the field configurations are real and positive, allowing for a stochastic process to sample it, lattice
QCD faces with complex probabilities whenever a grand canonical simulation with non-zero up is asked for. Though
it is possible to restrict the simulation to the real part based on exact cancellation of the imaginary part, the physics
result is encoded in the approximate cancellation of large positive and negative real contributions [7]. This is called
the sign problem in finite density lattice QCD. It does not immediately make simulations at finite ug impossible, but
drives the costs exponentially high both in u% and in the system size.

Given the rich experimental program at RHIC and the future CBM experiment at FAIR the theory community is
challenged to make reliable predictions for finite density QCD near its crossover temperature. One key feature in the
T — up phase diagram is the transition line (see Fig. 1). We already know from lattice simulations that it starts at the
temperature axis (ug = 0) as a crossover at T ~ 155 MeV.

The data points in Fig. 1 refer to experimental observations of the collision outcome. Particle abundances are
matched against a thermal model based on the grand canonical parameters 7 and pp. These are the chemical freeze-
out parameters and reflect the temperature of the matter at the moment of the last inelastic scattering. While the
underlying model assuming an instantaneous disintegration of the thermal plasma may seem oversimplified, it is very
successful in the description of the particle yields and gives results close to lattice transition line [10].

Our earlier lattice result in Fig. 1 is based on the analytical continuation method [11, 12]. It exploits that for
imaginary valued chemical potentials the weight of individual lattice configurations are still real and positive, allowing
importance sampling to work for u% < 0. The transition temperatures were determined for several fixed negative
(up/T)?* values and were extrapolated to the physical side with ,u% > 0. The crossover line was first computed in the
continuum limit in Ref. [13].

6 Szabolcs Borsanyi et al. / Procedia Computer Science 267 (2025) 4—13

Fig. 1 also shows an abrupt change of the chemical freeze-out line near up ~ 400 MeV. It is not clear, whether the
lattice extrapolation breaks down, the thermal model’s assumptions are no longer valid, or there is a highly compressed
hadronic phase above the chemical freeze-out line. This region will be explored in detail by the CBM experiment in
the near future.

It is reasonable to assume that the crossover line may turn in to a first order line separated by a critical end-point.
If it happens, fluctuation measurements of net baryon (or proton) density will show a possibly large non-monotonic
signal as a function of beam energy [14]. One of the science goals of the Beam Energy Scan program of the STAR
experiment was to find these. As it happens, Nature has placed the critical endpoint outside of STAR’s range [15].

The intense experimental research has stimulated significant developments in the theoretical frameworks. While
lattice QCD was experimenting with novel ways to extrapolate or directly simulate at finite up, diagrammatic ap-
proaches, such as the Dyson-Schwinger method [16] and similar ways based on the functional renormalization group
[17] have delivered promising results.

Our work presented in this paper is motivated by the urgent need to follow up on the crossover line and search for
the signatures of criticality. In section 2 we start with the role of the simulation volume and outline the simulation
strategy in 3. After presenting various cross-checks in section 4 we present a new result on the transition line in section
5. We finally discuss further planned use of the generated data in section 6.

2. Simulation volume and the sign problem

A popular and successful method to extract finite density information from simulations that were run at g = 0 is
to compute Taylor expansion coefficients. To illustrate this we consider the pressure, normalized to temperature

A2 ~d ~6
Hp

+ 2_!X2(T) + l;_l;X4(T) + %X6(T) + ... (1)

p

T4

_ P
T.up T4

T,0

where the coefficients themselves are highly complex lattice observables. We used the shorthand i = u/T. For in-
stance, y»(T) is obtained as the variance of the quark number on the configurations, as dictated by the fluctuation-
response theorem.

What we call a lattice configuration contains the bosonic fields (gluons) only. The fermionic part (quarks) is
quadratic and can be integrated out leaving us with a non-local bosonic theory that we actually simulate. To extract
variance, kurtosis or even higher moments of the quark number (for y¢) we have to revisit the fermionic contribution
and find out the Taylor expansion for each configuration U. Since the quark contribution is a determinant, det M(U, w),
its expansion can be written as

log det M;"*(U, mj, pj) = log det M (U, m;, 0) + A

1 3

§C G)
Notice, that wile charge conjugation symmetry forbids the odd term on the level of a physical observable, such as the
pressure, Eq. (2) is not protected. In Eq. (2) we introduced a separate chemical potential for each quark flavor, since
their numbers are conserved separately. Dropping the flavor index for simplicity we find for the first few orders

1 A2
+2_!Bij +

X2 = +(B) +(AA)
X4 = +(D) + 3(BB) — 3(BXB) + 4AC) + (AAAA) — 3(AAXAA) + 6(AAB) — 6(B)}{AA)
X6 = +(F) + 10(CC) + 15(BD) + 15(BBB) + 6(AE) + 60(ABC) + 15(AAD)
+45(AABB) + 20(AAAC) + 15(AAAAB) + (AAAAAA) — 15(D)(B)
—15(D)(AA) — 45(BXBB) — 60(B){AC) — 90(BY(AAB)
—15(B)AAAA) — 45(BB)YAA) — 60(ACYAA) — 90(AAYAAB)
—15(AAXAAAA) + 30(BXB)B) + 90(B)(B)(AA)
+O0(BYAAWAA) + 30(AANAANAA)

Xs =79 terms...

Szabolcs Borsanyi et al. / Procedia Computer Science 267 (2025) 4—13 7

100000 — :
E 122x8 contrib>(m—
2 12-x8 contrib<() N—
2 10000 | 163x8 contrib>(M
> ib<(—
o T=130 MeV 167x8 contrib<0
=
g 1000 ¢
=
£
3
S 100 +
f=1
k)
2 10
E
8 | L ik
X2 X4 X6 X8

Fig. 2. Remnant sign problem in the Taylor coefficients of the finite-up extrapolation for two volumes. We show the sum of positive and negative
contributions as two bars, their difference is the actual value of y,. With every new order the signal-to-noise ratio deteriorates with a volume-
dependent factor.

High orders in pp (where all quarks flavors are considered) are very tedious to obtain. We developed a computer
algebra system to compute these and to act as a code generator. The biggest problem, however, is not computational
complexity, but the cancellation between positive and negative contributions within the expressions for y,. This is a
remnant of the finite density sign problem (see Fig. 2).

It is clear from Fig. 2 that large simulation volumes turn the high order extrapolation schemes impractical. Past
lattice studies have often used large volumes e.g. 32% x 8, then even extreme statistics could not reduce the large
statistical error on ys and yg [18]. In our recent work we started with the much smaller 16> x 8 simulation size and
could compute the high orders in the continuum limit [19].

But before we proceed with a small system size to obtain the crossover line we have to find answer two very
practical questions: which observable can be used to identify the transition temperature in a small volume, and how
can this be extrapolated to finite density?

The first question we addressed in Ref. [20]. In Fig. 3 we show the main result. We investigated five different
observables and plotted the transition temperature as a function of the volume (at vanishing pp). Three of these
observables are based on chiral observables (xsun, Yaisc and pbp for (J)), two are related to the Polyakov loop as

1

Fo = —Tlog[‘—/ZNP(fDT I] 3)
0Fg
=—— 4
So 3T “4)
where P(X) is the Polyakov loop

=

P(f) = §TI‘ I—L U4()?, .X4), (5)
Xg=

the U, (X, x4) are the usual link variables in lattice gauge theory.
In this work we focus on the Polyakov loop and the S o(T) observable.

3. Transition temperature at finite density

Our next task is to compute S o(T') at finite yp. For this we will work out the Taylor series of the real and imaginary
parts of the Polyakov loop and through that we will find the expansion coefficients of Fp(T). We will use these to
obtain Fo(T, up) to eight order and find the crossover temperature by finding its inflection point.

We start by defining the chain rule for an arbitrary variable X. Following Ref. [21] we have:

9;4X) = (XA;) = (X)(A;) + (9;X) , (6)

8 Szabolcs Borsanyi et al. / Procedia Computer Science 267 (2025) 4—13

165 =
<
160 % B % - g
x
155 ¥ Fe {1 £
c
2450 |1 X F % 8
£ 145 |« / i g
® 140 | 1 2
& 135 |- peak of g F—¢— - + 643x12 F—t—i
“E’ peak of %y, F——i = 48312 F—+—1
130 d} pbp = constant 1 [] - 40%x12 +——i
peak of Sq ——i =, - 32512
125 Fq = constant 1 o —— 28%12
| | | | | | | (‘,J | | | | | | | |
2 25 3 35 4 45 5 5.5 110 120 130 140 150 160 170 180 190 200
LT T [MeV]

Fig. 3. Left: Five observables that can be used as a proxy for the transition temperature. Right: The static quark entropy exhibits a peak at the
transition. The volume dependence is mild. (Plots from Ref. [20]).

80 (X) = % (XA;AL) - % (X) (AjAL) — (XA;)(Ap)
+ X0 (A (A) + (@X0A;) = (0X) (A

+3 {(300,%) ~ 3 (%) (3ea)

+(j e k). 7

where d; stands for 0/df1; and we used a flavor-specific coefficients A, Bj, . .. for the quark determinant det M (T, u;).
These directly yield the derivatives

3; (PR}, = 0, (8)

9, <P1>|,Eo = <A1P1> ’ ©)
90k (PR>|ﬂEO =0k [(BjPR> - <Bj> <PR>]

(AjAPR) = (A;AL) (PR) . (10)

80k (P1>|ﬂ50 =0. (11)

or for Fp one can work out the expansion scheme

__r 2 _ Fo(my
F == log|(P)| _Tn:oz,z:,... - (T) (12)
1
Fo = —Elog(Q) (13)
1 o®
F=3+ G (9

For higher orders we used a code generator. The complete list of formulas can be found in Ref. [22]. We show the
resulting coefficients as a function of temperature in Fig. 4.

Fig. 4 shows the results for two different expansion schemes. The red data points represent our results in the straight-
forward up expansion scheme. The blue points also refer to coefficients in g, however, in that case the strangeness
chemical potential yg is tuned order-by-order such that the resulting strangeness density vanishes in the complete
parameter range. The latter setup is the closest to the experimentally studied case, and it was already used in Fig. 1.

Szabolcs Borsanyi et al. / Procedia Computer Science 267 (2025) 4—13 9

0 — 0.12 —
FZ p,S=O —— F4 “S=0 ——
-0.02 | ng=0 —e— | 01t ne=0 e |
nE
-0.04 | 0! 0.08 - u
] ° 006 | =
006 A o m! - me®e]
H = 004 . °]
° ° ™ . °] .
-0.08 | M 1 2 °
° ¢ = 002 o °,
ne °] L)
-0.1 | a® ° 0 ol
®e0® - ° .
012 f N . 00 - .o
u] oo o L]
014 LI] 004 "mgmm® 1
u T [MeV] T [MeV]
016 L e 0.06 R
100 110 120 130 140 150 160 170 180 190 200 210 100 110 120 130 140 150 160 170 180 190 200 210
F6 us=0 —— F8 “—S=O ——
015 - mad ng=0 —e— | 0.8 ng=0 —e— + 1
L] 06 | 1
0.1 "n ' 1 + [}
005 § oo 04t i !
X . . [] [Y . * 02+ 2 * [e o |
0 8 p 0 g & " §%] e®y
[] o0 ®
-0.05 | ; o® 1 02t v ; ' L K o
oo ® n
0.1 | ° L'} 04 | +
015 | T LI 06y
08
02 f g 1 +
T [MeV] -l T [MeV] 1
025 R o A NS S
100 110 120 130 140 150 160 170 180 190 200 210 100 110 120 130 140 150 160 170 180 190 200 210

Fig. 4. Taylor coefficients of the static quark free energy in two setups: vanishing strangeness chemical potential in red, along strangeness neutral
trajectories in blue (Updated version of the original plots in Ref. [22])

4. Validity of the extrapolation

To check the validity of the extrapolation we compare our extrapolated results to direct simulation data. As we
have already mentioned, simulations with negative ,uzB are technically possible and we supplemented our data set with
such runs so that such a comparison can be made.

In the following we will use the already determined expansion coefficients and insert negative u% in the Taylor
formula. We plot the resulting real and imaginary parts of the Polyakov loop against direct data in Fig. 5.

As an additional check we compute the bare Fy(up) for imaginary chemical potentials. This quantity requires
renormalization, but this only applies a constant shift to Fp(up), it plays no role for this comparison. In order to
obtain direct data along the strangeness neutral line at imaginary up, we performed a reweighting of each Im up > 0
ensemble to the specific imaginary ps where ng = 0. The target ug(up) was also computed using reweighting, with
reweighting factors spread between 0.5 and 2. Even in the ng = 0 scheme, our error bars are smaller than the symbol
size. We stress that reweighting was only applied to the imaginary pp data and only for the sake of this crosscheck.
We will refer to the resulting F'y for both schemes as direct data, as opposed to the Taylor expansion, that is based on
the up = 0 ensemble. We show the comparison in the right panel of Fig. 5.

5. A new estimate for the crossover line

We start with the presentation of the renormalized Polyakov loop, since most readers are more familiar with this
observable than Fg or S o. Since we have already established F at finite up we define the renomalized Polyakov loop
as P" = exp—(F¢g — A)/T, where A sets the scheme. This means that for observables in this paper we always expand
Fg, not P or P;. We choose A such that P"(T = 160 MeV, up = 0) = 1 as we did in Ref. [20]. The Polyakov loop
curves are shown in Fig. 6. In the bottom panel of this figure, we also show the fourth, sixth and eighth order curves
for T = 130 MeV. The expansion is under control below up ~ 400 MeV.

10

0.08

Szabolcs Borsanyi et al. / Procedia Computer Science 267 (2025) 4—13

0.02 430 .
- T=140 MeV T=140 MeV pg=0 ng=0
] 167x8 lattice 0 - 167x8 lattice 420 | = O(HBZ)
L [] L 4.
0.06 L0.02 Bn _ s O(ug”)
0.04 "a 410 f ™)
X 8
L 004 . \ - & = O p A
& S -0.06 L B 40 o = direct result //
Y L | kS
& g L)% 1
002 | 0%3) 0.08 0<unj> ™~ g 0
O(ug) —— -0.1 O(ug) —— It o
0 P p— O —— w380 1 :
O(uﬁ) 0.12 O(“B) 2 T=140 MeV
L oTB LB 370 @ 167x8 lattice 1
direct data —#— 0.14 direct data —#— -
-0.02 . . : :
007 057 107 157 007 057 0% 157 36(?001: 02‘51[05‘07[07‘57[Loox
Im pg/T Im pg/T)) Im /T : .
B’

Fig. 5. The Taylor coefficients are used to extrapolate the bare Polyakov loop expectation value from up = 0 to imaginary values of the baryochem-
ical potential. (Left: real part, Middle: imaginary part, Right: the resulting static quark potential Fp) We demonstrate the convergence of the series
at 7 = 140 MeV by comparing orders of the extrapolations (bands) to directly measured expectation values at Im up > 0 from a separate set of
simulations. In the right plot we show two comparisons, one in the ys = 0 scheme, and one in the strangeness netural ng = 0 case.

2 : : : : 5.5 ‘ ‘ ‘ : :
T=160 MeV O(u;") mmmmm T=130 MeV O(®) 1p=0 MeV mmmmm
N T=150 MeV O(u") mmmmm T=130 MeV O(u°) 1p=200 MeV mmmmm
& 15| T=140MeV O(ug®) mmmm T=130 MeV O(ug") —— ST pp=300 MeV mmmmm 1
>
o Hp=400 MeV
= 4.5 = 1
o . —] - Mim =200 MeV
9 o
% _/// g 4t
g 05
g B——
35
0 L L L L L
0 100 200 300 400 500 3
120 130 140 150 160 170 180
i [MeV]
T [MeV]

Fig. 6. Left: The Polyakov loop shown as a function of yp with fixed T'. For one of the temperatures we show the fourth and sixth order results.
The sixth order does not visibly differ from the full computation below pp = 350 MeV. Right: The static quark entropy (S o(T')) extrapolated to
various chemical potentials. The errors in this plot are statistical only. We added one imaginary chemical potential (gray band) to better visualize
the trend in pup.

In the right panel of Fig. 6 we show S o(T') as defined in Eq. (4). We also show S o(T') for one imaginary value of
up for comparison. The S o(T') curves show two trends very clearly. First, the change in the peak position indicates
the chemical potential dependence of the transition temperature. Second, the width of the peak increases as pp grows,
indicating a weakening of the deconfinement transition. At the largest value of 1, the curve is the flattest. This feature
contributes to the difficulty in determining the deconfinement temperature at large 15, in addition to the growing errors
from the extrapolation. On the other hand, in the opposite (imaginary) direction, the peak is higher and narrower,
eventually becoming singular in the Roberge-Weiss point [23].

Our final results are the deconfinement transition temperature and the width of the deconfinement transition as a
function of the chemical potential. For the strangeness neutral case they are shown in Fig. 7. On the left, the deconfine-
ment crossover temperature calculated in this work is compared to the chiral crossover temperature from Ref. [9] and
an estimate of the freeze-out parameters in heavy ion collisions by the STAR collaboration [25] and the parametriza-
tion in Ref. [10]. On the right we show the chiral transition width from Ref. [9] and the deconfinement width from
this work. Already at ug = 0 the deconfinement transition is much broader. Even more interestingly, as a function
of the baryochemical potential, the deconfinement transition broadens, while the width of the chiral transition stays
roughly the same. This contrasting behaviour was already observed in our earlier work [20], but only to leading order
in up. Here, we observe the same behavior in a large range of chemical potential. Our results disfavor the existence of
a deconfinement critical endpoint below up ~ 400MeV. The same statement is also true for zero strangeness chem-
ical potential. However, in that setup, we see the reverse trend of the width. Above pup ~ 300MeV the width of the

Szabolcs Borsanyi et al. / Procedia Computer Science 267 (2025) 4—13 11

170 90

‘ ng=0 set‘up
] 80 - mmmmmm chiral width [2002.02821]
deconfinement width (SQ)

165

160 70

60
155

50 |

150

T [MeV]

ng=0 setup 40 1 |
145 | s chiral crossover [2002.02821]

140 L S max ug order

—B— Freezeout STAR [1701.07065] 20 1]
135 + — Freezeout Andronic et al [1710.09425] 10 I 1
- - - - DSE Gunkel&Fischer [2106.08356]
‘ ‘ ‘ ‘ ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘ ‘ ‘ ‘

0 50 100 150 200 250 300 350 400 450 0 50 100 150 200 250 300 350 400
1 [MeV] i [MeV])

30 | 1

width of the transition [MeV]

Fig. 7. Left: the deconfinement line (orange) defined as the peak position of the static quark entropy (S o) at fixed up as a function of up. We
add the chiral transition line from lattice QCD [9] in the phase diagram, defined from the peak of the full chiral susceptibility, as well as the
corresponding result based on Dyson-Schwinger equations [24] (the latter used the us = up/3 scheme as an approximation to ng = 0). We also
include the chemical freeze-out parameters [25, 10]. Right: the width associated to the deconfinement (orange) and chiral (blue) transitions: the
two differ already at up = 0. With increasing pp, while the chiral width is mostly constant, the deconfinement width grows.

deconfinement transition gets smaller again. This is what one expects if a critical endpoint exists somewhere above
up = 400MeV.

Finally, we address the robustness of the present computation. We use the eighth order of the Taylor series, which
may seem a very arbitrary decision. In fact, the order of the expansion was only limited by the statistics. Up to
300 MeV the effect of the eighth order is invisible, and only gets statistically significant above ug ~ 350 MeV. For
the s = 0 scheme the onset of the eighth order appears 50 MeV earlier. It is safe to claim that up to up < 300 MeV
the systematic errors from the truncated extrapolation can be completely neglected, and we give a fair description
of finite volume QCD at finite up. At the same time, the eighth order is the lowest possible truncation in the range
300-400 MeV. Lower orders cannot give reliable results. The difference in the width between the ng = 0 and g = 0
schemes is an effect that is visible only if the eighth order is included.

6. Outlook

The computational challenge in this work was twofold. First, it required a statistics of 1-2 million gauge config-
urations per temperature. The second half of the computer time was used for the measurements of the A;, B;,Cj, ...
coefficients. For this we used the reduced matrix formalism [26] that translates the problem of the up dependence of
the fermion determinant into an eigenvalue problem. We used the MAGMA library [27] to cope with the dense linear
algebra problems on LUMI’s accellerators.

While this was computation was very costly, having these eigenvalues we can, compute many other observables
using the same configurations on the 16* x 8 lattice without much effort. Examples for future use of the data include:

i) We can compute the canonical determinants and rewrite the grand canonical ensemble as a canonical. This can
give us access to the physics of small systems, relevant e.g. for proton-lead events.

ii) We can compute high order baryon fluctuations and use these to extrapolate the baryon kurtosis-to-variance ratio.
This observable was measured by the STAR experiment for protons and is key in the search for the critical end
point in the QCD phase diagram.

iii) Modelling the QCD grand canonical partition sum one can estimate the position of Lee-Yang zeros. These ap-
proach real values in the vicinity of the critical end-point with universal critical scaling.

iv) We can extend the range of fluctuation-based observables to strangeness. The statistical errors on strangeness
fluctuations are significantly smaller, and the extrapolation up to 500 MeV is feasible with our statistics.

The data analysis for all these projects are currently underway and will deliver results in the second project year.

12 Szabolcs Borsanyi et al. / Procedia Computer Science 267 (2025) 4—13

Acknowledgements

The project was supported by the BMBF Grant No. 05SP21PXFCA. This work is also supported by the MKW NRW
under the funding code NW21-024-A. Further funding was received from the DFG under the Project No. 496127839.
This work was also supported by the Hungarian National Research, Development and Innovation Office, NKFIH
Grant No. KKP126769. This work was also supported by the NKFIH excellence grant TKP2021_NKTA_64. This
work is also supported by the Hungarian National Research, Development and Innovation Office under Project No.
FK 147164. The authors gratefully acknowledge the Gauss Centre for Supercomputing e.V. (www.gauss-centre.
eu) for funding this project by providing computing time on the GCS Supercomputer Juwels-Booster at Juelich
Supercomputer Centre. We acknowledge the EuroHPC Joint Undertaking for awarding this project access to the
EuroHPC supercomputer LUMI, hosted by CSC (Finland) and the LUMI consortium through a EuroHPC Extreme
Access call, EHPC-EXT-2023E02-067.

References

—

[1] S. Pratt, E. Sangaline, P. Sorensen, H. Wang, Constraining the Eq. of State of Super-Hadronic Matter from Heavy-Ion Collisions, Phys. Rev.
Lett. 114 (2015) 202301. arXiv:1501.04042, doi:10.1103/PhysRevLlett.114.202301.

[2] L.-G. Pang, K. Zhou, N. Su, H. Petersen, H. Stocker, X.-N. Wang, An equation-of-state-meter of quantum chromodynamics transition from
deep learning, Nature Commun. 9 (1) (2018) 210. arXiv:1612.04262, doi:10.1038/s41467-017-02726-3.

[3] M. Abdallah, et al., Measurement of the Sixth-Order Cumulant of Net-Proton Multiplicity Distributions in Au+Au Collisions at \/syy = 27,
54.4, and 200 GeV at RHIC, Phys. Rev. Lett. 127 (26) (2021) 262301. arXiv:2105.14698, doi:10.1103/PhysRevLett.127.262301.

[4] Y. Aoki, G. Endrodi, Z. Fodor, S. Katz, K. Szabo, The Order of the quantum chromodynamics transition predicted by the standard model of
particle physics, Nature 443 (2006) 675-678. arXiv:hep-1lat/0611014, doi:10.1038/nature05120.

[5] S. Borsanyi, et al., Is there still any 7, mystery in lattice QCD? Results with physical masses in the continuum limit III, JHEP 1009 (2010)
073. arXiv:1005.3508, doi:10.1007/JHEP09 (2010)073.

[6] A.Bazavov, T. Bhattacharya, M. Cheng, C. DeTar, H. Ding, et al., The chiral and deconfinement aspects of the QCD transition, Phys.Rev. D85
(2012) 054503. arXiv:1111.1710, doi:10.1103/PhysRevD.85.054503.

[7]1 S. Borsanyi, Z. Fodor, M. Giordano, S. D. Katz, D. Nogradi, A. Pasztor, C. H. Wong, Lattice simulations of the QCD chiral transition at real
baryon density, Phys. Rev. D 105 (5) (2022) L051506. arXiv:2108.09213, doi:10.1103/PhysRevD.105.L051506.

[8] P. Braun-Munzinger, J. Wambach, The Phase Diagram of Strongly-Interacting Matter, Rev. Mod. Phys. 81 (2009) 1031-1050. arXiv:0801.
4256,doi:10.1103/RevModPhys.81.1031.

[9] S. Borsanyi, Z. Fodor, J. N. Guenther, R. Kara, S. D. Katz, P. Parotto, A. Pasztor, C. Ratti, K. K. Szabo, The QCD crossover at finite chemical
potential from lattice simulations, Phys. Rev. Lett. 125 (2020) 052001. arXiv:2002.02821.

[10] A. Andronic, P. Braun-Munzinger, K. Redlich, J. Stachel, Decoding the phase structure of QCD via particle production at high energy, Nature
561 (7723) (2018) 321-330. arXiv:1710.09425, doi:10.1038/s41586-018-0491-6.

[11] M. D’Elia, M.-P. Lombardo, Finite density QCD via imaginary chemical potential, Phys. Rev. D67 (2003) 014505. arXiv:hep-lat/
0209146, doi:10.1103/PhysRevD.67.014505.

[12] P.de Forcrand, O. Philipsen, The QCD phase diagram for small densities from imaginary chemical potential, Nucl.Phys. B642 (2002) 290-306.
arXiv:hep-1at/0205016, doi:10.1016/50550-3213(02)00626-0.

[13] C. Bonati, M. D’Elia, M. Mariti, M. Mesiti, F. Negro, F. Sanfilippo, Curvature of the chiral pseudocritical line in QCD: Continuum extrapolated
results, Phys. Rev. D92 (5) (2015) 054503. arXiv:1507.03571, doi:10.1103/PhysRevD.92.054503.

[14] M. Stephanov, Non-Gaussian fluctuations near the QCD critical point, Phys.Rev.Lett. 102 (2009) 032301. arXiv:0809.3450, doi:10.
1103/PhysRevLett.102.032301.

[15] S. collaboration, Precision Measurement of (Net-)proton Number Fluctuations in Au+Au Collisions at RHIC (4 2025). arXiv:2504.00817.

[16] P.Isserstedt, M. Buballa, C. S. Fischer, P. J. Gunkel, Baryon number fluctuations in the QCD phase diagram from Dyson-Schwinger equations,
Phys. Rev. D100 (7) (2019) 074011. arXiv:1906.11644, doi:10.1103/PhysRevD.100.074011.

[17] Y. Lu, F. Gao, Y.-x. Liu, J. M. Pawlowski, Finite density signatures of confining and chiral dynamics in QCD thermodynamics and fluctuations
of conserved charges (4 2025). arXiv:2504.05099.

[18] D. Bollweg, D. A. Clarke, J. Goswami, O. Kaczmarek, F. Karsch, S. Mukherjee, P. Petreczky, C. Schmidt, S. Sharma, Equation of state and
speed of sound of (2+1)-flavor QCD in strangeness-neutral matter at nonvanishing net baryon-number density, Phys. Rev. D 108 (1) (2023)
014510. arXiv:2212.09043, doi:10.1103/PhysRevD.108.014510.

[19] S. Borsanyi, Z. Fodor, J. N. Guenther, S. D. Katz, P. Parotto, A. Pasztor, D. Pesznyak, K. K. Szabo, C. H. Wong, Continuum-extrapolated
high-order baryon fluctuations, Phys. Rev. D 110 (1) (2024) LO11501. arXiv:2312.07528, doi:10.1103/PhysRevD.110.L011501.

[20] S. Borsanyi, Z. Fodor, J. N. Guenther, R. Kara, P. Parotto, A. Pasztor, L. Pirelli, C. H. Wong, Chiral versus deconfinement properties of
the QCD crossover: Differences in the volume and chemical potential dependence from the lattice, Phys. Rev. D 111 (1) (2025) 014506.
doi:10.1103/PhysRevD.111.014506.

[21] C. Allton, M. Doring, S. Ejiri, S. Hands, O. Kaczmarek, et al., Thermodynamics of two flavor QCD to sixth order in quark chemical potential,

Phys.Rev. D71 (2005) 054508. arXiv:hep-1at/0501030, doi:10.1103/PhysRevD.71.054508.

[22]

[23]
[24]
[25]
[26]

[27]

Szabolcs Borsanyi et al. / Procedia Computer Science 267 (2025) 4—13 13

S. Borsanyi, Z. Fodor, J. N. Guenther, P. Parotto, A. Pasztor, L. Pirelli, K. K. Szabo, C. H. Wong, QCD deconfinement transition line up to
pB=400 MeV from finite volume lattice simulations, Phys. Rev. D 110 (11) (2024) 114507. arXiv:2410.06216,doi:10.1103/PhysRevD.
110.114507.

C. Bonati, M. D’Elia, M. Mariti, M. Mesiti, F. Negro, F. Sanfilippo, Roberge-Weiss endpoint at the physical point of Ny = 2 + 1 QCD, Phys.
Rev. D93 (7) (2016) 074504. arXiv:1602.01426, doi:10.1103/PhysRevD.93.074504.

P. J. Gunkel, C. S. Fischer, Locating the critical endpoint of QCD: Mesonic backcoupling effects, Phys. Rev. D 104 (5) (2021) 054022.
arXiv:2106.08356, doi:10.1103/PhysRevD.104.054022.

L. Adamczyk, et al., Bulk Properties of the Medium Produced in Relativistic Heavy-Ion Collisions from the Beam Energy Scan Program, Phys.
Rev. C 96 (4) (2017) 044904. arXiv:1701.07065, doi:10.1103/PhysRevC.96.044904.

A. Hasenfratz, D. Toussaint, Canonical ensembles and nonzero density quantum chromodynamics, Nucl. Phys. B371 (1992) 539-549. doi:
10.1016/0550-3213(92)90247-9.

C. Brown, A. Abdelfattah, S. Tomov, J. J. Dongarra, Design, optimization, and benchmarking of dense linear algebra algorithms on AMD
gpus, in: 2020 IEEE High Performance Extreme Computing Conference, HPEC 2020, Waltham, MA, USA, September 22-24, 2020, IEEE,
2020, pp. 1-7. doi:10.1109/HPEC43674.2020.9286214.

URL https://doi.org/10.1109/HPEC43674.2020.9286214

Available online at www.sciencedirect.com

ScienceDirect Procedia

Computer Science

CrossMark

Procedia Computer Science 267 (2025) 14-39

www.elsevier.com/locate/procedia
Proceedings of the Third EuroHPC user day

Benchmarking lattice quantum field theory codes across EuroHPC
platforms for physics beyond the standard model on physical
systems
Frédéric D.R. Bonnet®*, Ryan Hill®, Ed Bennett?

“School of Mathematical and Computer Science, Swansea University Bay Campus, Fabian Way, Swansea, SA1 8EN, Wales, UK.
bSchool of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK.

Abstract

The aim of this study is to benchmark codes used in lattice quantum field theory for physics beyond the Standard Model (SM)
on various clusters within the EuroHPC infrastructures. We have used our existing benchmarking suite called SOMBRERO, which is
derived from HiRep, and BKeeper which is derived from Grid, and created an automated workflow framework from scratch called
Bench_Grid_HiRep. We find that the way the global problem is partitioned between MPI ranks used can have a significant impact
on the code performance and run time.

© 2025 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY 4.0 license (https://creativecommons.org/licenses/by/4.0)
Peer-review under responsibility of the scientific committee of the Proceedings of the Third EuroHPC user day

Keywords: Benchmarking; lattice quantum field theory; particle physics; physics beyond the standard model;

1. Introduction

The Standard Model (SM) of particle interactions is a synthesis of three of the four forces of nature and is probably
one of the greatest achievements in theoretical physics so far. These forces are described by gauge theories, each of
which is characterized by a coupling constant, g. For the strong interaction, g; ~ 1. For the electromagnetic interaction,
the fine structure constant is g, ~ 1/137. This constant is known to a very high precision, the predictions of Quantum
Electrodynamics (QED) agree with nature to extremely high accuracy making it the most successful theory in physics.
The strength of the coupling between particles is described by g, and its size is also the reason why the perturbative
approach has been very successful for QED. For weak interactions, the Fermi constant [1] (which has been determined
experimentally with great accuracy), Gg ~ 10~ GeV~2, is much less than 1, leading to another weakly-coupled theory.

* Corresponding author.
E-mail address: frederic.bonnet@swansea.ac.uk

1877-0509 © 2025 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY 4.0 license (https://creativecommons.org/licenses/by/4.0)
Peer-review under responsibility of the scientific committee of the Proceedings of the Third EuroHPC user day
10.1016/j.procs.2025.08.230

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2025.08.230&domain=pdf

Frédéric D.R. Bonnet et al. / Procedia Computer Science 267 (2025) 14-39 15

It is now almost universally accepted that Quantum Chromodynamics (QCD) [2] is the underlying quantum field
theory [3] of the strong interaction, which binds atomic nuclei and fuels the sun and the stars. The bound states of
QCD are referred to as hadrons, and the study of these will provide answers on the mechanisms that bind matter.

Experimental work has confirmed that the basic constituents of matter are quarks, which are confined inside the
hadrons by the gluons. Over the past few years, there have been major upgrades in the energy scale that particles
accelerators can access. As a result, we have growing opportunities to extend our understanding beyond the Standard
Model and open the door for unknown physics at both the subatomic and astrophysical scales. Moreover, the onset of
the Exascale computing era puts particle physicists in a position to be able to compute observables that were simply
unattainable in a reasonable amount of time just a few years ago.

In the evolution, as far as we know, of the (or a) universe as we go back in time, t+ — 0, near the Planck scale
and beyond for that matter a lot the physics is not fully understood or known. The geometry at that scale is extremely
different to what we are commonly used to in our solar system. It is strongly believed that dark matter plays an
essential role. Furthermore, quantum gravity is yet to be fully understood and formulated at the theoretical level.

The Lattice Gauge Theory approach is one of the very few first-principles methods for studying QCD in the nonper-
turbative low-energy regime. The most widely used Lattice Gauge Theory formulation is the so-called Lagrangian-
based lattice field theory, which discretises the field theory on a Euclidean space-time lattice [4,5]. An alternative
lattice approach is based on the Hamiltonian formulation of quantum field theory and makes use of cluster decom-
positions and again Monte Carlo methods to carry out the simulations [6]. In addition, there are numerous studies
based on a light-front formulation of QCD [7] and much use has been made of Schwinger-Dyson equations [8] to
assist with the construction of QCD-based quark models. The Lagrangian-based lattice technique simulates the func-
tional integral using a four-dimensional hypercubic Euclidean spacetime lattice together with Monte Carlo methods
for generating an ensemble of gauge field configurations with the appropriate Boltzmann distribution exp(—S). The
argument of the exponential, S is a discretized form of the gauge action on the hypercubic lattice. The simplest
discretizations of the QCD and other actions involve only nearest neighbours on the lattice and have O(a?) errors,
where a is the lattice spacing.

Lattice QCD, and more generally Lattice Gauge Theory, is based on a Monte Carlo treatment of the path integral
formulation which makes it a computationally demanding method for calculating physical observables. In QCD, for
example, the gluon field is represented by 3 X 3 complex SU(3) matrices, where there is one such SU(3) matrix associ-
ated with every link on the lattice. The links lie only along one of the four Cartesian directions and join neighbouring
lattice sites. Since all lattice links require identical numerical calculations, lattice gauge theory is ideally suited for
parallel computers. Quark (pseudofermion) fields, meanwhile, are three—element complex vectors, transforming un-
der the gauge field by standard matrix multiplication. Beyond the standard model applications involve gauge groups
other than SU(3) and fermions in representations other than the fundamental. In the latter case, rather than N—element
vectors, pseudofermions are M > N—element vectors, transforming by matrix multiplication with a projection of the
gauge field into a higher representation of the gauge group [22-24]. Popular extensions of the standard model are built
with gauge theories based on SU(N) or Sp(2N) groups, and fermions in one or more of the fundamental, antisymmet-
ric, symmetric, and adjoint representations. An example is the Higgs compositeness framework, based on the pseudo
Nambu-Goldstone mechanism. A specific realization of this mechanism with rich phenomenology is provided by an
Sp(2N) gauge theory with two fermion flavours transforming in the fundamental representation. When this theory is
augmented with three antisymmetric fermion flavours, the model can account for the high mass of the top quark with
respect to the QCD scale through a mechanism known as fop partial compositeness. These concepts are reviewed, for
instance, in [21], which discusses a realization of Higgs compositeness with top partial compositeness built on the
Sp(4) gauge theory with two fermions in the fundamental and three fermions in the antisymmetric representation.

This project is part of the field of high-energy physics. It strongly relies on supercomputing resources to enable
the extraction of observable quantities from the numerical simulation of theories of strong interactions beyond the
standard model performed in the framework of Lattice Gauge Theories. It contributes to improving and extending our
current understanding of the physics of elementary interaction and of the early universe addressing questions such
as the nature of dark matter, the dynamical origin of electroweak symmetry breaking and the existence of a relic
background of gravitational waves. Using state of the art numerical techniques and codes that are developed in-house
we aim at extending and improving calculation of the Ny = 2 meson spectrum in Sp(4) using Domain Wall (M6bius)
fermions at small masses is an example of the transition to precision results, as is the physical characterization of

16 Frédéric D.R. Bonnet et al. / Procedia Computer Science 267 (2025) 14-39

the confinement transition in the Sp(4) Yang-Mills theory at finite temperature. The study of scattering phase shift of
Pseudo Nambu-Goldstone Bosons, the singlet antisymmetric spectrum in Sp(4) gauge theory or the study of the beta
function in the SU(2) gauge theory with adjoint matter, are other examples of the scientific investigations performed
within our program. Our studies are relevant in the context of the experimental work carried out at the LHC or at
gravitational wave observatories like the upcoming Einstein Telescope.

We make use of two open source code bases, HiRep ' and Grid 2, to which our group has contributed support for
Sp(2N) groups. The benchmarking is essential in order to optimize codes on the various systems that we intend to
work on within the EuroHPC infrastructure; moreover, leverage the output of current investment in HPC and benefit
the community of supercomputer users, with a particular attention to the current and future user base of multi-purpose
software libraries that we are using. Due to the implied very high computational demands and the necessity to work
in the communication-dominated regime as well as in the computation-dominated regime and in more balanced sce-
narios, our code lends itself to adaptations as a general-purpose and health-monitoring benchmark suite. To facilitate
usage, we have extracted from our codes benchmarks that are widely used in academia (e.g., on the DiRAC HPC
service in the UK) and industry (industrial users include Intel and NVIDIA). The benchmarking may also be done
using other Lattice QCD codes as a comparison test.

In this study we present the results that we obtained during our time allocation on the EuroHPC (call number
EHPC-BEN-2024B10-015) machines which include results from the following computing centers Vega located in
Slovenia, Lumi in Finland and Leonardo at Cineca—HPC in Italy.

2. The various codes

In this section, we will briefly describe the key features of the codes we intend to use in this study. The codes gives
the possibility to study many different physical systems in Lattice Gauge Theory. We will omit many details of the
inner workings of the codes used in this study; however, we lead the interested reader to the references provided in
this document and therein.

2.1. Lattice software frameworks

HiRep [9,10,11] and Grid® [12,13] are software tool Kits to perform computations in lattice quantum field theory.

HiRep is a collection of lattice software tools designed to study physics beyond the Standard Model (BSM). It
is written in C99, with a C++ and Perl-based code generator to produce a set of bespoke linear algebra macros
specifically targeting the matrix size of interest. It makes use of MPI for parallelism. Recent work, not all of which
is merged into the main trunk of HiRep, has included implementation of symplectic gauge groups [14], Sp(2N,F),
implementation of the Logarithmic Linear Relaxation (LLR) algorithm [15], which provides an alternative to typical
importance sampling-based computations, and a highly-performant CUDA and HIP implementation [11].

Grid is a performance portability framework for large multidimensional containers, targeting both CPUs with in
principle arbitrary length vector units, and GPUs. It has been developed with applications to lattice quantum field
theory (and in particular Lattice Quantum Chromodynamics (LQCD)) in mind, and is particularly feature-complete
in this direction. It is written in C++17, with GPU implementations in CUDA, HIP, and SYCL, and supports both
OpenMP for multithreading and MPI for distributed memory parallelism. Similarly to HiRep, Grid has also recently
been extended with an implementation of symplectic gauge groups [16].

The two codes provide complementary implementations of the desired physics. Grid offers a wider range of fea-
tures that are designed to be composed together allowing, for example, a variety of fermion formulations. HiRep is
more targeted in its feature set, but its smaller scope can make it easier to build and test new functionality on top of.

! The main branch of HiRep may be found via the following link: https://github. com/claudiopica/HiRep. The code SOMBRERO, used in
this study, is based on the following branch https://github.com/sa2c/HiRep.

2 https://github.com/UCL-ARC/Grid.git is a branch that we have used for specific benchmarking test. The main and current branch is
available via https://github.com/paboyle/Grid.

3 nttps://arxiv.org/abs/1512.03487

Frédéric D.R. Bonnet et al. / Procedia Computer Science 267 (2025) 14-39 17

2.2. Benchmarks

2.2.1. BKeeper

BKeeper * [20] was developed to provide a benchmark comparable to SOMBRERO for the Grid code. BKeeper itself
is compiled to a binary executable that is statically linked against the Grid library. BKeeper leverages the flexibility
afforded by the deep templating of the Grid code-base to be easily extended to the full range of gauge groups and
fermion representations supported by Grid, and can be compiled with support for arbitrary subsets of the supported
theories to mitigate the lengthy compile times required for each fermion implementation. It is driven via an XML input
file, which governs the scenarios that we wish to benchmark.

2.2.2. Sombrero

SOMBRERQ ° [17] is a mini-app benchmark derived from HiRep. Based on a CPU-only branch of HiRep supporting
symplectic groups, the benchmark tests the performance of the conjugate gradient inversion of the Dirac operator,
which typically accounts for 90% or more of the execution time of physics problems. To minimize the size of the
code package and simplify porting, the SOMBRERO code is extracted from the HiRep source in a semi-automated way,
making use of the pycallgraph library [18].

Benchmarking the Dirac operator inversion, rather than the Dirac operator itself, allows a better picture of how
the Dirac operator kernel performs as part of the full computational workflow. Benchmarks are performed for six
theories:

e case-1: SU(2) with adjoint matter

e case-2: SU(2) with fundamental matter

e case-3: SU(3) with fundamental matter (QCD)
e case-4: Sp(4) with fundamental matter

e case-5: SU(3) with two-index symmetric matter
e case-6: Sp(4) with adjoint matter

We expect [19] that theories with a larger gauge group (i.e. larger number in brackets) increase the demand on com-
puting resources more strongly than those on communications, while a larger fermion representation (fundamental
< two-index symmetric < adjoint) increases the communication demands more than the computation. As such, we
would expect to see the best strong scaling for Sp(4) with fundamental matter, and the worst for SU(2) with adjoint
matter.

2.3. Bench_Grid_HiRep framework

Bench Grid HiRep is a framework used to deploy over a set of systems or a HPC cluster. The code provides
an automated way of deploying Grid and HiRep (Sec 2.3), SOMBRERO (Sec 2.2.2) and BKeeper (Sec 2.2.1) and
their library dependencies which are GNU-MPFR®, the US Lattice QCD’ software suite, with its C-Lime library and
the GNU-GMP? libraries. Once the codes are deployed onto a given system(s), the code(s) are compiled and linked
together. A set of benchmarks runs are created as a first step during the process. Once all of the dependencies are
compiled, configured properly and successfully, these just created benchmark runs are then launched on the fly and in
the continuity of the process. Subsequent runs can then be launched without having to recompile everything, as it is a
modular workflow. Provided that one has information on how to distribute the computation over the multi-GPUs on
the node in BKeeper before starting the process and knows the correct modules to load for an error-free compilation,
then the entire process can be deployed from a local host and remotely using the SSH and SCP protocols, or directly on

4 nttps://github.com/RChrHill/BKeeper

5> https://github.com/sa2c/sombrero

6 The MPFR library is a C library for multiple-precision floating-point computations, https://www.mpfr.org

7 http://usqcd-software.github.io

8 GMP is a library for arbitrary precision arithmetic, operating on signed integers, rational numbers, and floating-point numbers. https://
gmplib.org

18 Frédéric D.R. Bonnet et al. / Procedia Computer Science 267 (2025) 14-39

the cluster if there is Internet access on that cluster. The framework is modular; in short, it means that it is possible to
adjust, extend, modify certain sections without affecting the others, provided that one uses the same variables declared
in the common_main block. The idea of porting, case generation, compilation/building, case gathering, and then case
launching on the cluster are then separated and disjoint but yet connected in a workflow system of sequential calls.
This gives the possibility to start/restart incrementally without having to go through the entire workflow from the start.
Once the runs have completed, an analysis code can be used to generate a data visualization of the results. The code
is written as a combination of Linux Bash and Python-3.12 and is available on GitHub °. The code has been tested on
Windows via WSL and on Linux systems, so far. The overall architecture of the code is shown in Figure A.1,

3. Benchmarking results

In this section, we present the results obtained on the different systems using the codes mentioned in Section 2.
The runs were performed on the various machines to which we have gained access through the EuroHPC call (project
call number EHPC-BEN-2024B10-015). These calls extend for a period of three months and provide full access to the
machine partitions. Our limited allocation consisted of 400 node hours on Vega-GPU, 2000 and 2500 nodes hours for
the Lumi-C and Lumi-G respectively, and similarly on Leonardo with 2000 and 3500 node hours on the two partitions
Leonardo-DCGP and Leonardo-Booster respectively. Figures are available in Appendix A. A Zenodo '° repository
has been setup for the figures, output data and codes. These can be found using the links 10.5281/zenodo . 15782266
or https://doi.org/10.5281/zenodo.15782266.

3.1. BKeeper results

As a first step in the benchmark procedure, using BKeeper, we screened a set of MPI combinations over the nodes
with a given number of GPU available on that node over space—time, which can be thought of as a 4—vector x = (%, 1).
For example, if a node has 4 GPUs, (ng,, = 4), then the resulting set for the possible MPI combination (partitioning
between MPI ranks used at run time) are based on the following expression:

Tgpu
U= [] x| T=ngu, and i, jik,I=1,..ngy € Z°
i,jk,j=0

M

‘ = |1, ngu| € Z°. 1

— M= {x- i t}
B Yo T 11, g

The number of combinations with repetition, will then be 10 distinct possibilities. Using this idea, we ran the cases
with an increasing number of nodes (7h0des), from 1 to 2 for the Small set, and for n,04es = {4, 8, 12, 16,24, 32} for
the large set. The Small set was constructed using a lattice of 24° x 32. For the Large set, we used two larger lattices
323 x 64 and 643 x 96. The lattice spacing for the conjugate gradient was set at its default size of @ = 0.1(fm) in
the case BKeeper. These lattice dimensions are realistic and common in large simulation in lattice gauge theories.
Using BKeeper we were able to extract results for three representations, the SU(2)-Adjoint, SU(2)-Fundamental and
SU(3)-Fundamental. Additional runs are underway to add higher representations.

For the Small set, we compared the results between runs on 1 and 2 nodes. Vega-GPU and Leonardo-Booster
have the same number of GPUs per nodes, i.e. 4, these are therefore comparable. On Lumi-G there are 8 GPUs per
node, which means that we should expect a factor of two when compared with the other two machines i.e. Vega
and Leonardo-Booster. However, this may not necessarily be the case as Lumi-G and the other two systems have
different GPUs in it, with AMD and NVidia-A100 in the other respectively. In Fig A.6, we show the results for the
runs on the Small set for lattice 24> x 32 on 1 node and 2 nodes for a set of MPI distribution versus conjugate
gradient run time in seconds (CG Run Time (s)) obtained on Vega-GPU and Leonardo-Booster. In Fig A.9, for
the runs obtained Lumi-G. Since Lumi-G has 8 GPUs per node, the number of MPI possibilities is larger, as the
different combinations can now go to 8 and not 4, as was the case on the other two systems just mentioned. From

9 https://github.com/fbonnet08/Bench_Grid_HiRep
10 Zenodo repository are available via https://zenodo . org

Frédéric D.R. Bonnet et al. / Procedia Computer Science 267 (2025) 14-39 19

these Figures A.6 and A.9, we can clearly notice that in all cases and for all the different representations we observe
significant variations on the run time per second when we vary the MPI distribution. Furthermore, we are able to
identify the MPI combination that gives the best performance on that nodes, i.e. when we use node001 and node002.
This result is consolidated if we plot the same CG Run Time (s) versus the number of nodes for each run and
each representation. The results are shown in Fig. A.14 for Vega-GPU and Leonardo-Booster and in Fig. A.17 on
Lumi-G.

The graphs shown in Figure A.14 and in Fig. A.17 are particularly informative, because they show multiple aspects
of the scaling. The first aspect is the scaling on each node (the graph is being read from bottom to top) and the second
one being the scaling as we increase the number of nodes (the graph is then read from left to right).

Looking at the first one, we can see how each representation are clustered together and we are also able to identify
the MPI distribution that gives the best run time in seconds, this is achieved by taking the lowest value on the vertical
line for each node number. There we have the three representations shown there and we can observe that the SU(3)-
Fundamental is the most time-consuming as expected since it is the biggest gauge group among the set because the
matrices have 9 elements instead of 4 as it is the case in the SU(2) and this is for every lattice sites. In an Sp(4) theory,
there will then be 16 elements in the gauge field matrices, hence we expect the run time to be considerably slower than
the SU(3) theory. The second relevant aspect is as we go from 1 node to 2 (reading the graph from left to right in this
case) and look at the slope of the lines joining the two, which gives a clear indication of the cost of communication
between the nodes. The line is the average of the data and the band is an 80% band, the values that fall outside these
bands are values that are more or less than 80% of the value of the average. In almost all cases we see that the slopes
are negative for the run time (CG Run Time (s)) showing a speed up going from one node to two on Vega-GPU and
a coherent positive slop when we look at the number of flops per seconds (Flops/s (GFlop/s)). This appear to be
true on Vega-GPU and Leonardo-Booster but not on Lumi-G when we consider the case-1: SU(2) adj. This is
kind of expected as there very little amount of computing to be done hence we spend more time fetching out data from
memory than actually computing and also because on two nodes on Lumi-G we would be utilizing not 8 GPUs but 16,
which is a large amount considering the size of the problem at hand. On much larger lattices this may not necessarily
be the case. We also repeated the experiment for large lattice size over a larger number of nodes on a 4-GPU per node
system (Vega-GPU), Fig A.22, and on a 8—GPU per node system such as Lumi-G, Fig A.27.

The results reinforces the ones previously stated and enables us to really see the scaling between the number of
nodes on all systems. On Vega-GPU we were not able to extract the equivalent number of nodes as we did on Lumi-G,
and we ran out of access time on Leonardo-Booster. However, based on the runs that we were able to perform on
Vega-GPU and Lumi-G on lattices 32% x 64 and 643 x 96 we can clearly see an increase in the slope as we increase the
number of nodes, and this is on all systems. On Lumi-G we are seeing a speed up that exceeds linear until we get to
some kind of plateau near node032. Again, this is due to the size of the problem. It is therefore possible to anticipate
that the speed-up trend will continue as we increase the problem size to very large lattices. Based on Figure A.22,
there we are also seeing speed-ups that are exceeding linear speed-up as we increase the number of nodes on large
lattices.

3.2. SOMBRERQO results

We are now going to examine the results obtained from SOMBRERQ. This application was used to benchmark HiRep
indirectly and obtain equivalent results as if we were using that code directly. SOMBRERO enables us to perform a
comparative study of several scenarios, with different degree of computational intensity. Moreover, SOMBRERO offers
the possibility of generating six distinct cases, which can each be mapped to a BKeeper run case. The correspondence
is defined in Section 2.2.2. SOMBRERO performs all computations on the CPU, hence we have used the following CPU
partitions on the EuroHPC systems: Leonardo-DCGP, Lumi-C and Vega-CPU.

Since SOMBRERGO is a pure CPU based code, it hence offers a much bigger variability in the number cases that can be
tested, in particular, the many different lattice sizes (in the Weak case), number of tasks per node and the number of total
cores for each run, for example. We tested for each run, by varying the number of nodes as n,04es = {1, 2,4}, as well as
the number of tasks per node, which depends on the available number of cores on that node. In general, we want to use
all the cores available on that node. However, in this case, we have varied it as well to see how the code communicates
on the node and between the CPU sockets. The following question then follows; is it better to focus half of the total
number of threads on that node or split that half into 2 chunk cores to target each socket on that node and totaling

20 Frédéric D.R. Bonnet et al. / Procedia Computer Science 267 (2025) 14-39

the number of cores on that node? To address this question, we have incremented the parameter number of tasks per
node from one to half the total number of cores on that node. For example, on Leonardo-DCGP the maximum number
of cores on the node is 192, hence we have varied the number of tasks per node as nypns = {1,2, 3,6, 12,24,48,96}.
Not all of the runs have completed successfully. Our runs are constructed in several groups. For each system, we
ran a Small and Large set over the number of nodes. Those just mentioned, in addition to the number of tasks per
node (71npns). Both sets were run in the Weak and Strong settings. The Weak case offers the possibility to scan over
many different lattice sizes as opposed to the Strong case, which focuses on larger lattices. SOMBRERO then produces
the output in terms of GFlops per seconds (s) for each case and each lattice in all representations (the six just
mentioned above). The total number of cores on all systems does vary and is not the same.

3.2.1. Weak

In figs. A.34, A.41 we show the results obtained on Vega-CPU for mpi_distribution vs GFlops per seconds
(s) and nodes vs GFlops per seconds (s) respectively. In Figs. A.48, A.55 for Lumi-C, and in A.62, A.69 for
Leonardo-DCGP in the Weak case. The plots combine both the Small, and the Large sets. The Large is generally
located on the right-hand side cluster of points of the graph. This allows a direct side-by-side comparison between the
two sets.

On each set of graphs the six different representations are depicted and allow a direct comparison between each
representation, and the performances differences obtained on each system. It is important to mention and keep in mind
that we have also varied the nppns variable on each node for all systems. In the Weak case, there are many lattice sizes
being tested on different representations, some of which are as small as 4 x 4 and the largest being 483 x 1024, where
1024 represents the number of lattice sites in the time direction. It is also important to note that, in the Weak case we
also vary the lattice sizes in a permutative variation pattern with repetitions. For example, if we take the small lattices,
the set of variations may take the form of {43 x8,...,8 x 8}, and for the large lattices as {483 x8,...,483 x 1024}.
This offers a larger screening and the possibility to see scaling in all directions. In § p(2N) theories, when we are
computing the density of states using the LLR method mentioned earlier, one of the major computational cost comes
from computing all of the replicas, and from the fact that we need to extend in the time direction. As a result, we need
to gain insight in this way. Also shown in the graphs, and for each point on the graphs, are the times taken in seconds.
The number of nodes used (7504es) and the number of tasks per node (nppns) are also shown. In short, in the Weak
experiment, all the points on each graph correspond to a different lattice size, Mnodes» Zinpns OF mpi_distribution.

We may now be able to compare the performances on each systems in the Weak case in two possible
ways, mpi_distribution vs GFlops per seconds (s) and nodes vs GFlops per seconds (s). For the
mpi_distribution vs GFlops per seconds (s). This is shown in Fig. A.34 for Vega-CPU, in Fig. A.48 for
Lumi-C, and, in Fig. A.62 for Leonardo-DCGP. As already mentioned, the Small results are located on the left clus-
ter of points while the Large set are generally located in the cluster on the right hand side of the same graph. We
notice that for adj representation the clusters of points are more blended and particularly pronounced in the case
of the Sp(4). The fundamental representations seem to provide the best GFlops per seconds (s), that is, for the
cases of case-2: SU(2) fun, case-3: SU(3) fun and case-4: Sp(4) fun. This appears to be true on all systems.
Another relevant aspect that we can observe on the graphs, is the slope of the scaling in both the Small and Large. We
observe that the Small sets are more likely to show plateau type behavior as opposed to the Large sets in particular
on Vega—-CPU and on Leonardo-DCGP as opposed to Lumi-C, where we see in both cases good performances. We
recall, that the Small set is mostly composed of very small lattices.

If we look at when we plot same data runs but this time nodes vs GFlops per seconds (s) this is shown in
Fig. A.41 for Vega-CPU, in Fig. A.55 for Lumi-C and in Fig. A.69 for Leonardo-DCGP. The total number of cores on
all systems do vary and are not the same. In these plots, we can observe what happens when we increase the number
of nodes. As before, the plots can be read from left to right for the number of increasing nodes and, from bottom to
top, which corresponds to the variation of the number of tasks per node as 7,pns. The things to look for are the slopes
of the curves when we increase the number of nodes. In general we expect to observe an upward trend or a positive
slope, however, it also depends on 7ypps.

3.2.2. Strong
In Figures. A.76, A.83 we show the results obtained on Vega-CPU for mpi_distribution vs GFlops per
seconds (s) andnodes vs GFlops per seconds (s) respectively. In Figs A.90, A.97 for Lumi-C, and in A.104,

Frédéric D.R. Bonnet et al. / Procedia Computer Science 267 (2025) 14-39 21

A.111 for Leonardo-DCGP in the Strong case. To reduce the number of plots we have combined both the Small and
Large cases as well. The strong case focuses on two different lattice sizes, for the Small, the lattice size is {243 X 32},

while for the Large set the lattice size is significantly large {643 X 96}. In Fig. A.76, Fig. A.90, and Fig. A.104 plots
the mpi_distribution vs GFlops per seconds (s) for all the systems. Also shown on the plots, are the number
of nodes, nnoges, and nngpns, as was done for the Weak case. Again, as in the BKeeper plots we also provide the average
band and the 80% band on the line plots for all sets (the variability being on the variable nypns). In all cases, we see a
sharp speed-up as we increase the size of the resources provided. It also appears that in all cases we obtain the max-
imum number of GFlops per seconds (s) when all of the available cores on the node are mobilized to the task.
The mpi_distribution needs to be tuned accordingly. As in the Weak case the fundamental representations provide
the highest GFlops per seconds (s). We then plot the same data but this time nodes vs GFlops per seconds
(s). This is shown in Figs. A.83, Fig. A.111 and Fig. A.111. When we differentiate the umber of nodes used in the
computation it is really possible to pinpoint the effects of varying nypns with the associated mpi_distribution. The
shaded bands are again is the average value with an 80% band on the data. Essentially the value located on the top
of the of the vertical line for a given number of nodes with its associated mpi_distribution is the combination that
provides the best performances for the representation in question. It is worth mentioning that on Leonardo-DCGP we
obtain very large variability in the number of flops per second (GFlops per seconds (s))compared with the other
systems.

4. Conclusion and outlooks

In this study we have bench marked our benchmarking suite codes on the EuroHPC machines under the benchmark
call EHPC-BEN-2024B10-015 for a small set of lattices. We have found that, the mpi_distribution produces sig-
nificant variations on both the execution time and the number of flops, GFlops per seconds (s) for SOMBRERO
and Flops/s (GFlop/s) for BKeeper.

4.1. Outlook

In the very near future, we intend to extend our benchmarking runs on physics simulations. In particular to include
Domain Wall Fermions, extend the BKeeper to all representions to match those obtained with SOMBRERO. In this
study, we have not benchmarked HiRep directly, but intend to do so as well. These runs will be performed in the
EuroHPC, call EHPC-BEN-2025B03-046.

Acknowledgments

We acknowledge the support of EuroHPC in particular for the Benchmarking calls EHPC-BEN-2024B10-015 and
EHPC-BEN-2025B03-046. We also would thank the support teams on all of the systems, Vega, Lumi and Leonardo
for their support with some of the compilation and deployments issues that we have faced for each systems. This
work has been funded by the UKRI Science and Technologies Facilities Council (STFC) Research Software Engi-
neering Fellowship EP/V052489/1, by STFC under Consolidated Grant No. ST/X000648/1, by the ExaTEPP project
EP/X017168/1, and by the project to form a Collaborative Computational Project in Theoretical and Experimental
Particle Physics (CCP-TEPP).

Open access statement

For the purpose of open access, the authors have applied a Creative Commons Attribution (CC BY) licence to any
Author Accepted Manuscript version arising.

22 Frédéric D.R. Bonnet et al. / Procedia Computer Science 267 (2025) 14-39

Data Availability Statement

Data used to generate the plots provided in this document can be made available. All of the numerical results
presented in this document have been obtained on the EuroHPC machines using the time allocation that was provided
in call EHPC-BEN-2024B10-015. All data presented will be made available in advance of the EuroHPC User Day.
There are two files available the main text and the Appendix A for all the figures (https://doi.org/10.5281/
zenodo.15782266).

Software Availability Statement

All of the codes mentioned in this document are available via GitHub, this is the case for Grid, BKeeper,
SOMBRERO, HiRep and Bench_Grid HiRep. The codes are available via the links provided within this document.
The codes follow licenses determine therein. Both SOMBRERO [18] and BKeeper [20] are openly available, licensed
under the GNU General Public License version 2. The framework Bench_Grid_HiRep presented in Sec. 2.3 is openly
available (https://github.com/fbonnet08/Bench_Grid_HiRep) under the GNU-GPLv3.

References

[1] Navas, S. and others, Particle Data Group, Review of particle physics, Phys. Rev. D, 110, 3, 030001, (2024).
[2] T. Muta, Foundations of quantum chromodynamics: An introduction to perturbative methods in gauge theories, World Scientific Lecture Notes
In Physics, 5 (World Scientific, Singapore 1987).
[3] M. E. Peskin and D. V. Schroeder, An Introduction to Quantum Field Theory, (Addison-Wesley, New York, 1995).
[4] H.J. Rothe, Lattice Gauge Theories: An Introduction (World Scientific, Singapore, 1992).
[5] 1. Montvay and G. Munster, Quantum Fields on a Lattice, (Cambridge Univ. Press, Cambridge, UK, 1994).
[6] D. Schutte, W. Zheng, and C. J. Hamer, Phys. Rev. D 55,2974 (1997) [hep-lat/9603026].
[7] S.J.Brodsky, H.-C. Pauli, and S. S. Pinsky, Phys. Rept. 301, 299 (1998) [hep-ph/9705477]; S. J. Brodsky, G. McCartor, H.-C. Pauli, and S. S.
Pinsky, Part. World 3, 109 (1993); S. Glazek, A. Harindranath, S. Pinsky, J. Shigemitsu, and Kenneth Wilson, Phys. Rev. D 47, 1599 (1993).
[8] C. D. Roberts and A. G. Williams, “Dyson-Schwinger equations and their application to hadronic physics”, Prog. Part. Nucl. Phys. 33, 477
(1994) [hep-ph/9403224].
[9] L. Del Debbio, et.al., Meson spectroscopy from spectral densities in lattice gauge theories, (2024), arXiv:2405.01388v1 [hep-lat].
[10] L. Del Debbio, A. Patella, and C. Pica, Higher representations on the lattice: Numerical simulations. SU(2) with adjoint fermions, Phys. Rev.
D, 81, 094503, 2010, arXiv:0805.2058 [hep-lat].
[11] S. Martins, E. Kjellgren, E. Molinaro, C. Pica and A. Rago, GPU-accelerated Higher Representations of Wilson Fermions with HiRep, PoS,
EuroPLEx2023, 035, (2024), arXiv:2405.19294 [hep-lat].
[12] P. Boyle, A. Yamaguchi, G. Cossu and A. Portelli, Grid: A next generation data parallel C++ QCD library, (2015), 1512.03487,
arXiv:1512.03487 [hep-lat].
[13] A. Yamaguchi, P. Boyle, G. Cossu, G. Filaci, C. Lehner and A. Portelli Grid: OneCode and FourAPIs, PoS, LATTICE2021, 035, (2022),
arXiv:2203.06777 [hep-lat].
[14] E. Bennett, D. Ki Hong, J. Lee, C. -J. D. Lin, B. Lucini, M. Piai, D. Vadacchino, Sp(4) gauge theory on the lattice: towards SU(4)/Sp(4)
composite Higgs (and beyond), JHEP, 03, 185, (2018),arXiv:1712.04220 [hep-lat].
[15] B. Lucini, D. Mason, M. Piai, E. Rinaldi, and D. Vadacchino, First-order phase transitions in Yang-Mills theories and the density of state
method”, Phys. Rev. D”, 108, 7, 074517 (2023), arXiv:2305.07463 [hep-lat].
[16] N. Forzano, and others, Lattice studies of Sp(2N) gauge theories using GRID, PoS, LATTICE2023, 097 (2024), arXiv:2310.02111 [hep-lat].
[17] E. Bennett, M. Mesiti, SOMBRERO, https://github.com/sa2c/SOMBRERO.
[18] E. Bennett, SOMBRERO: A high-performance parallel benchmark from computational particle physics, (2019), https://rseconuk2019.
sched.com/event/SMZU/p8-sombrero-a-high-performance-parallel-benchmark-from-computational-particle-physics.
[19] E. Bennett, B. Lucini, L. Del Debbio, K. Jordan, A. Patella, C. Pica, A. Rago, BSMBench: A flexible and scalable HPC benchmark from beyond
the standard model physics, International Conference on High Performance Computing & Simulation, 834-839 (2016), arXiv:1401.3733
[cs.DC].
[20] R. Hill, BKeeper, https://github.com/RChrHill/BKeeper.
[21] E. Bennett, J. Holligan, D. Ki Hong, H. Hsiao, J. W. Lee, C. J. D. Lin, B. Lucini, M. Mesiti, M. Piai, D. Vadacchino, Sp(2N) Lattice Gauge
Theories and Extensions of the Standard Model of Particle Physics, Universe, 9, 5, 236 (2023), arXiv:2304.01070 [hep-lat].
[22] G. Howard, Lie Algebras In Particle Physics : from Isospin To Unified Theories, (2000), Boca Raton by Taylor & Francis
[23] P. Woit, Quantum Theory, Groups and Representations, (2017), Springer.
[24] B. C. Hall, Lie Groups, Lie Algebras, and Representations, (2015), Springer.

Frédéric D.R. Bonnet et al. / Procedia Computer Science 267 (2025) 14-39 23

- system_config config_batch_action

l

Batch_header Batch_body

common_main

v v

L di _Grid_HiRep »| Batch_bench_all_creators »{Batch_bench_case_creators

K Inputs

MkFlags Builders

v

Installers > Launcher

Fig. A.1. Overall code architecture of the framework Bench_Grid_HiRep.

Appendix A. Benchmarking graphs from BKeeper and SOMBRERO

In this Section we show the results for the various runs on all clusters that we gained access via the EuroHPC
on project number EHPC-BEN-2024B10-015. The machines includes Vega-CPU, Vega-GPU, Lumi-C, Lumi-G,
Leonardo-DCGP and Leonardo-Booster. The results are divided in the SOMBRERO and BKeeper distinctly. The
figures are referred in the main text, in their appropriate sections.

A.l. Code architecture of the framework Bench_Grid_HiRep

In Fig A.1 the overall code architecture is shown.

A.2. BKeeper results

In Fig. A.6, we show the plots for three different representation SU(2)-Adjoint and SU(2,3)-Fundamental using
BKeeper. a). Vega-GPU node001. b). Vega-GPU node(002. ¢). Leonardo-Booster node001. d). Leonardo-Booster
node002.

In Fig A.9, we show the plots for three different representation SU(2)-Adjoint and SU(2,3)-Fundamental using
BKeeper. a). Lumi-G node001. b). Lumi-G node002.

In Fig. A.14, we show the plots for Vega-GPU and Leonardo-Booster. The plots are for three different represen-
tation SU(2)-Adjoint and SU(2,3)-Fundamental for number of nodes node001 and node002 for nodes versus both
CG Run Time (s) and Flops/s (GFlop/s) for the Small lattice 243 x 32.

In Fig. A.17, we show the plots, on on Lumi-G, for three different representation SU(2)-Adjoint and SU(2,3)-
Fundamental for number of nodes node001 and node002 for nodes versus both CG Run Time (s) and Flops/s
(GFlop/s) for the Small lattice 24° x 32.

In Fig A.22, we show plots for three different representation SU(2)-Adjoint and SU(2,3)-Fundamental for number
of nodes node001 and node002 for nodes versus both CG Run Time (s) and Flops/s (GFlop/s) on muodes =
{4,8,12}.

24

Frédéric D.R. Bonnet et al. / Procedia Computer Science 267 (2025) 14-39

[Vega) Beeper_run_gpu_smail nodea0] 1at24.24.24.32

oamozs

0308851

Fig. A.2. a). Vega-GPU node001.

run_gpy_small_node001 1at24.24.24.32

0320026

0101698

Fig. A4. ¢). Leonardo-Booster node001.

[Vego) Beeper_run_gpu_smail nodea0? 1at24.24.24.32

oz

o0 02

Fig. A.3.b). Vega-GPU node002.

10de002_12t24.24.24.32

oaises7

ondy

oossoss

o0ssg]

006105

=

Fig. A.5. d). Leonardo-Booster node002.

oonsn

oo

Fig. A.6. Plots for three different representation SU(2)-Adjoint and SU(2,3)-Fundamental using BKeeper. a). Vega-GPU node(001. b). Vega-GPU
node002. ¢). Leonardo-Booster node001. d). Leonardo-Booster node002.

[Lumil BKeeper_run_gpu._smal node001 10124.24.24.32

ouem

ousezz

wes il BN Be’'Bm BE B

Fig. A.7. a). Lumi-G node001.

-

[Lumil BKeeper_run_gpu_sml_node002 0:24.24.24.32

015767 4150071 orso7s

o058

Fig. A.8.b). Lumi-G node002.

Fig. A.9. Plots for three different representation SU(2)-Adjoint and SU(2,3)-Fundamental using BKeeper. c¢). Lumi-G node001. d). Lumi-G
node002.

{4,

In Fig A.27, we show plots for three different representation SU(2)-Adjoint and SU(2,3)-Fundamental for number
of nodes node001 and node002 for nodes versus both CG Run Time (s) and Flops/s (GFlop/s) on nyodes =

8,12, 16,24, 32}.

Frédéric D.R. Bonnet et al. / Procedia Computer Science 267 (2025) 14-39 25

BKeeper_run_gpu small, (Vegal, 20x24x24x32 BKeeper_run_gpu_small [Vegal, 24x24x24x32

=
0%, ® 51010104 os0zi0lor azoditloy |oamentsl
e s
Epnes
s
B + mozor0s fes sl ol
naa
et e ”
s
v o
o e
B
el . 02:02:02:01 o2082.01 L
= s =
Lo ® 04010101 =
] 4010201 I
: mome €l xponde
) £ x= 5U(2), fundamental 3. fncar al 2
%o oS00, fndamenel el 8 5}
o 02040100 © £
sy, R 0 axantde
- b b, (o
sy saligy Seaera
| so0 | BLOEHHE
o i
o 20 waasieriey |0
skl
ororioldd 00 Srereter ovarailor
Lo ovordisd * @+ SU(3), fundamental owolbldl
& & & &
- -
Fig. A.10. a). Vega—-GPU, (CG Run Time (s)). Fig. A.11.b). Vega-GPU, (Flops/s (GFlop/s)).
i i A48 i L oL I AaISaE
-
o anitl
==
- il e
ol el 1700
B T
afdre 010104
- 5
= * oegbrigy | a
¢ e ga0
= 1 3
. g
g I
Bue € o
v
ase) SRR e b 1]
orofbidd ".2“‘ ekl 7o)
o R o ki@
ot
e @+ SU(3), fundamental Lo
& & & &
- -

Fig. A.12. ¢). Leonardo-Booster, (CG Run Time (s)). Fig. A.13. d). Leonardo-Booster, (Flops/s (GFlop/s)).

Fig. A.14. Plots for three different representation SU(2)-Adjoint and SU(2,3)-Fundamental for number of nodes node001 and node002 for nodes
versus both CG Run Time (s) and Flops/s (GFlop/s) for the Small lattice 24 x 32.

Beeper rur < itV IR202432 Beeper rur <l Y2002
s ° nao ° 0o T
2010204 1010204 arodied
+ nozoios + oLo2ovos
+ mozoos * ncoom arorios
. + noece + a0 ciadkigy rsament
st e Woroier 0 N el
01040104 o ;
. ovosozol === BB
s oorme -=— sroikies
o 2500 01060101
o ousoez
ouon0201
_ = o ooroios e
c 2 o2ov0108
] & s o020z
e 5 02010204
H . 2 02020104 o
& o 2000 & . eooo
2 oo i
g 2020202 2 02020002 il
oo o 200101 o oororon
* nono 02040102
e Bhan ncmenty
s wso L1 1
fudamental .
00T praedal A
ararids |
a- SUO, fundamental 50 ar SO0, undamental
& & & &

Fig. A.15. a). Lumi-G, (CG Run Time (s)).

nodes

nodes

Fig. A.16. b). Lumi-G, (Flops/s (GFlop/s)).

Fig. A.17. Plots for three different representation SU(2)—-Adjoint and SU(2,3)-Fundamental for number of nodes node001 and node002 for nodes
versus both CG Run Time (s) and Flops/s (GFlop/s) for the Small lattice 24 x 32.

26 Frédéric D.R. Bonnet et al. / Procedia Computer Science 267 (2025) 14-39

BKeeper_run_gpu.large, [Vegal, 32x32x32x64

BKeeper_run_gpu.large, [Vegal, 32x32x32x64

o siczon0l
+ o010l

* 2os0201
02080001

Fig. A.18. a). Vega—GPU, (CG Run Time (s)) (32% x 64). Fig. A.19. b). Vega-GPU, (Flops/s (GFlop/s)) (32° x 64).

BKeeper_run_gpu.large, [Vegal, 64x64x64x96 BKeeper_run_gpu.large, [Vegal, 64x64x64x96

2

0102040
+ 01020008

02010602
02010408

02010002
o oonot0
. o108

04010401
« osoLotoz
04010403

2

. 0020203

+ otororon
& 04080102
- 0s0s0L03

+ otororon
& & 04080102 &
- 0s0s0L03

Fig. A.20. ¢). Vega—GPU, (CG Run Time (s)) (64° x 96). Fig. A.21. d). Vega-GPU, (Flops/s (GFlop/s)) (64 x 96).

Fig. A.22. Plots for three different representation SU(2)-Adjoint and SU(2,3)-Fundamental for number of nodes node001 and node002 for nodes
versus both CG Run Time (s) and Flops/s (GFlop/s) on npedes = {4, 8, 12}.

A.3. Vega—CPU plots Weak small-large

In Fig. A34 we show the plots for Vega-CPU in the case of SOMBRERO-weak—small-large for the

mpi_distribution vs GFlops per seconds (s).
In Fig. A.41 we show the plots for Vega-CPU in the case of SOMBRERO—weak—small-large for the nodes vs GFlops

per seconds (s).

A.4. Lumi-C plots Weak small-large

In Fig. A.48 we show the plots for Lumi-C in the case of SOMBRERO—weak—small-large for the mpi_distribution

vs GFlops per seconds (s).
In Fig. A.55 we show the plots for Lumi-C in the case of SOMBRERO—weak—small-large for the nodes vs GFlops

per seconds (s).

A.5. Leonardo-DCGP plots Weak small-large

In Fig. A.62 we show the plots for Leonardo-DCGP in the case of SOMBRERO-weak—small-large for the
mpi_distribution vs GFlops per seconds (s).

Frédéric D.R. Bonnet et al. / Procedia Computer Science 267 (2025) 14-39 27

232032064 232032064

ol |
orawot

04010208
04010208

]

FIOpS (GFIOp/s)

08020801
08040102
- oBo0202

008 2020801
2040102

28040801
2080102

Fig. A.23. a). Lumi-G, (CG Run Time (s)) (32 x 64). Fig. A.24.b). Lumi-G, (Flops/s (GFlop/s)) (323 x 64).

+ nososoy + oLon0s03
21:08.02.08 or08.0208

201040
2.02.00.00

BKeeper_ru 1X6ax64x96 BKeeper_ru

22000003 1X6ax64x96

FIOpS (GFIOp/s)

L]
i 1000

Fig. A.25. ¢). Lumi-G, (CG Run Time (s)) (643 x 96). Fig. A.26. d). Luni-G, (Flops/s (GFlop/s)) (64° x 96).

Fig. A.27. Plots for three different representation SU(2)-Adjoint and SU(2,3)-Fundamental for number of nodes node001 and node002 for nodes
versus both CG Run Time (s) and Flops/s (GFlop/s) on npodes = {4, 8, 12,16,24,32}.

In Fig. A.69 we show the plots for Leonardo-DCGP in the case of SOMBRERO—weak—small-large for the nodes vs
GFlops per seconds (s).

A.6. Vega-CPU plots Strong small-large

In Fig. A.76 we show the plots for Vega-CPU in the case of SOMBRERO-strong—small-large for the
mpi_distribution vs GFlops per seconds (s).

In Fig. A.83 we show the plots for Vega-CPU in the case of SOMBRERO-strong—small-large for the nodes vs
GFlops per seconds (s).

A.7. Lumi-Cplots Strong small-large

In Fig. A90 we show the plots for Lumi-C in the case of SOMBRERO-strong—small-large for the
mpi_distribution vs GFlops per seconds (s).

In Fig. A.97 we show the plots for Lumi-C in the case of SOMBRERO—strong—small-large for the nodes vs GFlops
per seconds (s).

28

[Sombrero_weak], Case 1, [Vegal, SU(2) adj

x0

250

eaion

Gflops per Seconds

o
0

it
S TN W T W ;mm o 355 1, e P T

e | Lattice size / simulation size

lattice sz
— dxaxixa
axaxaxt
xBuaxs
xBxExs
axaxexs
16x8x8xE
16016888
16x16x16x8
16x16x16x16
32x16x16x16
32032x16x16
AxaBx18x18
BxaBxix18
16x48x18x48
32x48x48x18
6axasxisxis
128x48x48x18.
256xa8x18x18

[ETTET

P Y
i
R
¢ § & ¢ ¢ &F F &

MPI Distribution

AERRRRRERN

1024x18x48x18
Simul_size

—— small

—— Large

Fig. A.28. a). Vega-CPU, (case-1: SU(2) adj).

[Sombrero_weak], Case 3, [Vegal, SU(3) fun

Gflops per Seconds

Ll
Bilbape o
s -
o] o tir b ot S M BT gl

maBns | Lattice size / Simulation size

— 256x8x48x18

— 1024x48x48x18
Simul_size

—— small

—— Large

Fig. A.30. c). Vega-CPU, (case-3: SU(3) fun).

[Sombrero_weak], Case 5, [Vega], SU(3) 2-index sym

[
10
w0
3
H
H .
3w
a
5
2
8w
2 ¥
5 nitte MR e
0 nafta
¥

Lattice Size / Simulation size

axaxixs
axaxaxt
— sxexaxa
— sxexexa
— Bxexexs
— 16xx8xE
— 16x16x8x8
— 1606x1618

16x16x16x16
— 32a6x16026
— 32020606

Simul_size
—e Small

0 osla
> > > P
T
N 4 F i g
& & & & &

& &
MPI Distribution

Fig. A.32. c). Vega-CPU, (case-5: SU(3) adj).

Frédéric D.R. Bonnet et al. / Procedia Computer Science 267 (2025) 14-39

[Sombrero_weak], Case 2, [Vegal, SU(2) fun

Gflops per Seconds

i

e

oo #fion.

i
e e o s TR 1 5 R T it Pt

Lattice Size / Simulation size
lattice sz
— dxaxixa
— sxaxaxa
— sxexaxa
— st
axaxexs
16x8x8xE
16016888
— 16a6x1618
16x16x16x16
— 3206x16016
— 32020606
— xa8x18x48
BxaBxix18
16x48x18x48
32x48x48x18
— GaxaxaBas
—— 128xa8xi8x18
— 256x8x48x18

MPI Distribution

— 1024x48x48x18
Simul_size

—— small

—— Large

Fig. A.29.b). Vega-CPU, (case-2: SU(2) fun).

[Sombrero_weak], Case 4, [Vegal, Sp(4) fun

Gflops per Seconds.
P

o

i
it
e
. oPos
.,L.uu.mu&.ﬂxﬁlﬁﬁ,m.m“‘“ 1l T 4T

i

Lattice Size / Simulation size

256xa8x18x18

&
MPI Distribution

— 1024x48x48x18
Simul_size

—— small

—— Large

Fig. A.31. d). Vega-CPU, (case-4: Sp(4) fun).

[Sombrero_weak], Case 6, [Vegal, Sp(4) adj (Sp(4) 2-index sym)

Gflops per Seconds

sr¥os

st
nsfe

&
MPI Distribution

Lattice Size / Simulation size

— axaxixa
— sxaxaxa
— sxexaxa
— sxexexa
— Bxexexs
— 16xx8xE
— 16x16x8x8
— 1606x1618

16x16x16x16
— 32a6x16026
— 32020606

Simul_size
—e Small

Fig. A.33.d). Vega-CPU, (case-6: Sp(4) adj).

Fig. A.34. Plots for the six different representation within SOMBRERO on each node. mpi_distribution versus GFlops per seconds (s) on

Tnodes = {1,2,4} on Vega-CPU for the Weak cases.

A.8. Leonardo-DCGP plots Strong small-large

In Fig. A.104 we show the plots for Leonardo-DCGP in the case of SOMBRERO-strong—small-large for the
mpi_distribution vs GFlops per seconds (s).

In Fig. A.104 we show the plots for Leonardo-DCGP in the case of SOMBRERO-strong—small-large for the nodes

vs GFlops per seconds (s).

Frédéric D.R. Bonnet et al. / Procedia Computer Science 267 (2025) 14-39

[Sombrero_weak], Case 1, [Vega], SU(2) adj

[Sombrero_weak], Case 2, [Vegal, SU(2) fun

29

00 onosonci® | Lattice Size / Simulation size onosonci® | Lattice Size /Simulation size
ttice 400 tice_
— i — i
o — oxanans — oxanans
e e
axexexd axexexd
o 8x8xBXE » 30 8x8xBXE
2 200 JE———— H — 100
H 163161618 H 163161618
§ — 16a6n6x § — 16a6n6x
a ovandd " 16:16x16x16 b i 16x16x16x16
g0 rovords — 32x16x16x16 § 200 oozt e — 32x16x16x16
o — 32020606 = — 32020606
3 — andexasxds 3 — andexasxds
& 100 —— 8x48x48x48 = —— 8x48x48x48
LG — 16x18x18x18 & — 16xasxisxis
— s2xasxdtis — s2xasxdtis
— samdexisxis — samdexisxis
126xi8xi8xi6 126xi8xi8xi6
— 236xisxisxis — 236xisxisxis
Siaxisudsxis Siaxisudsxis
— lozaniexasuds — lozaniexasuds
Smulsize Smulsize
Smal —e Smal
nodes Large —— tage

Fig. A.35. a). Vega-CPU, (case-1: SU(2) adj).

[Sombrero_weak], Case 3, [Vega], SU(3) fun

Fig. A.36.b). Vega-CPU, (case-2: SU(2) fun).

[Sombrero_weak], Case 4, [Vega], Sp(4) fun
&0 wvosonol® | Lattice Size / Simulation size ctosonch® | Lattice Size / Simulation size
ke - ke
— it — it
e — BXAXAX4 — BXAXAX4
o o
- -
e — x8xBx8 30 — axexeis
z — 16x8x8x8 z — 16x8x8x8
H Toxtons H Toxtons
§ o oo § oo
8 i Tonerenis 2 Tonerenis
g Y S— — —szowozdd 32x16x16x16 & 200 L W— . — 32x16x16x16
o 3232016316 ol oword] — nx2m6nas
g — axasxasxas g — axasxasxas
2 - 2 -
© %ot — 160818118 = — Joxiexiseds
= Sviseisns = Sviseisns
: - Govtenianas - Govtenianas
o¥batoroF 128x48x48x18 128x48x48x48
- devisnimnas
§ = Sorieniens Sorieniens
- lormmammans - lormmammans
& & & —e= Small —e= Small
nodes == Large nodes == Large
Fig. A.37. c). Vega-CPU, (case-3: SU(3) fun). Fig. A.38. d). Vega-CPU, (case-4: Sp(4) fun).
[Sombrero_weak], Case 5, [Vega], SU(3) 2-index sym [Sombrero_weak], Case 6, [Vega], Sp(4) adj (Sp(4) 2-index sym)
. 1 Lattice Size / Simulation size ononoscll® | Lattice Size /Simulation size
w00 ' ! y
— it — it
— BXAXAXD 08-04 — BXAXAXD
o ™ o
- - -
Sl = s = oo
3 wornd® | T Stk o
H Toxtorens B e Toxterens
S — 16x16x16x8 K — = o — 16x16x16x8
8 Tonenenis 8w - i g lonenenis
o — 32x16X16X16 o 04-04-0408 — 32x16X16x16
2 —— 32x32x16x16 2 — 32x32x16x16
e S site g e S site
£ ot _ L i H S,
20 ovorordd' — - o000 o3 _ososoret S
i . - s o o -
md— = pud! fili— B i
piachst : . uaciie e ey
& & s & & E
nodes

nodes.

Fig. A.39. ¢). Vega-CPU, (case-5: SU(3) adj). Fig. A.40. d). Vega-CPU, (case-6: Sp(4) adj).

Fig. A.41. Plots for the six different representation within SOMBRERO on each node. nodes versus GFlops per seconds (s) onfipeges = {1,2,4}
on Vega-CPU for the Weak cases.

30

%0

Gflops per Seconds

30

150

Gflops per Seconds

10

10

[Sombrero_weak], Case 1, [Lumi

Frédéric D.R. Bonnet et al. / Procedia Computer Science 267 (2025) 14-39

sU(2) adj

b
200

1 afhos
skl

s

Lattice Size / Simulation size
lttice sz
Axaxixa
sxaxixt
8xdxixt
8xaxext
Bxexexs

Fig. A.42. a). Lumi-C, (case-1: SU(2) adj).

[Sombrero_weak], Case 3, [Lumi], SU(3) fun

s

wosBhos
bl
Woor

w
R

P

Lattice Size / Simulation size

PR &
& '1,'61‘ N‘:’l N@P u‘t' ¥ 'L’Qw
g s s
o @ o F &
MPI Distribution

I

&
£

&

Fig. A44.c). Lumi-C, (case-3: SU(3) fun).

[Sombrero_weak], Case 5, [Lumi], SU(3) 2-index sym

0

10

Gflops per Seconds

10

mothos

b

walbe

Pt
R e it

o

TR
& 8
&

MPI Distribution

S
&
&

Lattice Size / Simulation size

Fig. A.46. ¢). Lumi-C, (case-5: SU(3) adj).

Gflops per Seconds

[Sombrero_weak], Case 2, [Lumi], SU(2) fun
500 wadus | Lattice Size /Simulation size
latice_sz
— axaxxa
— xtuins
w0 — e
k] 022800
H
Y
@
E. 3.0fbos i
26 ¥
2 200
s
F.'J $ho
s e ity
100 e
3

MPI Distribution

Fig. A43.b). Lumi-C, (case-2: SU(2) fun).

MPI Distribution

[Sombrero_weak], Case 4, [Lumi], Sp(4) fun
00 -
miofbes | Lattice Size / Simulation size
bttice 52
29 — axaxaxd
Roa¥bos — Bxaxax4
0 — sxenina
o
g o
g ¥ — 16x8x8x8
3 16x16x8x8
- —— 16x16x16x8
200
5 e it Lex16416x16
& 165 4507 — 32x16X16x16
8 150
s
&
100 e
1
0 s
it
04 1o 2P aalbon oo
& & S & s
SH
S &
o o & F &

Fig. A.45. d). Lumi-C, (case-4: Sp(4) fun).

[Sombrero_weak], Case 6, [Lumi], Sp(4) adj (Sp(4) 2-index sym)
w2100
s00
w0
00
s ansa¥hos
200

MPI Distribution

Lattice Size / Simulation size

Fig. A.47. d). Lumi-C, (case-6: Sp(4) adj).

Fig. A.48. Plots for the six different representation within SOMBRERO on each node. nodes versus GFlops per seconds (s) onfipodes = {1,2,4}
on Lumi-C for the Weak cases.

Frédéric D.R. Bonnet et al. / Procedia Computer Science 267 (2025) 14-39

[Sombrero_weak], Case 1, [Lumi], SU(2) adj

7
0
250

2

z os.0100.0%"

2 200

§

] seonan — —

5

810 I ot

o s dt——

)

g

B 100
o odor.oi— " o—"1
. i "
ot

Lattice Size / Simulation size
lattice_sz
— xaxixa
sxaxixt
8xdxixt
8xaxext
Bxexexs
16x8x8x8
16x16x8x8
16x16x16x8
16x16x16x16
— 32016x16x16
— Axa8x8xa8
BxaBxi8x1e
16x18x48x18
32n48x18x48
6xa8xi8xi8
— 128xa8x18x18
256x48x18x48
— S12x48x18x18
Simul_size
= Small
= Large

Lattice Size / Simulation size
lttice sz
— xaxixa
sxaxixt
8xdxixt
8xaxext
— Bxexeie
— 16x8x8x8
16x16x8x8
16x16x16x8
16x16x16x16
32016x16x16
Axa8x18x18
BxaBxi8x1e
16x18x48x18
32n48x18x48

& & s
nodes
Fig. A.49. a). Lumi-C, (case-1: SU(2) adj).
[Sombrero_weak], Case 3, [Lumi], SU(3) fun
o savordlt
o woiei
g2
2
£
a' 128 — — ——aeorozol
L wwovordy I ororanof’
s
© 100y i ononorch’

6xa8xi8xi8
128x18x48x18
256x48x18x48
512048x18x48
Simul_size
= Small

= Large

Fig. A.51. ¢). Lumi-C, (case-3: SU(3) fun).

[Sombrero_weak], Case 5, [Lumi], SU(3) 2-index sym

r_seconds

' 200

Gflops_pe:

suad

S———

swonor worozo?

Lattice Size / Simulation size
lattice_sz
Axaxixa
sxaxixt
8xdxixt

— axaxext
Bxexexs
16x8x8x8
16x16x8x8
16x16x16x8
16x16x16x16
32016x16x16
Axa8x18x18
BxaBxi8x1e
16x18x48x18
32n48x18x48
6xa8xi8xi8
128x18x48x18

— S12x48x18x18
Simul_size

= Small

= Large

Fig. A.53.¢). Lumi-C, (case-5: SU(3) adj).

[Sombrero_weak], Case 2, [Lumi], SU(2) fun

500 000208
3 on-0a.00.08" _—
]
€ 0 -
8
5 — ——— -
il —
2 200 Lo
8
& @

on.04{0.05- Sa

—— ——
0040407

00

Fig. A.50. b). Lumi-C, (case-2: SU(2) fun).

[Sombrero_weak], Case 4, [Lumi], Sp(4) fun

300

r_seconds

Gflops_pe:

snosondd | Laticesi
010108
ooz odt T wa
oo
ot0a.00.08"

Fig. A.52. d). Lumi-C, (case-4: Sp(4) fun).

[Sombrero_weak], Case 6, [Lumi], Sp(4) adj (Sp(4) 2-index sym)

500
4 0
3
g
H
H
RES
¥
o
fa
2 200
5
w0
3

os.0s.00.08"

o1-0a-00.04™

=

s ——

82 63/87 7 F— orogy

nﬂhﬁ=ﬁ;mﬂ,
& & &

nodes.

Fig. A.54. d). Lumi-C, (case-6: Sp(4) adj).

31

Lattice Size / Simulation size

16x16x16x16
32016x16x16
Axa8x18x18

ize / simulation size
lttice sz
Axaxixa

16x8x8x8
16x16x8x8
16x16x16x8
16x16x16x16
32016x16x16
Axa8x18x18
BxaBxi8x1e
16x18x48x18
32n48x18x48
6xa8xi8xi8
128x18x48x18
256x48x18x48
512048x18x48

Simul_size

Small

Large

Lattice Size / Simulation size

Fig. A.55. Plots for the six different representation within SOMBRERO on each node. nodes versus GFlops per seconds (s) onfipodes = {1,2,4}
on Lumi-C for the Weak cases.

32

Frédéric D.R. Bonnet et al. / Procedia Computer Science 267 (2025) 14-39

[Sombrero_weak], Case 1, [Leonardo], SU(2) adj

200
meoBius | Lattice Size /Simulation size
e

s

150
i
g
8
P 10
5
H adtn
2 s
g i
&

50 o PRV

el 2
3 o it
EE e w
2280 1o o s
0] 1o 2Pl aabos oo cuFon 0I03P e, Tioa

& & F &
L
L S S8
&S &S S

MPI Distribution

Fig. A.56. a). Leonardo-DCGP, (case-1: SU(2) adj).

[Sombrero_weak], Case 3, [Leonardo], SU(3) fun

a2 ¥os Lattice Size / Simulation size
266 ic
2150
H
g
8
&
g 10 i
2 i
5
2
o ao¥ou
5 sustnis o adla
2uafbor
By L
iy Yo .
0] wionaBion T s a0 1t 7t ey 2T 72 safbes
o > >
S &
o o
& ¢ & S &
MPI Distribution
Fig. A.58. ¢). Leonardo-DCGP, (case-3: SU(3) fun).
_weak], Case 5, [L do], SU(3) 2-index sym
e o fos. Lattice Size / Simulation size
ice
10
, s
4
H
H
g 100
&
5
& 75
2
2
B ..nu“:&’ .
5 7o¥0s x
. FY. VI R,
wi¥or gro¥os wfior
waltbor - 3 77%hed o el
0 sobor 2o T it 5P P ol
o o >
S s R
o o o
& S

MPI Distribution

Fig. A.60. ¢). Leonardo-DCGP, (case-5: SU(3) adj).

Gflops per Seconds

Gflops per Seconds

Gflops per seconds

300

250

200

0 14 2801

s

150

00

[Sombrero_weak], Case 2, [Leonardo], SU(2) fun

W
0] 2o B

7 58botn 1

W x?u .
aafborodBbo oot V2 1 50,

st | Lattice size / simulation size

— xaxixa

Lo it
st P
b

b ¥ios g 03FonaToor Thor 0o _—

Fig. A.57.b). Leonardo-DCGP, (case-2: SU(2) fun).

[Sombrero_weak], Case 4, [Leonardo], Sp(4) fun

"

. .
[[.
oaFbon st e 900 3y ot

asioe | Lattice size / simulation size

b o

i

MPI Distribution

Fig. A.59. d). Leonardo-DCGP, (case-4: Sp(4) fun).

[Sombrero_weak], Case 6, [Leonardo], Sp(4) adj (Sp(4) 2-index sym)

%%

oBony B

ufa
it " b b 4 B

Lattice size / simulation size

Axaxixa
Bxaxixt
12x8x0x4
12x8x8x0
12x8x8x8

ARRRARN

oo

Aot 4 o950

v
& &
MPI Distribution

Fig. A.61. d). Leonardo-DCGP, (case-6: Sp(4) adj).

Fig. A.62. Plots for the six different representation within SOMBRERO on each node. mpi_distribution versus GFlops per seconds (s) on
Npodes = {1, 2,4} on Leonardo-DCGP for the Weak cases.

Gflops_per_seconds

Frédéric D.R. Bonnet et al. / Procedia Computer Science 267 (2025) 14-39

_weak], Case 1, [L

do], SU(2) adj

2080263

Lattice size / simulation size
lattice sz

Axaxixa

Bxaxixi
12x8x4x4
12x8x8x1
12x8x8x8
24x8x8x8
24x16x8x8

Bxdx8x1
24x16x16x16
6xa8xi8xae

12x18x48x18
24x48x18x48
18ra8x18x18
96x48x18x18
Ax48x18x18

— 192x48x48x18
8xa8x18x18

—— 38x48x18x48

nodes

Fig. A.63. a). Leonardo-DCGP, (case

£ _weak], Case 3, [L

do], SU(3) fun

simul_size
small
Large

-1: SU(2) adj).

200

Gflops_per_seconds

Py

Lattice size / simulation size
lattice sz

Axaxixa

Bxaxixi
12x8x4x4
12x8x8x1
12x8x8x8
24x8x8x8
24x16x8x8

24x16x16x8
Bxdx8x1
24x16x16x16
6xa8xi8xae
12x18x48x18
24x48x18x48
18ra8x18x18
96x48x18x18
Ax48x18x18
— 192x48x48x18

nodes

[Sombrero_weak], Case 5, [Leonardo], SU(3) 2-index sym

Fig. A.65. ¢). Leonardo-DCGP, (case-3: SU(3) fun).

Gflops_per_seconds

ey

Lattice size / simulation size
lattice sz
— xaxaxa
— Bxaxixa
— 12x8xax1
— 12x8x8x0
— 12x8x8x8
— 2x8x8x8
24x16x8x8

Fig. A.67. ¢). Leonardo-DCGP, (case-5: SU(3) adj).

200

Gflops_per_seconds

150

Gflops_per_seconds

Gflops_per_seconds

100

[Sombrero_weak], Case 2, [Leonardo], SU(2) fun

33

P
200

12.0802.08"

Lattice size / simulation size
lattice sz

Axaxixa

Bxaxixi
12x8x4x4
12x8x8x1
12x8x8x8
24x8x8x8
24x16x8x8

Bxdx8x1
24x16x16x16
6xa8xi8xae
12x18x48x18
24x48x18x48
18ra8x18x18
96x48x18x18
Ax48x18x18
192x48x48x18
8xa8x18x18

384x48x18x48
simul_size
small

e Large

Fig. A.64.b). Leonardo-DCGP, (case-2: SU(2) fun).

[Sombrero_weak], Case 4, [Leonardo], Sp(4) fun

Py

10n020%

nodes

Lattice size / simulation size
lattice sz

Axaxixa

Bxaxixi
12x8x4x4
12x8x8x1
12x8x8x8
24x8x8x8
24x16x8x8

24x16x16x8
Bxdx8x1
24x16x16x16
6xa8xi8xae
12x18x48x18
24x48x18x48
18ra8x18x18
96x48x18x18
Ax48x18x18
192x48x48x18
8xa8x18x18
384x48x18x48

simul_size

small

Large

Fig. A.66. d). Leonardo-DCGP, (case-4: Sp(4) fun).

[Sombrero_weak], Case 6, [Leonardo], Sp(4) adj (Sp(4) 2-index sym)

nos0rddt

"M“M"\rﬁ
wororad"

asiorsdt i /:zwnl
,,. M -

& &
nodes

Lattice size / simulation size

lattice sz
— xaxaxa
— sxaxixa

— 12x8x4x1
— 12x8x8x0
— 12x8x8x8
— 2x8x8x8
20x16x8x8

Fig. A.68. d). Leonardo-DCGP, (case-6: Sp(4) adj).

Fig. A.69. Plots for the six different representation within SOMBRERO on each node. nodes versus GFlops per seconds (s) onipedes = {1,2,4}
on Leonardo-DCGP for the Weak cases.

34

[Sombrero_strong], Case 1, [Vega], SU(2) adj

Frédéric D.R. Bonnet et al. / Procedia Computer Science 267 (2025) 14-39

[Sombrero_strong], Case 2, [Vega], SU(2) fun

a3 Fhos Lattice Size / Simulation size 350 sa0.6§%0s Lattice Size / Simulation size
— Smanana — Smanana
200 —— 96X6AX64X64 300 —— 96X6AX64X64
s sas s sas
o Sl o Sl
P e Large g 20 - Large
£ £
N H
i £ 20
3 3
£ d H
o 100 s¥ins 150
g g
2 2
<) -, © 100
”
»
o o
o 4 4 4 o g < > > o 4 £ 4 o g g >
‘p* \,a"' q::7" ,L,e’” 5 & Né‘ ‘o* \,a"' q::7" ,L,e’” 5 - "’o"' K
s A A A o & W B W e
& & & & & & & & & & &
MPI Distribution MPI Distribution
Fig. A.70. a). Vega-CPU, (case-1: SU(2) adj). Fig. A.71.b). Vega-CPU, (case-2: SU(2) fun).
[Sombrero_strong], Case 3, [Vega], SU(3) fun [Sombrero_strong], Case 4, [Vega], Sp(4) fun
-
i | Lattice iz simuatonsize | attice iz simuatonsize
) e e
%0 — 32x24x24x24 300 — 32x24x24x24
= Seremenen = Seremenen
s sas s sas
o Sl 250 —
k4 —— Large 2 == Large
H xu H
g § 200 n
& o . 3
5 5
£ E o
£ 0 3
- e € 10 Y
/M wabbor >
® . .
so ¥ ¥
— =3¥hos gy 24
of of u
s 5 e o -
d 4 i S < S 4 s S &
o & & & & & & e &
& & & & & & & &
MPI Distribution MPI Distribution
Fig. A.72. c). Vega-CPU, (case-3: SU(3) fun). Fig. A.73. d). Vega-CPU, (case-4: Sp(4) fun).
[Sombrero_strong], Case 5, [Vegal, SU(3) 2-index sym [Sombrero_strong], Case 6, [Vega], Sp(4) adj (Sp(4) 2-index sym)
w2gfbor Lattice Size / Simulation size was.alfbos Lattice Size / Simulation size
™
0 — Smanana — b
= Seremenen = Seremenen
s sas S sas
» o, e S
= = Large Rl —u= Large
£ n £
§ = g 250
3 3
S waafior 5 20
N :
§ £
™ 5
w0
®
®
o B .
& 5 & § & & -
’\’a"' ,La"' ,Lu"' Ne" ,Le" & &
g o o o o
& & & & & & & & &
MPI Distribution

MPI Distribution

Fig. A.74. ¢). Vega—-CPU, (case-5: SU(3) adj). Fig. A.75. d). Vega-CPU, (case-6: Sp(4) adj).

Fig. A.76. Plots for the six different representation within SOMBRERO on each node. mpi_distribution versus GFlops per seconds (s) on
Inodes = {1,2,4} on Vega-CPU for the Strong cases.

Frédéric D.R. Bonnet et al. / Procedia Computer Science 267 (2025) 14-39

[Sombrero_strong], Case 1, [Vega], SU(2) adj

0n-08000F" Lattice Size / Simulation size
— Sanavas
- = oenener
St sae
i
. e
3
é 150
] mavordt®
5
o100 P J
&
; g———
& o —
8 seonondd [S—
oo AT oo
gt P
””‘? iid it
i : !
& & &
nodes
Fig. A.77. a). Vega—-CPU, (case-1: SU(2) adj).
[Sombrero_strong], Case 3, [Vega], SU(3) fun
0n-08000F" Lattice Size / Simulation size
pros
250 — Sanavas
T ceremenen
St sae
i
0 408 =~ Large
2 o]
M 6
£ 10 —
5
&
Eio
B ovadord
wodost
o
bobei
Bt

Fig. A.79. ¢). Vega-CPU, (case-3: SU(3) fun).

[Sombrero_strong], Case 5, [Vega], SU(3) 2-index sym

os-08-04-03° Lattice Size / Simulation size
"” — sanena
= soxement
= Smulsize
o= smal
20 5
3 oo == large
2 _—
g 200 o mosordd
] =
b} _—
5 236"
H 08-04-04-03
2 150
g
=
B 100
o J oy)
i mznii 4y
> - .
& & &
nodes

Fig. A.81.c). Vega—CPU, (case-5: SU(3) adj).

[Sombrero_strong], Case 2, [Vega], SU(2) fun

35

350 osomonodi® | Lattice Size / Simulation size
— Socnanar
0 = coenenet
S s
o Sl
, 250 ot
]
:
g
g0 -
§
)
g e ——
g i
2 svofosdd® — e
© Yoo —— LoLoH on.0s0s.
o
- c-oonid) e
sidgordfl oot B
. o .
& & &

Fig. A.78.b). Vega-CPU, (case-2: SU(2) fun).

[Sombrero_strong], Case 4, [Vega], Sp(4) fun

0s-08-04-08° Lattice Size / Simulation size
atice 52
00 — sanena
- ————
Simulsize
20 e
- Large
2
€ 200 o J worosdd
£ el
2 150 —
g PR
K] 3 'n'a"
G osososcd® p—
G 204040 e 04.08.03.0%
ik Raat +
3 s
oggelonadt - B
otodasads e s
wador ot01020 g
Hifﬁéﬂ e B33

& & &
nodes.

Fig. A.80. d). Vega-CPU, (case-4: Sp(4) fun).

[Sombrero_strong], Case 6, [Vegal, Sp(4) adj (Sp(4) 2-index sym)

os-08.08.0%° Lattice size / Simulation size
0 m
— saiesan
— obusinence
” Simul_size
o smal
g —x= large
b
H
8 250
¥
& 200
g
5 2 —
L aworan ot
oggelon
ovovandd
osodon ! ah ovason?
. 04-04-02-08"
R m;:z;.; M,ﬁ;‘ﬁ
> 5 -
& & &
nodes

Fig. A.83. Plots for the six different representation within SOMBRERO on each node. nodes versus GFlops per seconds (s) onfipoges = {1,2,4}

on Vega-CPU for the Strong cases.

Fig. A.82. d). Vega-CPU, (case-6: Sp(4) adj).

36 Frédéric D.R. Bonnet et al. / Procedia Computer Science 267 (2025) 14-39

[Sombrero_strong], Case 2, [Lumi], SU(2) fun

[Sombrero_strong], Case 1, [Lumi], SU(2) adj

Lattice Size / Simulation size Lattice Size / Simulation size

0 - -
— e — e

— 96X6NEIXET — 96X6NEIXET
g5 simul_size simul_size

== small == small

= Large = Large

Gflops per Seconds

Gflops per Seconds

®
o
4 e e < g < 3 >
‘p* \p’" 1,0‘ q’::7'l 'v& w&"’ ,a""@
& &° & & & &
MPI Distribution
Fig. A.84. a). Lumi-C, (case-1: SU(2) adj). Fig. A.85.b). Lumi-C, (case-2: SU(2) fun).
[Sombrero_strong], Case 3, [Lumi], SU(3) fun [Sombrero_strong], Case 4, [Lumi], Sp(4) fun
Latte iz simulatonsize) | tatic ize imulation size
0 2 52 100 lattice_sz
— Smanana e | — Smanama
- = Seremenen - = Seremenen
s sas s sas
i - i
£ 0 e 2 -~ e
s 8 250
& 0 3
5 5 200
£ £
g 3 150
£ g
2 2
™ (3 it
f
b4 50
o of
N e e g < g N e e g < g >
\p’" 1,0‘ q’::7'l 'v& w&"’ psé” \p’" e WS’" 'v& w&"’ psé” &
5 o s o o s o s o o
& & & & & & & & & & & & & &
MPI Distribution MPI Distribution
Fig. A.86. c). Lumi-C, (case-3: SU(3) fun). Fig. A.87. d). Lumi-C, (case-4: Sp(4) fun).
[Sombrero_strong], Case 5, [Lumi], SU(3) 2-index sym [Sombrero_strong], Case 6, [Lumi], Sp(4) adj (Sp(4) 2-index sym)
e | Ltice size simuatonsize i | Lattice iz simuatonsize
— Smanana - — b
= Seremenen = Seremenen
30 ‘Simul_size ‘Simul_size
. i o w0 e S
850 arien 2 i
g :
i i
@ 200 o0 @ 300 -
5 5
£ £
i L
g &0
2 2
© w0 - © 1o 80
i
w
®
of of
N e e g < g o N e e & < g > o
\p’" 1,0‘ q’::7'l 'v& w&"’ ,a""@ & \p’" 1,0‘ q’::7'l ’L’Q’L w&"’ '“Ne'” I
5 o s o $ s # e # 8
& & & & & & & & & & & & & &
MPI Distribution MPI Distribution

Fig. A.88. ¢). Lumi-C, (case-5: SU(3) adj). Fig. A.89. d). Lumi-C, (case-6: Sp(4) adj).

Fig. A.90. Plots for the six different representation within SOMBRERO on each node. mpi_distribution versus GFlops per seconds (s) on
Mnodes = {1,2,4} on Lumi-C for the Strong cases.

Frédéric D.R. Bonnet et al. / Procedia Computer Science 267 (2025) 14-39 37

[Sombrero_strong], Case 1, [Lumi], SU(2) adj [Sombrero_strong], Case 2, [Lumi], SU(2) fun

cporovdll | Lawe size/ Smulaton size onososdd® | Lattice Size /Simulation size
w0 — Smanana 00 wodt | — anamen
= Seremenen = Seremenen
s sas s sas
50 i i
== Large gk e Large
8 3
i i
S e g
g i E i I
] on004. osososad N os0n08.0
£ o H onan® ovoron
g - & 200
5 it " 5 8
iy = smnd
010303 3 P
B:83:8%:
& & s
nodes
Fig. A91. a). Lumi-C, (case-1: SU(2) adj). Fig. A.92.b). Lumi-C, (case-2: SU(2) fun).
[Sombrero_strong], Case 3, [Lumi], SU(3) fun [Sombrero_strong], Case 4, [Lumi], Sp(4) fun
cporordft | Lawe size/ Smuaton size ononosdd® | Lattice Size /Simulation size
350 08-04.04. lattice_sz 400 lattice_sz
— Smanana vt || — e
= Seremenen = Seremenen
0 S e Simi e
i i
il e
g 250 g
i i
5 § w0
% 20 N s]
5 oo e 5 200 —
o 10 3 e oot
& B0
& et 1 & I
Waaoea® — = wadsead n.m...,y‘///,_,_,-{—“%ﬂ
9
o arorerel arodone e ’ orouorf!
ara3es -“"ii ppiies P — -l—mi* “““'i
ié it 4 iad i rE

& & & & & &
nodes nodes
Fig. A.93. c). Lumi-C, (case-3: SU(3) fun). Fig. A.94. d). Lumi-C, (case-4: Sp(4) fun).
[Sombrero_strong], Case 5, [Lumi], SU(3) 2-index sym [Sombrero_strong], Case 6, [Lumi], Sp(4) adj (Sp(4) 2-index sym)
osos0n.0y | Lattice Size / Simulation size onososdd® | Lattice Size /Simulation size
— sanena — sanena
—— 96X6AX64X64 o] — 96X64X64X64
. Simulsize simulsize
o= smal o= smal
=2 G & e arge
4 250 -l
]]
g g
R P orasorels 700 worendl axovos ot
g g asied
2 150 e
5 e &
& &
ot wosncft wodont 2 wormdt
sl o sond o_wyr.__————————___: P 4
Wiﬁiiﬁ i xexs Hiﬁii A % et
& & & & & &
nodes nodes

Fig. A.95. ¢). Lumi-C, (case-5: SU(3) adj). Fig. A.96. d). Lumi-C, (case-6: Sp(4) adj).

Fig. A.97. Plots for the six different representation within SOMBRERO on each node. nodes versus GFlops per seconds (s) onfipeges = {1,2,4}
on Lumi-C for the Strong cases.

38 Frédéric D.R. Bonnet et al. / Procedia Computer Science 267 (2025) 14-39

[Sombrero_strong], Case 1, [Leonardo], SU(2) adj

s i
20
g us
]
g
8
& w0 ™
4 sy
g
g
3 e
© 5
s by
T ome sl
0] t
R N S & &
& & & ¢ & &
o S & L ; &
¢ & ¢ ¢ ¢ & & & § & &

& &
MPI Distribution

Lattice size / simulation size

— 2aaene
— 96KEAXGINE
simul_size
== small
e Large

Fig. A.98. a). Leonardo-DCGP, (case-1: SU(2) adj).

[Sombrero_strong], Case 3, [Leonardo], SU(3) fun

200

Gflops per Seconds.

MPI Distribution

Lattice size / simulation size

— 2aaene
— 96KEAXGINE
simul_size
== small
e Large

Fig. A.100. ¢). Leonardo-DCGP, (case-3: SU(3) fun).

[Sombrero_strong], Case 5, [Leonardo], SU(3) 2-index sym

Gflops per Seconds.
s

MPI Distribution

Lattice size / simulation size
— 2aaene
— 96KEAXGINE

Fig. A.102. ¢). Leonardo-DCGP, (case-5: SU(3) adj).

300

250

Gflops per Seconds.

200

100

Gflops per Seconds.

200

Gflops per Seconds.

[Sombrero_strong], Case 2, [Leonardo], SU(2) fun

i | Lattice Size Simulation size
— 2aaene
— seeaxee
Simu_size
o= smal
= targe
240.5¥h04 14035
3
72o¥bos
LL n watbos
At i
I‘Mafki. y
s » e 8 N AN DL N N
& & & A S A
AT A A M U A S A U A A A
DA & A R

Fig. A.99. b). Leonardo-DCGP, (case-2: SU(2) fun).

[Sombrero_strong], Case 4, [Leonardo], Sp(4) fun

[-

anos | Lattice size / simulation size
— 2aaene
— 96KEAXGINE
simul_size
== small
e Large

MPI Distribution

Fig. A.101. d). Leonardo-DCGP, (case-4:

Sp(4) fun).

[Sombrero_strong], Case 6, [Leonardo], Sp(4) adj (Sp(4) 2-index sym)

aoaffine | Lattice size / simulation size

— aaene
— 96xEaXGN6

sl
0% wiiln
= = i Wy o
L
T r r
4 i s S 4 s Ca s Ca s
0 g e g ol d Cal 4 e Ca
g s g g s s g i o s
& & & & & & & & & &

MPI Distribution

Fig. A.103. d). Leonardo-DCGP, (case-6:

Sp(4) adj).

Fig. A.104. Plots for the six different representation within SOMBRERO on each node. mpi_distribution versus GFlops per seconds (s) on
Mnodes = {1,2,4} on Leonardo-DCGP for the Strong cases.

Frédéric D.R. Bonnet et al. / Procedia Computer Science 267 (2025) 14-39 39

[Sombrero_strong], Case 1, [Leonardo], SU(2) adj

s osononcl® | Lattice size simulation size
— 2aaene
o — 9sxeax6axGe
Simul_size
—o= small
e Lo
@125 ve
3
2
g
H
8 100 - e g
5 o6-04-00.0"
RS
2
K
5 H ot
W“i{////‘m
2
[T w0302 pagd
ool R 3
5
& & &
nodes

Fig. A.105. a). Leonardo-DCGP, (case-1: SU(2) adj).

_strong], Case 3, [L do], SU(3) fun
os0s0acd6 | Latice size / simulation size
attice_s2
200 — 32x24%24%24
— 9sxeax6axGe
Simul_size
—a= small
it e Large
3
2
g
&
e 3¢
g 100 ososona?® SEEE
ﬁ a
2
K
&
on030208
oaooroB’ wor020d oworoacd’
oo :
048303 ¢ E:
izttt 4 iz
& & &

nodes.

Fig. A.107. ¢). Leonardo-DCGP, (case-3: SU(3) fun).

[Sombrero_strong], Case 5, [Leonardo], SU(3) 2-index sym

ssoroncl® | Lattice Size Simulation size
b — 2aaene
— soxeaxoaxss
i Simulsize
—om small
= rge
s
g
H
100 +
8 C
P o6-0a-0.0%°
2
g
s l’/// §
50 o
o020 ocos0r.03" a-u.nt.e&
e 0101020
woraud
i ﬁ e ososonod”
P worazofl e "'g
Fi PR S B
5
& & &
nodes

Fig. A.109. ¢). Leonardo-DCGP, (case-5: SU(3) adj).

[Sombrero_strong], Case 2, [Leonardo], SU(2) fun

00 F
ssoiioial® | Lattice size simulation size
— 320400
- — 96X6AX6AN64
simul_size
=e= small
= Large
200
150 osusono?® osusozoR

Gflops_per_seconds

w0 /
.
woqoaed /m Y

fee g n% e

m«% Wit wnl
& & &
nodes

Fig. A.106. b). Leonardo-DCGP, (case-2: SU(2) fun).

[Sombrero_strong], Case 4, [Leonardo], Sp(4) fun

osonondd® | Lattice size simulation size
lattice sz
— 320400
200 — 96X6AX6AN64
simul_size
—e= small
e Large

wosedd® oron
100 23

Gflops_per_seconds

og a2 n?"/’ I T B

weod! swouos gl
LR
it wazopel
& & &
nodes

Fig. A.108. d). Leonardo-DCGP, (case-4: Sp(4) fun).

[Sombrero_strong], Case 6, [Leonardo], Sp(4) adj (Sp(4) 2-index sym)

ssoroncl® | Lattice Size Simulation size
200 y
— i
— 9sxeax6aXG
Simul_size
—a= small
o 150 e Large
3
2
H
]
° IR
] i
& 100 —
8
K
s 3
04-01.00.0%°
3
orosforoB” worouod® ox03.02.08
- brbaiair-* =
oot st i
aglordd aor0d? 581
5
& & &
nodes.

Fig. A.110. d). Leonardo-DCGP, (case-6: Sp(4) adj).

Fig. A.111. Plots for the six different representation within SOMBRERO on each node. nodes versus GFlops per seconds (s) onnipeges = {1,2,4}

on Vega-CPU for the Strong cases.

Available online at www.sciencedirect.com

ScienceDirect Procedia

Computer Science

CrossMark

Procedia Computer Science 267 (2025) 40-51

www.elsevier.com/locate/procedia
Proceedings of the Third EuroHPC user day

accLB: A High-Performance Lattice Boltzmann Code for
Multiphase Turbulence on Multi-Gpu Architectures

Marco Lauricella?, Aritra Mukherjeeb, Luca Brandt®¢, Sauro Succi®®¢, Daulet
Izbassarovf, Andrea Montessori&

4Istituto per le Applicazioni del Calcolo, Consiglio Nazionale delle Ricerche, Via dei Taurini 19, Rome, 00185, Italy
b Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
¢Department of Environment, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, Torino, Italy
dCenter for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia, Viale Regina Elena 295, Rome, 00161, Italy
¢Department of Physics, Harvard University, 17 Oxford St., Cambridge, 02138, MA, USA
TFinnish Meteorological Institute, Erik Palmenin aukio 1, Helsinki, 00560, Finland
8 Department of Civil, Computer Science and Aeronautical Technologies Engineering, Roma Tre University, Via Vito Volterra, Rome, 00146, Italy

Abstract

In this work, we present accLB, a high-performance Fortran-based lattice Boltzmann (LB) solver tailored to multiphase turbulent
flows on multi-GPU architectures. The code couples a conservative phase-field formulation of the Allen—-Cahn equation with a
thread-safe, regularized LB method to capture complex interface dynamics. Designed from the ground up for HPC environments,
accLB employs MPI for distributed memory parallelism and OpenACC for GPU acceleration, achieving excellent portability and
scalability on leading pre-exascale systems such as Leonardo and LUMI. Benchmark tests demonstrate strong and weak scaling
efficiencies on multiple GPUs. Physical validation includes direct numerical simulations of homogeneous isotropic turbulence
(HIT). Further, we examine bubble-laden HIT and observe a transition to a —3 energy scaling, as in experiments and theoretical
predictions, due to bubble-induced dissipation, along with enhanced small-scale intermittency. These results highlight accLB as a
robust and scalable platform for the simulation of multiphase turbulence in extreme computational regimes.

© 2025 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY 4.0 license (https://creativecommons.org/licenses/by/4.0)
Peer-review under responsibility of the scientific committee of the Proceedings of the Third EuroHPC user day

Keywords: Turbulent flows; Lattice-Boltzmann method; Phase-field method; GPU computing; OpenACC directives

1. Introduction

Multiphase turbulent flows play a central role in a wide array of natural phenomena and industrial processes,
from cloud formation and ocean—atmosphere interactions to chemical reactors and spray combustion [20, 40, 14, 39].
Accurately modeling these flows is particularly challenging due to the complex interplay between turbulence and
dispersed phases, which span a vast range of spatial and temporal scales [4, 7]. Even single-phase turbulence exhibits

E-mail address: andrea.montessori @uniroma3.it

1877-0509 © 2025 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY 4.0 license (https://creativecommons.org/licenses/by/4.0)
Peer-review under responsibility of the scientific committee of the Proceedings of the Third EuroHPC user day
10.1016/j.procs.2025.08.231

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2025.08.231&domain=pdf

Marco Lauricella et al. / Procedia Computer Science 267 (2025) 40-51 41

multiscale dynamics, from the large energy-containing eddies down to the small-scale dissipative motions at the
Kolmogorov scale. In multiphase systems, the complexity deepens as interface phenomena push the smallest relevant
scales down to the molecular level.

Capturing these coupled multiscale features with high fidelity requires direct numerical simulations (DNS), which
are notoriously computationally demanding—especially when resolving deformable fluid interfaces. As such, the
development of scalable numerical solvers tailored for high-performance computing (HPC) platforms is essential to
advance our understanding of turbulent multiphase flows.

The advent of exascale computing has opened unprecedented opportunities for tackling such grand-challenge sim-
ulations. According to the 64th Top500 list, the leading exascale systems—El Capitan, Frontier, and Aurora—are
hosted in the United States, while Europe is home to four pre-exascale machines among the global top ten: HPC6
(Italy), Alps (Switzerland), LUMI (Finland), and Leonardo (Italy). These machines are built on heterogeneous archi-
tectures, combining powerful CPUs with GPU accelerators such as AMD GPUs (HPC6 and LUMI) or NVIDIA GPUs
(Alps and Leonardo), pushing the boundaries of performance and energy efficiency.

Modern HPC systems, particularly those leveraging GPU-based architectures, have significantly expanded the
scope of direct numerical simulations in computational fluid dynamics (CFD). Several open-source CFD solvers,
including AFiD [45], STREAmS [2], CaNS [6], TLBfind [33, 34], and LBcuda [3], have been optimized for NVIDIA
GPUs using CUDA Fortran. However, maintaining performance portability across different GPU vendors remains
a pressing challenge. To overcome this, recent efforts have embraced directive-based programming models, such as
OpenACC, which offer a path toward cross-platform compatibility. Codes like FIuUTAS [8], CaNS-Fizzy [25], and
the pseudo-spectral DNS solver ported by Roccon [38] exemplify this approach. Most recently, URANOS-2.0 [9]
showcased a portable OpenACC-based implementation for both AMD and NVIDIA platforms.

In this work, we present accLB, a high-performance, thread-safe lattice Boltzmann solver specifically developed to
simulate multiphase turbulent flows on modern GPU-accelerated supercomputers. The solver combines a conservative
phase-field formulation based on the Allen—Cahn equation with a regularized LBM scheme, enabling accurate tracking
of complex interface dynamics under large density and viscosity contrasts. Its architecture employs hybrid MPI-
OpenACC parallelism, ensuring both scalability and portability across heterogeneous computing environments.

We validate the solver’s performance and accuracy through extensive benchmarks on EuroHPC pre-exascale sys-
tems Leonardo and LUMI, demonstrating both strong and weak scaling up to 64 GPUs and achieving sustained
throughputs exceeding 150 GLUPS(Giga Lattice Updates Per Second). Direct numerical simulations of single- and
two-phase homogeneous isotropic turbulence confirm the robustness and fidelity of the accLB framework [24] in
capturing the rich dynamics of multiphase turbulence.

2. Methods
2.1. Navier-Stokes equations for multiphase flows with interfaces

The multiphase system analyzed in this study is described by the continuity and momentum equations, which are
numerically solved using the lattice Boltzmann method (LBM). These equations read:

9ip + Oa(pte) = 0, 1

B1(ptta) + Op(platt) = —0up + Ig (0V[3ptte + Dattg]) + F, ©)

where u, denotes the velocity field, p the fluid density, p the macroscopic pressure, v the kinematic viscosity, and F?
the surface tension force. Greek indices represent Cartesian tensor components.

The surface tension force F), is expressed as the divergence of the capillary stress tensor, F), = dg (y(é'aﬁ - nanﬁ)),
where n, is the local interface normal and y the surface tension coefficient.

42 Marco Lauricella et al. / Procedia Computer Science 267 (2025) 40-51

2.1.1. Allen-Cahn Equation for Interface Tracking

The interface between the two fluid phases is tracked using a conservative phase-field formulation based on the
Allen-Cahn equation. The scalar order parameter ¢, which varies smoothly between O and 1 across the interface,
evolves according to:

0:¢p + Ua0,0¢ = D00y p — k0o ((1 — P)ng), 3)

where D denotes the interface diffusivity and « = 4D/6, with ¢ representing the interface width. The interface is
implicitly located at the iso-surface ¢ = ¢y = 0.5. The equilibrium profile across an interface centered at xj is given
by [211, ¢(x,y,2) = o + ¢H;¢L tanh(‘X_XO|+|);'VU|+|Z_ZO‘).

This phase-field equation is tightly coupled to the hydrodynamic fields via the advection term.

To accurately resolve interface dynamics in the presence of strong advection, the convective term in Eq. (4) is
discretized using a fifth-order Weighted Essentially Non-Oscillatory (WENO-5) scheme [19]. This high-order scheme
minimizes numerical dissipation while capturing sharp gradients and reducing spurious oscillations, making it well-
suited for turbulent multiphase flows.

2.2. Thread-safe lattice Boltzmann model

The LBM provides an efficient solver for the Navier-Stokes equations, particularly for complex or multiphase
flows. In this work, we employ a thread-safe and regularized LBM framework, as described in [30, 24].

The second-order accurate discrete lattice Boltzmann equation over a set of g velocity directions is given by [42,
23]

filxa + ciaMt, t + AD) = fi(xo,) + (77 = fi) + (1 = %)Su “4)

where w is a relaxation rate, f; are the distribution functions, ffq their equilibrium counterparts, and S; denotes an
external forcing term incorporated through the Guo forcing scheme [16]:

2 4
Cy Cs

Cioy — U, CiplU,
Si=wi|—=—+ ﬂcia) F,,)

being F, the total body force acting on the fluid.
The relaxation time, 7 = 1/w, controls the kinematic viscosity through the relation v = cf(r -0.5)[42, 23, 29].
Defining /! = f;— f{? + 0.5 ; and substituting in Eq. 4, the post-collision update can be reformulated as [11, 12]:

1
fixa + CiaAt, 1+ A1) = £+ (1 —) [+ ES,». (6)

In the thread-safe implementation, both equilibrium and non-equilibrium components are reconstructed directly
from macroscopic fields, avoiding direct access to full distribution functions and preventing race conditions due to non-

2ct
* = p/(pc?) is the dimensionless pressure. The non-equilibrium contribution is reconstructed up to second order as
p=r 5 p q p

()]
Lap

. . _2
local memory operations [30, 31]. The equilibrium distribution reads, ffq = w; (p* + % + w), where

oo ena'®
fneq _ CiaCipd) 4p
i

= —a denotes the second order Hermite coefficient of non-equilibrium [26]. Macroscopic vari-

, where a

Marco Lauricella et al. / Procedia Computer Science 267 (2025) 40-51 43

ables are obtained from the distribution functions using p*(xy, 1) = 3; fi(xe, 1) and ug(xe, 1) = ¥ fi(Xas DeCia + 5 3 2 Sk

The second order Hermite coefficient, a(lzc)rﬁ, is assessed by the sum over the discrete non-equilibrium populatlons £

weighted on the second order Hermite polynomial 'Hi(,aﬁ = CioCig — cséaﬁ obtaining:
(lz;ﬁ(xm f) = Z I)(CiaCip — Co0ap). (7)

where, as shown in Ref. [26] apart from higher-order smallness in the Mach number (Ma), the second order coefficient

macroscopically reads: al wp = —cz‘r[(')a(uﬁ) + 6[;(140)] +OMa).

2.3. Extension for high-density and viscosity contrasts

To accurately simulate multiphase flows with strong density and viscosity contrasts, additional force contributions
are introduced into the momentum equation. The total force acting on the system is given by [10]:

Fo=F +F)+F), (8)

where F, is the surface tension force, computed via a phase-field-based formulation[21], F} = —yxV$|V4|.
The pressure-induced force reads, F, = —p*c2d,p, where p = ¢p; + (1 — @)p, is the local mixture density. Given
that the pressure is defined as p = p*pc?, its gradient contains implicit terms that require explicit correction via F7.

Lastly, the viscous correction force is given by F?, = _Z_Az [Z (fi - ffq)cmc,-ﬁ] Oup:

Spatial derivatives appearing in the force terms and phase field evolution equation are discretized using lattice-
based stencils, d,¥ = 2 2 Wi (xe + Cia)Cio and 8,05 = 2 (Dizo wi¥(xa + cio) — woP(x0))

This modeling framework enables robust and efficient srmulatlons of multiphase flows with large physical property

mismatches while maintaining numerical stability and thread safety through the use of regularization techniques.

3. Implementation

The accLLB code is developed in Fortran 95, utilizing modules to keep the code organized and reduce clutter.
Variables related to specific features (such as fluids and phase-field) or methods (like time integrators) are grouped
into separate modules for better structure. Portability and readability are key design goals of accLB, ensuring the code
can run across multiple architectures and is accessible for contributors despite the complexity of the underlying model.

From its inception, accLB has been designed with parallel computing platforms in mind. It uses the Message
Passing Interface (MPI), the standard for inter-node communication. However, a corresponding serial version of accLB
is available and can be selected during compilation.

The parallelization of the hydrodynamic solver in accLB is based on domain decomposition [15], where the simu-
lation domain is divided into one-, two-, or three-dimensional blocks distributed across MPI tasks. The block decom-
position is selected at run-time, without the need to recompile the code, allowing users to optimize performance based
on the global grid size and the number of available compute cores. For cubic domains, three-dimensional decompo-
sition typically yields the best performance by minimizing the surface area involved in inter-process communication.
The current implementation employs a halo region of two lattice spacings, which is necessary to calculate the deriva-
tive terms in the WENOS scheme. This halo width is flexible and could be easily extended in future developments to
accommodate more advanced algorithms.

The accLB code leverages OpenACC directives to enable execution on GPU devices, allowing for efficient of-
floading of compute-intensive tasks. This approach facilitates parallel acceleration with minimal code modifications,
ensuring portability across different hardware architectures. By utilizing OpenACC, the code can fully utilize avail-
able GPU resources to enhance performance significantly, particularly for large-scale simulations. OpenACC also

44 Marco Lauricella et al. / Procedia Computer Science 267 (2025) 40-51

ensures broad compatibility across various GPU platforms, including devices from NVIDIA, AMD, and other ven-
dors that support the standard. This flexibility allows the code to remain portable and adaptable to evolving hardware
environments without requiring extensive rewrites. Finally, OpenACC enables compilation and execution on purely
CPU-based architectures as well. The code exploits a hybrid shared-distributed memory parallelization strategy in
such cases, combining OpenACC and MPI to scale across multiple CPU cores and nodes efficiently. This unified par-
allel framework allows direct performance comparison across different high-performance computing platforms, such
as CPU-based versus GPU-based clusters, aiding in performance benchmarking and resource optimization.

The time-marching implementation of the lattice-Boltzmann equation Eq. (4) exploits the reformulation given in
Eq. (6) to facilitate completely independent computations at each computational node, effectively eliminating race
conditions. This design includes the thread-safe paradigm introduced by Montessori et al. [32, 31, 30]. This approach
enhances data locality and removes memory dependencies during the propagation step by reconstructing the post-
collision distribution functions through Hermite projection. Such a strategy is particularly advantageous for parallel
computing architectures as it ensures safe and efficient execution across multiple processing units without the need for
complex synchronization mechanisms. Moreover, this method significantly reduces the memory footprint, enabling
the simulation of large-scale fluid dynamics problems with improved performance and stability, achieving a balance
between computational efficiency and the accuracy required for simulating complex fluid behaviors. Thus, the pri-
mary variables in accLB include the 27 distribution functions alongside with the ten recovered macroscopic fields
(dimensionless pressure px*, velocity vector u,, and six Hermite coefficient terms “(12,()1/5 of the corresponding symmet-
ric tensor). The distribution functions can be stored using one of two competing memory layouts: array of structures
(AoS) or structure of arrays (SoA), regardless of the underlying memory order (row-major as in C or column-major
as in Fortran) [43]. The accLB code employs the SoA layout, which has demonstrated superior performance over the
AoS configuration. In particular, the SoA layout enables a unit-stride access pattern during the streaming step, ensur-
ing coalesced memory access on GPU architectures. This choice significantly improves memory efficiency, reducing
bandwidth-related bottlenecks and making it the optimal strategy for high-performance implementations.

4. Performances

To evaluate performance, we simulate two different benchmark cases: 1) a single-component fluid and 2) a two-
component system containing a single droplet of heavier density dispersed in a lighter continuous phase (density
contrast equal to 100), both with a kinematic viscosity equal to 0.005 in lattice units.

In the present work, we report both strong and weak scaling to assess the parallel performance of the code, where
strong scaling provides information on how the execution time decreases with an increasing number of GPUs for a
fixed problem size, reflecting the efficiency in accelerating a single workload. Instead, weak scaling analyzes how
well the code maintains a constant execution time when the problem size grows proportionally with the number of
GPUs, indicating scalability to larger workloads. The two scaling analyses provide a comprehensive view of parallel
efficiency and the ability of accLB to handle increasingly demanding simulations.

Hence, the simulation domain is fixed as a cubic box with 512 lattice points per side in the strong scaling bench-
marks. In the weak scaling simulations, we consider a cubic sub-domain of side 512 lattice points for each GPU device
(fixed sub-domain size), adopting a linear decomposition along the z-axis. Thus, we obtain an overall simulation box
with sides 512, 512, and 512xn,, with n,, denoting the number of GPU devices for the weak scaling simulations.

Efficiency is assessed using the Giga Lattice Updates Per Second (GLUPS) metric, defined as:

LL,L,

GLUPS = R
109,

9

where f; is the run (wall-clock) time (in seconds) per single time step iteration, while L., L, and L, are the domain
sizes.

Marco Lauricella et al. / Procedia Computer Science 267 (2025) 40-51 45

In the present work, we define the speedup, S ,, in terms of GLUPS ratio as follows:

_ GLUPS,

7~ GLUPS,’ (10)

where GLUPS; denotes the Giga Lattice Updates Per Second for the code running on a single GPU and GLUPS,,
represents the Giga Lattice Updates Per Second for the code running on n, GPU cards. It is worth highlighting that
the above definition of S, differs from the typical expression given in the literature [17]. Finally, the parallel efficiency,
E,, reads:

E,= L. (11)
14

The benchmark simulations were conducted on two different GPU-based architectures: the pre-exascale Leonardo
HPC system at CINECA in Italy, equipped with four NVIDIA Ampere™ A 100 Tensor Core GPU devices per comput-
ing node, each GPU card with 64 GB of HBM2e memory, and the LUMI pre-exascale supercomputer, hosted at CSC
in Finland, based on the HPE Cray EX architecture, each compute node equipped with four AMD Instinct™ MI250X
GPUs, where each GPU device contains two Graphics Compute Dies (GCDs), with each die providing 64 GB of
HBM?2e memory, for a total of 128 GB per GPU. The latter architecture yields eight GPU compute units per node,
enabling highly parallel and memory-intensive workloads.

In all the benchmarks executed on the pre-exascale Leonardo HPC, the source code was compiled using the Nvidia
Compiler, version 24.3, in conjunction with OpenMPI 4.1.6, an open-source implementation of the Message Passing
Interface (MPI) standard. Instead, for the benchmark runs on the LUMI pre-exascale HPC, we used the HPE Cray
Fortran Compiler, version 17.0.1, along with the Cray-provided MPI implementation based on MPICH, version 8.1.29.

Strong scaling results are presented in Figure 1 in terms of the speedup, S, and parallel efliciency, E,, for the
single- and double-component systems, evaluated with the MPI decomposition that yields the best performance in
terms of GLUPS over the two different GPU-based HPC infrastructures. Note that each AMD Instinct™ MI250X
card provides two GPU units, and the performance estimators are evaluated as a function of the number of GPU units.
The benchmark data indicate that the impact of parallel communication increases as the computational sub-domain of
each GPU device diminishes.

To better illustrate the effect of communication overhead, we also report weak scaling results, where the sub-domain
size per MPI process (i.e., per GPU device) remains constant. In Figure 1, we show weak scaling performance using a
fixed cubic sub-domain of side 512 lattice points per GPU. This scaling study employs a linear decomposition along
the z-axis and demonstrates excellent parallel efficiency, obtaining a peak performance value of 154.94 GLUPS for
single-component and 105.48 GLUPS for two-component systems on 64 GPU devices in weak-scaling on NVIDIA
Ampere™ A100 GPU-based cluster, versus 92.63 GLUPS and 65.67 GLUPS for the single- and double-component
systems, respectively, for the AMD Instinct™ MI250 GPU-based cluster.

5. Results
5.1. Single-Component Homogeneous Isotropic Turbulence: Energy and Pressure Spectra and Single Point Statistics

We evaluate the accuracy of the accLB code [31, 24] in performing fully developed turbulent flow simulations by
analyzing single-component homogeneous isotropic turbulence (HIT), focusing on energy and pressure spectra along
with selected single-point statistics. We simulate three separate cases of increasing Taylor-scale Reynolds numbers,
Re; = 150, 230 and 370, on a 5123 uniform Cartesian grid with unit spacing, Ax = 1.

The case at Re; = 150 can be effectively considered as a Direct Numerical Simulation (DNS), where the Kol-
mogorov length scale is approximately equal to the grid spacing, Ax, ensuring adequate resolution of the smallest

46 Marco Lauricella et al. / Procedia Computer Science 267 (2025) 40-51

Speed-up one-component

(@) T T T T T T
60 |- weak-NVIDIA —e— 9
weak-AMD
strong-NVIDIA — B
strong-AMD —# - -
50 - ideal scaling - - - - - b

of GPUs

Speed-up two-components

64

weak-NviDIA —— T T T
weak-AMD

strong-NVIDIA — B
strong-AMD —# -

50 [~ ideal scaling - - - - -

of GPUs

Fig. 1. Panels (a) and (b) show the speed up S, and parallel efficiency E, for the single component case measured in strong and weak scaling on
the NVIDIA Ampere™ A100 and AMD Instinct™ MI250 GPU-based HPC infrastructures. Panels (c) and (d) report the corresponding data for the

two-component benchmark case.

turbulent scales. Conversely, the simulations at Re, = 230 and 370 lie beyond the strict DNS regime, with a Kol-

64

Ep

Ep

Parallel efficiency one-component

b
0.8 —; \ -
\
*
i~
0.6 S \\ . —
~ N
-
0.4 |- R N
N T .
weak-NVIDIA —e— .
0.2 [~ weak-AMD E 3
strong-NVIDIA — B
strong-AMD —# - -
ideal trend - - - -+
0 | | | 1 | | |
8 16 24 32 40 48 56 64
of GPUs
Parallel efficiency two-components
(d) T T T T T T T
S _
-.\.\.__- -
»
0.8 ["\ _
\m
o~
0\ N
0.6 * .\ -
S o
~ .. L
~ S,
0.4 — LI ~.. —
~ ~
-~ _ "¢
weak-NVIDIA —o— T.
0.2 weak-AMD =
strong-NVIDIA — B
strong-AMD —# - -
ideal trend - - - -
0 | 1 | 1 | | |
8 16 24 32: 40 48 56 64

mogorov scale of approximately 0.4Ax and 0.15Ax, respectively.

The homogeneous isotropic turbulent state in all three cases is maintained through large-scale energy injection via
the ABC (Arnold-Beltrami—Childress) forcing method. This deterministic, divergence-free forcing scheme introduces
a time-independent velocity field that acts as a steady source of energy at the largest scales. Specifically, the forcing

takes the form:

of GPUs

sin(ksz) + cos(kry)

f(x) = A|sin(ksx) + cos(ksz) |,

where A is the forcing amplitude and k; the forcing wavenumber, set respectively to 2 - 1077 (in simulation units)
and 4n. The ABC forcing guarantees a sustained turbulent regime by balancing viscous dissipation with energy in-
put, without introducing significant anisotropy, thereby providing an efficient and widely adopted method to achieve

statistically stationary HIT in periodic domains [35].

sin(ksy) + cos(ksx)

Marco Lauricella et al. / Procedia Computer Science 267 (2025) 40-51

47

10®
===k Slope N =
= -- ‘/\ReA:ISO RN U w™
hl [N Re =150 -
- - ‘)\ReA:|50 [10° »72;
107°F —Re,=150 I Tk Stopa
Re, =230 L o\
A [Re =370
——Re,=370 L
— = Age - (N
10718 Re =370 " 1l " 1010 ' .
0 1 2 0 1 2
10 ' 10 10 10 K 10

Fig. 2. Panel (a) shows the energy spectra for Re;, 150, 230 and 370. The expected —5/3 power-law in the inertial range is well captured across a
broad range of wavenumbers. Panel (b) displays the corresponding pressure spectra, which follow the —7/3 scaling in the inertial range.

10° 1072 10
o Re=230 ——5,(1, Re,=150 .-
--- 2 -~
=1 C -
+ Re=150 § 10 o 107 .
w 102f o Re=370 & T
a —_— Sz(r). ReA:230
o 4
= 10 S,(). . Re,=370 > 109} _
5 10% o 5
£ @ 2
£ - -9
S 10 10 ——S3(1), Re =150
== ox4/5r
100 . ——$3(r), Re, =230
10" 10710 ——3(r), Re, =370
by &% (a) (©)
108 107 101
-20 10 0 10 20 10° 10! 102 10° 10! 10
(0 /0 x)lo r r

Fig. 3. Panel (a): Normalized probability density function (PDF) of the longitudinal velocity gradients. Panel (b): Second-order structure function,
compared with the theoretical r? scaling in the dissipation range and 2/ Kolmogorov scaling in the inertial range. Panel (c): Third-order structure
function, compared with the theoretical 12 scaling in the dissipation range and r2/3 Kolmogorov scaling in the inertial range.

Figure 2(a) presents the energy spectra for the cases under scrutiny, compared to the classical —5/3 slope predicted
for the inertial subrange [36, 13]. The observed agreement serves as initial validation of the thread-safe LB solver’s
capability to reproduce energy transfer mechanisms in single-component turbulent flows.

In figure 2(b), the pressure spectra are plotted and compared to the theoretical —7/3 scaling law [44]. In both panels,
the simulation at higher Reynolds number exhibits a broader spectrum, indicative of an extended inertial range and
enhanced scale separation. As expected, deviations from the —5/3 and —7/3 power laws emerge at large scales, near
the Taylor length scale, which is marked by vertical dashed lines in the plots.

Figure 3 shows single-point statistical features of the homogeneous isotropic turbulent field under examination.
Panel (a) displays the probability density function (PDF) of the longitudinal velocity gradient at increasing Taylor
Reynolds numbers.

As shown in panel (a), the PDFs deviate significantly from a Gaussian distribution and show negative skewness, S =
—0.42 (S = ((Qu/0x)3)/{(Ou/dx)*»*'?), and a flatness coefficient F ~ 5.25 (F = {(0u/0x)*)/{(Ou/0x)*)?), both in line
with prior studies [18]. In the physics of HIT, negative skewness points to the presence of long-tails in the statistical
distribution of the velocity increments, highlighting the presence of anisotropic effects at small scales, typically caused
by persistent vortex stretching, while the elevated flatness signals the presence of intermittent rare-events, i.e., intense
fluctuations in the velocity gradients [27]. As also pointed out in [41], while velocity fluctuations in three-dimensional
homogeneous and isotropic turbulence have a symmetric distribution, it is known since Kolmogorov’s seminal paper
[22] that the longitudinal velocity differences are asymmetric.

Panel (b) reports the second-order structure function, S»(r) = ([u(x; + r;) — u(x;)]1*), benchmarked against two
theoretical power laws [27]: a r? scaling at small r, typical of the dissipation range, and the Kolmogorov r*/3 scaling
in the inertial range, representative of energy transfer across larger scales. Panel (c) reports the value of the third-order
invariant S 3(r) across scales. In classical Kolmogorov theory, S 3(r) follows a linear scaling in the inertial range (i.e.,
S3(r) = —‘g‘ar, where ¢ is the energy dissipation rate), implying that the energy transfer rate is scale invariant within
the inertial range, i.e., that the turbulence exhibits a form of self-similarity across scales [36, 27, 5]. Both statistics

48 Marco Lauricella et al. / Procedia Computer Science 267 (2025) 40-51

Fig. 4. Instantaneous snapshots of the bubble field panel (a) and velocity field (b) at Re; = 114 and 6% bubble volume fraction. Snapshots are taken
at the statistical steady state.

show agreement with the expected theoretical behavior and tend to deviate from the theoretical behavior as r increases
to values close to the integral length scale [18].

5.2. Bubble-Laden Homogeneous Isotropic Turbulence: Effect of the dispersed phase on turbulence modulation

In this section, we investigate the effect of a dispersed, buoyant gas phase on the turbulence. Specifically, we
examine how bubbles influence the energy spectrum at selected wavelengths and explore this behavior across a range
of Taylor Reynolds numbers. The bubble volume fraction is fixed at 6% of the total domain, which remains 5123, as
in the single-phase case (see figure 4, reporting two snapshots of the bubble and velocity field taken at the statistical
steady state). The computed values of Re, for the cases under consideration are 65, 86 and 114. The surface tension
coefficient is set to y = 0.01 (in lattice units) and is kept constant across all simulations. The turbulent Weber number,
defined as Wey = ufms/lpL /v is of order one in all simulations (in the formula u,,, is the root mean square value
of the velocity fluctuations, A the Taylor length scale and p;, the bulk density). The turbulent Froude number, Fry =
Urms/ \gLy, where L; is the integral length scale, is approximately 2, indicating that while bubbles are influenced by
turbulence, their buoyancy remains sufficiently strong to impose a preferential upward motion.

It is worth noting here that, in our simulations, the interface thickness is kept about 5 grid points (implying a Cahn
number (Ca = §/L) to O(1072), being & the interface thickness and L the size of the domain) and the grid spacing
is of the order of 5, ensuring that the interface is resolved with a sufficient fidelity relative to the smallest physical
scales. Moreover, the focus of our analysis is on statistical observables such as energy spectra and PDFs of velocity
increments, which are typically dominated by inertial-range dynamics. These observables are less sensitive to the
fine details of the interface smoothing, especially given the moderate volume fraction (6%) and the relatively large
separation between interface and inertial-range scales. As shown in Figure 5, the energy spectra reveal a clear transition
in scaling behavior with increasing Re,, from the classical —5/3 Kolmogorov scaling to a steeper —3 power law,
typical of 2D turbulence[1]. This trend aligns with experimental observations [28] and theoretical predictions [37]. The
emergence of the steeper spectrum is a distinct signature of bubble-induced dissipation at intermediate wavenumbers.
Notably, this effect is only observed in buoyant bubble-liquid systems, suggesting that buoyancy plays a critical role
in enabling new pathways of energy transfer within homogeneous turbulence. The transition occurs around k = 10
(corresponding to r ~ 35), approximately one-third of the integral length scale.

Risso [37] analytically demonstrated that the —3 scaling in dispersed multiphase flows arises due to the presence of
strong, statistically independent, and uniformly distributed bursts within the turbulent field. These bursts can be inter-
preted as intermittent events driven by the complex dynamics of bubbles interacting with the carrier phase. As bubbles
deform, break up, and re-coalesce, they continuously reorganize the surrounding flow, thus altering the statistical
properties of HIT. This behavior is clearly illustrated in Figure 6, which compares the probability density functions
(PDFs) of velocity increments in the single-phase and bubble-laden cases. The simulation parameters are otherwise

Marco Lauricella et al. / Procedia Computer Science 267 (2025) 40-51 49

Fig. 5. Energy spectra for bubble-laden HIT at different Re,. The transition from —5/3 to —3 scaling, observed experimentally in [28], is captured
in the intermediate wavenumber range.

+ Re =150
o Re,=114

Normalized PDF

O uldX)lo

Fig. 6. Comparison of velocity increment PDFs between single-phase and bubble-laden HIT. The enhanced tails in the latter case indicate increased
intermittency induced by bubble dynamics. In the figure, circles stand for the bubble-laden HIT while plusses for the single component case

identical, though the resulting Taylor Reynolds numbers differ slightly due to enhanced activity at small scales caused
by the dispersed phase [7].

While both PDFs display the expected non-Gaussian features of homogeneous isotropic turbulence, the presence
of bubbles significantly amplifies the tails of the distribution. This broadening indicates a higher frequency of in-
tense velocity fluctuations, a hallmark of intermittency. The more pronounced tails in the bubble-laden case point to
localized, energetic bursts and rare events arising from bubble dynamics. These findings underscore how dispersed
bubbles modify the fine-scale structure of turbulence, intensifying gradients and increasing deviations from the Gaus-
sian statistics typically seen in single-phase flows. The presence of strong intermittent events is further supported by
the increase of the flatness factor by a factor 3, from approximately 5 to 16.

6. Conclusions

In this work we have presented accLB, a high-performance, thread-safe Lattice Boltzmann solver specifically
tailored for the simulation of multiphase turbulent flows on modern GPU-based supercomputing architectures. By
coupling a conservative phase-field formulation of the Allen—Cahn equation with a regularized LBM, accLB have
shown to accurately capture the dynamics of fluid interfaces in the presence of turbulence and large density and
viscosity contrasts.

The code architecture exploits hybrid parallelism via MPI and OpenACC, offering excellent portability and scal-
ability across heterogeneous hardware platforms. Benchmark tests performed on the EuroHPC pre-exascale systems

Leonardo and LUMI demonstrate strong and weak scaling performance up to 64 parallel GPUs, with sustained
throughput exceeding 150 GLUPS in large-scale runs.

50 Marco Lauricella et al. / Procedia Computer Science 267 (2025) 40-51

The physical capabilities of accLB are validated through simulations of single-phase and bubble-laden homoge-
neous isotropic turbulence (HIT). In the single-phase case, we recover the classical energy and pressure spectra scal-
ings and turbulence invariants across scales. For the bubble-laden scenarios, our simulations capture the emergence
of a -3 scaling in the energy spectrum, as predicted by theory and observed in experiments, along with amplified
small-scale intermittency. These findings confirm that accLLB is a reliable tool to investigate turbulence modulation in
complex multiphase systems.

In summary, accLB provides a scalable and accurate platform for high-fidelity turbulence simulations in multi-
phase flows, enabling the investigation of complex physical phenomena across a broad range of scales with high
computational efficiency.

Acknowledgements

AM. acknowledges fundings from the Italian Government through the PRIN (Progetti di Rilevante Interesse
Nazionale) Grant (MOBIOS) ID: 2022N4ZNH3 -CUP: F53C24001000006 and computational support of CINECA
through the ISCRA B project DODECA (HP10BUBFIL). M.L. acknowledges the support of the Italian National
Group for Mathematical Physics (GNFM-INdAM). M.L. and S.S. acknowledge the support from the European Re-
search Council under the ERCPoC Grant No. 101187935 (LBFAST). D.I. acknowledges financial support from the
Research Council of Finland (Grant number: 354620). We acknowledge CSC, Finland for awarding this project ac-
cess to the LUMI supercomputer, owned by the EuroHPC Joint Undertaking, hosted by CSC (Finland) and the LUMI
consortium through CSC, Finland, Benchmark Access mode.

References

[1] R Benzi and S Succi. Two-dimensional turbulence with the lattice boltzmann equation. Journal of Physics A: Mathematical and General, 23
(1):L1, 1990.

[2] Matteo Bernardini, Davide Modesti, Francesco Salvadore, and Sergio Pirozzoli. Streams: A high-fidelity accelerated solver for direct numerical
simulation of compressible turbulent flows. Computer Physics Communications, 263:107906, 2021. ISSN 0010-4655.

[3] Fabio Bonaccorso, Marco Lauricella, Andrea Montessori, Giorgio Amati, Massimo Bernaschi, Filippo Spiga, Adriano Tiribocchi, and Sauro
Succi. Lbcuda: A high-performance cuda port of Ibsoft for simulation of colloidal systems. Computer Physics Communications, 277:108380,
2022. ISSN 0010-4655.

[4] Luca Brandt and Filippo Coletti. Particle-laden turbulence: Progress and perspectives. Annual Review of Fluid Mechanics, 54(Volume 54,
2022):159-189, 2022. ISSN 1545-4479.

[S] M Briscolini, P Santangelo, S Succi, and R Benzi. Extended self-similarity in the numerical simulation of three-dimensional homogeneous
flows. Physical Review E, 50(3):R1745, 1994.

[6] Pedro Costa, Everett Phillips, Luca Brandt, and Massimiliano Fatica. Gpu acceleration of cans for massively-parallel direct numerical sim-
ulations of canonical fluid flows. Computers and Mathematics with Applications, 81:502-511, 2021. ISSN 0898-1221. Development and
Application of Open-source Software for Problems with Numerical PDEs.

[7] Marco Crialesi-Esposito, Sergio Chibbaro, and Luca Brandt. The interaction of droplet dynamics and turbulence cascade. Communications
Physics, 6(1):5, 2023.

[8] Marco Crialesi-Esposito, Nicold Scapin, Andreas D. Demou, Marco Edoardo Rosti, Pedro Costa, Filippo Spiga, and Luca Brandt. Flutas: A
gpu-accelerated finite difference code for multiphase flows. Computer Physics Communications, 284:108602, 2023. ISSN 0010-4655.

[9] Francesco De Vanna. Enhancing performance of high-speed engineering flow computations: The uranos case study. Procedia Computer
Science, 255:23-32,2025. ISSN 1877-0509. Proceedings of the Second EuroHPC user day.

[10] Abbas Fakhari, Travis Mitchell, Christopher Leonardi, and Diogo Bolster. Improved locality of the phase-field lattice-boltzmann model for
immiscible fluids at high density ratios. Physical Review E, 96(5):053301, 2017.

[11] Yongliang Feng, Pierre Boivin, Jérome Jacob, and Pierre Sagaut. Hybrid recursive regularized lattice boltzmann simulation of humid air with
application to meteorological flows. Physical Review E, 100(2):023304, 2019.

[12] Yongliang Feng, Pierre Boivin, Jérdme Jacob, and Pierre Sagaut. Hybrid recursive regularized thermal lattice boltzmann model for high
subsonic compressible flows. Journal of Computational Physics, 394:82-99, 2019.

[13] Uriel Frisch and Andrei Nikolaevich Kolmogorov. Turbulence: the legacy of AN Kolmogorov. Cambridge university press, 1995.

[14] Wojciech W Grabowski and Lian-Ping Wang. Growth of cloud droplets in a turbulent environment. Annual review of fluid mechanics, 45(1):
293-324,2013.

[15] William D Gropp. Parallel computing and domain decomposition. In Fifth International Symposium on Domain Decomposition Methods for
Fartial Differential Equations, pages 349-361. Publ by Soc for Industrial and Applied Mathematics Publ, 1992.

[16] Zhaoli Guo, Chuguang Zheng, and Baochang Shi. Discrete lattice effects on the forcing term in the lattice boltzmann method. Physical review
E, 65(4):046308, 2002.

[17]
[18]

[19]

[20]
[21]
[22]
[23]

[24]

[25]
[26]

[27]
[28]

[29]
[30]
[31]
[32]
[33]
[34]
[35]
[36]
[37]
[38]
[39]
[40]
[41]

[42]
[43]

[44]

[45]

Marco Lauricella et al. / Procedia Computer Science 267 (2025) 40-51 51

John L Hennessy and David A Patterson. Computer architecture: a quantitative approach. Elsevier, 2011.

Takashi Ishihara, Toshiyuki Gotoh, and Yukio Kaneda. Study of high-reynolds number isotropic turbulence by direct numerical simulation.
Annual Review of Fluid Mechanics, 41:165-180, 2009. doi: 10.1146/annurev.fluid.010908.165203.

Guang-Shan Jiang and Chi-Wang Shu. Efficient implementation of weighted eno schemes. Journal of Computational Physics, 126(1):202-228,
1996. ISSN 0021-9991. doi: https://doi.org/10.1006/jcph.1996.0130. URL https://www.sciencedirect.com/science/article/pii/
S0021999196901308.

B. Jihne and H. HauBecker. Air-water gas exchange. Annual Review of Fluid Mechanics, 30(Volume 30, 1998):443-468, 1998. ISSN
1545-4479.

Junseok Kim. A continuous surface tension force formulation for diffuse-interface models. Journal of computational physics, 204(2):784-804,
2005.

Andrei Nikolaevich Kolmogorov. Dissipation of energy in the locally isotropic turbulence. Proceedings of the Royal Society of London. Series
A: Mathematical and Physical Sciences, 434(1890):15-17, 1991.

Timm Kriiger, Halim Kusumaatmaja, Alexandr Kuzmin, Orest Shardt, Goncalo Silva, and Erlend Magnus Viggen. The lattice boltzmann
method. Springer International Publishing, 10(978-3):4-15, 2017.

Marco Lauricella, Adriano Tiribocchi, Sauro Succi, Luca Brandt, Aritra Mukherjee, Michele La Rocca, and Andrea Montessori. Thread-safe
multiphase lattice boltzmann model for droplet and bubble dynamics at high density and viscosity contrasts. arXiv preprint arXiv:2501.00846,
2025.

Giandomenico Lupo, Peter Wellens, and Pedro Costa. Cans-fizzy: A gpu-accelerated finite difference solver for turbulent two-phase flows.
arXiv preprint arXiv:2502.04189, 2025.

Orestis Malaspinas. Increasing stability and accuracy of the lattice boltzmann scheme: recursivity and regularization. arXiv preprint
arXiv:1505.06900, 2015.

WD McComb. Theory of turbulence. Reports on Progress in Physics, 58(10):1117, 1995.

Julian Martinez Mercado, Daniel Chehata Gomez, Dennis Van Gils, Chao Sun, and Detlef Lohse. On bubble clustering and energy spectra in
pseudo-turbulence. Journal of fluid mechanics, 650:287-306, 2010.

Andrea Montessori and Giacomo Falcucci. Lattice Boltzmann modeling of complex flows for engineering applications. Morgan and Claypool
Publishers, 2018.

Andrea Montessori, Marco Lauricella, Adriano Tiribocchi, Mihir Durve, Michele La Rocca, Giorgio Amati, Fabio Bonaccorso, and Sauro
Succi. Thread-safe lattice boltzmann for high-performance computing on gpus. Journal of Computational Science, 74:102165, 2023.

Andrea Montessori, Michele La Rocca, Giorgio Amati, Marco Lauricella, Adriano Tiribocchi, and Sauro Succi. High-order thread-safe lattice
boltzmann model for high performance computing turbulent flow simulations. Physics of Fluids, 36(3), 2024.

Andrea Montessori, Luiz A Hegele, and Marco Lauricella. A thread-safe lattice boltzmann model for multicomponent turbulent jet simulations.
AIAA Journal, 63(3):1005-1012, 2025.

Francesca Pelusi, Matteo Lulli, Mauro Sbragaglia, and Massimo Bernaschi. Tlbfind: a thermal lattice boltzmann code for concentrated emul-
sions with finite-size droplets. Computer Physics Communications, 273:108259, 2022.

Francesca Pelusi, Stefano Ascione, Mauro Sbragaglia, and Massimo Bernaschi. Analysis of the heat transfer fluctuations in the rayleigh-bénard
convection of concentrated emulsions with finite-size droplets. Soft Matter, 19(37):7192-7201, 2023.

O. Podvigina and A. Pouquet. On the non-linear stability of the 1:1:1 abc flow. Physica D: Nonlinear Phenomena, 75(4):471-508, 1994.
ISSN 0167-2789. doi: https://doi.org/10.1016/0167-2789(94)00031-X. URL https://www.sciencedirect.com/science/article/
pii/016727899400031X.

Stephen B. Pope. Turbulent Flows. Cambridge University Press, 2000.

Frédéric Risso. Theoretical model for k- 3 spectra in dispersed multiphase flows. Physics of fluids, 23(1), 2011.

Alessio Roccon. A gpu-ready pseudo-spectral method for direct numerical simulations of multiphase turbulence. Procedia Computer Science,
240:17-30, 2024. ISSN 1877-0509. Proceedings of the First EuroHPC user day.

Gaetano Sardina, Francesco Picano, Luca Brandt, and Rodrigo Caballero. Continuous growth of droplet size variance due to condensation in
turbulent clouds. Phys. Rev. Lett., 115:184501, Oct 2015.

Laurier L. Schramm, Elaine N. Stasiuk, and D. Gerrard Marangoni. Surfactants and their applications. Annu. Rep. Prog. Chem., Sect. C: Phys.
Chem., 99:3-48, 2003.

Katepalli R Sreenivasan, Kartik P Iyer, and Ashvin Vinodh. Asymmetry of velocity increments in turbulence. Physical Review Research, 4(4):
1042002, 2022.

S. Succi. The Lattice Boltzmann equation: For complex states of flowing matter. Oxford University Press, 2018.

S. Succi, G. Amati, M. Bernaschi, G. Falcucci, M. Lauricella, and A. Montessori. Towards exascale lattice boltzmann computing. Computer
and Fluids, 181:107-115, 2019. doi: https://doi.org/10.1016/j.compfluid.2019.01.005.

Sipei Zhao, Eva Cheng, Xiaojun Qiu, Ian Burnett, and Jacob Chia chun Liu. Pressure spectra in turbulent flows in the inertial and the dissipation
ranges. The Journal of the Acoustical Society of America, 140:4178, 2016. doi: 10.1121/1.4968881.

Xiaojue Zhu, Everett Phillips, Vamsi Spandan, John Donners, Gregory Ruetsch, Joshua Romero, Rodolfo Ostilla-Ménico, Yantao Yang, Detlef
Lohse, Roberto Verzicco, Massimiliano Fatica, and Richard J.A.M. Stevens. Afid-gpu: A versatile navier—stokes solver for wall-bounded
turbulent flows on gpu clusters. Computer Physics Communications, 229:199-210, 2018. ISSN 0010-4655.

Available online at www.sciencedirect.com

ScienceDirect Procedia

Computer Science

CrossMark

Procedia Computer Science 267 (2025) 52-61

www.elsevier.com/locate/procedia
Proceedings of the Third EuroHPC user day

Multi-GPU porting of a phase-change cascaded lattice Boltzmann
method for three-dimensional pool boiling simulations

Alessandro Gabbana®®*, Linlin Fei®, Xander M. de Wit¢, Zigi Wang®, Daniel Livescu?,
Federico Toschi%¢

“Computational Physics and Methods Group (CCS-2), Los Alamos National Laboratory, Los Alamos, 87545 New Mexico, USA
b Center for Nonlinear Studies (CNLS), Los Alamos National Laboratory, Los Alamos, 87545 New Mexico, USA
¢Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, School of Energy and Power Engineering, Xi’an Jiaotong
University, Xi’an, Shaanxi 710049, China
4Department of Applied Physics and Science Education, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
¢CNR-IAC, I-00185 Rome, Italy

Abstract

The Lattice Boltzmann method (LBM) has proven effective in simulating phase-change phenomena, such as melting, solidification,
evaporation, and boiling. In this work, we develop a highly parallelized multi-GPU implementation of LBM for three-dimensional
pool boiling simulations. The code is based on the OpenACC programming model, which enables the code to be deployed efficiently
on multi-core CPUs, GPUs, and potentially other accelerators, without the need for architecture-specific rewrites. To support large-
scale simulations, the domain is decomposed and distributed across multiple compute nodes using MPI. We demonstrate that the
code exhibits excellent scaling properties, with ideal strong-scaling running with up to 256 GPUs on the MareNostrumS5 cluster.

© 2025 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY 4.0 license (https://creativecommons.org/licenses/by/4.0)
Peer-review under responsibility of the scientific committee of the Proceedings of the Third EuroHPC user day

Keywords: Pool Boiling; Lattice Boltzmann Method; OpenACC; Multi-GPU;

1. Introduction

Boiling is a highly efficient heat transfer mechanism with widespread applications, from everyday uses such as
cooking to critical industrial systems such as nuclear reactors, heat exchangers, and electronic cooling devices. De-
spite its ubiquity, the boiling process remains a subject of intense research because of its inherently multiscale and
multiphysics nature, which involves complex interactions between fluid dynamics, phase change, and heat transfer [1].

Among the different boiling configurations, pool boiling, where buoyancy is the sole driving force for fluid motion,
offers a relatively simple setup to study the fundamental mechanisms of bubble nucleation, growth, departure, and

* Corresponding author.
E-mail address: agabbana@lanl.gov

1877-0509 © 2025 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY 4.0 license (https://creativecommons.org/licenses/by/4.0)
Peer-review under responsibility of the scientific committee of the Proceedings of the Third EuroHPC user day
10.1016/j.procs.2025.08.232

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2025.08.232&domain=pdf

Alessandro Gabbana et al. / Procedia Computer Science 267 (2025) 5261 53

temperature temperature
6.0e02 0.065 0.07 0075 8.0e-02 6.0e02 0065 0.07 0.075 8.0e-02
|

| — '

Fig. 1. Snapshot from a pool boiling simulation on a 1024% domain, in the nucleate boiling regime. (a) Iso-surface representation of the liquid-vapor
interface, colored by the local temperature field. (b) Cross-sectional slices of the temperature field.

coalescence. Understanding these phenomena is essential to improve heat transfer efficiency and predict performance
limits, such as the critical heat flux (CHF), in engineering systems. However, accurately capturing these dynamics re-
quires high-fidelity numerical simulations that resolve both the microscale vapor-liquid interfaces and the macroscale
thermal convection.

To address this challenge, numerical methods like the lattice Boltzmann method (LBM) have emerged as promis-
ing tools due to their algorithmic simplicity, scalability, and ability to naturally handle complex boundary conditions.
In particular, the pseudopotential multiphase LBM, enhanced by thermal coupling via finite-difference solvers and
non-ideal equations of state, has proven effective in simulating phase-change phenomena, including nucleate boil-
ing and transitions to film boiling. The model developed by Fei et al. [2], which extends the hybrid LBM to fully
three-dimensional domains using the cascaded collision operator for improved numerical stability, has successfully
reproduced the entire boiling curve and boiling regimes with hundreds of interacting bubbles.

Despite these advances, most existing numerical studies on boiling remain limited to two-dimensional simulations
or coarse three-dimensional models, which significantly restrict their applicability to real-world scenarios. Further-
more, the computational cost of resolving a fully 3D boiling process at realistic scales has, until recently, remained
prohibitive [3].

In this work, we take a major step forward by developing a highly parallelized multi-GPU implementation of LBM
for three-dimensional pool boiling simulations. By leveraging massively parallel GPU architectures, our code enables
simulations involving millions of grid points, offering the possibility of simulations with unprecedented fidelity and
throughput, making it possible to quantitatively study bubble nucleation, bringing us closer to quantitatively matching
experimental observations and validating theoretical models. A qualitative example is shown in Figure 1, where we
provide the snapshot from a simulation in the nucleate boiling regime on a 1024> domain.

The remainder of this paper is organized as follows. In Section 2 we provide a short overview on the numerical
method. Section 3 outlines the key aspects of porting the LBM code to multi-GPU clusters. Performance results and
scalability analysis are presented in Section 4. Finally, Section 5 offers concluding remarks and discusses possible
future developments.

54 Alessandro Gabbana et al. / Procedia Computer Science 267 (2025) 52—61

2. Numerical Method

In this section we provide details on the numerical methods employed for the simulation of pool boiling. We
couple two methods, with a hybrid cascaded lattice Boltzmann model (CLBM) addressing the liquid-vapor phase-
change process, and a finite difference method for the evolution of the temperature field, and with the two components
coupled via a non-ideal equation of state [2].

2.1. Solution of the flow field

The lattice Boltzmann method (LBM) has proven to be a highly efficient and flexible mesoscopic approach for
simulating a wide variety of fluid flows [4]. Unlike traditional Navier-Stokes solvers which explicitly discretize the
macroscopic equations, LBM is a mesoscopic approach that models the evolution of particle distribution functions
over a discrete lattice. At its core, LBM solves a discretized form of the Boltzmann equation:

fix+ et t+61) — fi(x, 1) = Q(f) + Fi, (1)

where f; denotes the particle distribution function along the i-th discrete velocity direction e;, Q is the collision
operator, F; is a source term accounting for internal and external forces, and ¢¢ is the time-step size. The left-hand side
represents the streaming step, which moves information from one lattice node to its neighbors, while the right-hand
side captures local changes in the particle distributions due to collisions and forcing effects.

Fig. 2. D3Q19 velocity stencil used for the discretization of the velocity space in the lattice Boltzmann method.

We use the D3Q19 model (see Fig. 2) for the discretization of the continuum velocity space, employing a set of 19
discrete velocities, defined as:

ei:[|eix>’|ei)'>’|eiz>], i:O3'--,18’

with the specific components given by:

| €ix) = [09 19_1,0’ Oa 0909 19_1’ 1’_19 19_1’ 1’_190909070]T’
|eiy>: [0’030515_190903 1, 1’_1’_1,0’0’030515_19 19_1]T9 (2)
| eiz > = [090»0’0’0’]3_150’090909 1’ 1’_13_1’ 1’ 1’_15_1]T'

Here, |-) denotes a 19-dimensional column vector. The lattice speed is defined as ¢ = dx/d6¢ = 1, and the lattice sound
speedis ¢y = 1/ V3, with 6x = 6t = 1.

In this study, we employ a central-moment-based LBM, which offers enhanced numerical stability and the possi-
bility to independently tune the relaxation rate of the different transport parameters. In CLBM the post-collision state
is defined as

fr=Q(f) = £+ (1-M'NTSNM) (f; - £) 3)

Alessandro Gabbana et al. / Procedia Computer Science 267 (2025) 52—61 55

where ff 4 is the (discrete) local equilibrium distribution, M is the transformation matrix mapping the particle dis-
tributions to moment space, N is the transformation matrix shifting from raw moments to central moments, and S
is the relaxation matrix, dictating the relaxation rate of the different moments. Therefore, in the CLBM framework,
the collision operator is defined in terms of a set of raw and central moments of the particle distribution functions f;,
respectively

mnp <ﬁ e:zegef;> mnp <ﬁ (etx Mx)m(eiy - uy)n(eiz - uz)p> s (4)

where m, n, p are non-negative integers and u,, u,, u, are the components of the macroscopic velocity vector u.
Following the work of Fei et al. [5], we consider the following non-orthogonal set of central moments:

|Ti> = [kooo» k100- k010 koot - k110- k101 ko1 1. k200- Ko20, Kooz k120, K102- k210 k2ot Kor2. Koot ka2, Kooz, koo] (5)
with
IT;) = M|fi) = [To, Ty, ..., Tis] ", |T> NIT;y = NM|f;) = [To, T4, ... Tus]". (6)

This choice leads to a sparse transformation matrix [5], which allows for enhanced computational efficiency.
The collision process can then be expressed as the independent relaxation of each central moment towards its
equilibrium counterpart as:

T:) = [T) = S(IT:) - [7¢)) + @ - s/25t1C), @)

where |C;) represents the forcing terms in moment space.
The choice for the set of moments in Eq. 5 implies the following block-diagonal form for the relaxation matrix:

Sy S_ S_
S = dlag SO,S],S],S],SV, SV7 SV7 S— S+ S— 7S3’S3’S3’S3’S3’S3’S4’ S4’ S4 > (8)

S_ S_ S84
with s, = (sop + 252)/3, s = (52, — $2)/3, enabling independent control of normal stress components and bulk

viscosity [5].
The equilibrium central moments are matched to those of the continuous Maxwell-Boltzmann distribution:

lTieq> [0,0,0,0,0,0,0, pc%, pc?, pc2,0,0,0,0,0,0, pct, pct, pct]™. 9
The forcing term in moment space is:

IC:y = [0, F,, F,, F.,0,0,0,0,0,0, F .2, Fyc?, Fyc?, F.c2, Fyc2, Foc?,0,0,0]7. (10)
After the collision step, the post-collision distribution functions are reconstructed by:
TINTHT),

and propagated via the streaming step:

filx +e;dt, 1+ 6t) = f(x,1). (11)

The macroscopic variables are recovered as:
ot

p=Zﬁ-, pu=Zﬁei+5F. (12)

The kinematic viscosity v and bulk viscosity & are related to the relaxation parameters via:
I 1\, 2(1 1\,
=|— -z]c;ot, =—-|— —z]cot 13
v (S2 2)05 é: 3(52/, Z)CS ()

In order to incorporate phase-change phenomena, the pseudopotential model is adopted [6, 7], with the interaction
force:

Fine = ~GU(x)) wileiPW(x + eidte; (14)

56 Alessandro Gabbana et al. / Procedia Computer Science 267 (2025) 52—61

The pseudopotential i is defined by:

[2 - pc3
1/,: %, (15)

where G = —1 ensures the positivity of the expression under the square root.
To address thermodynamic inconsistency, Li et al. [8, 9] proposed modifying the forcing term:

ICiy = [0, Fy, Fy, F,0,0,0,1,1,1, F o2, Foc?, Fye?, Foc2 Fyc?, Foc?,0,0,0]7, (16)

S b
where:

207(Fin*

= T = 0501 a7

with o~ used for tuning ;. By applying a Chapman-Enskog analysis, the following macroscopic equations are recovered
in the low-Mach limit:

8,p+V - (pu) =0,

di(pu) + V - (puu) = —V(pc?) + V - [pv(Vu +(Vw)™) = 2pn(V - u)I] + V[pé(V-w)] +F - 2G*c*oV - (|V¢/|21) (18)

where the final term arises from the thermodynamic correction via 7. Note that for oo = 0, the standard Navier-Stokes
equations are recovered.

2.2. Solution of the Temperature Field

The temperature evolution in the liquid-vapor phase-change process is governed by the following equation [10]:

a—Tz—u~VT+V-(AVT)—i(apL°S)V-u, (19)
ot pc, \ T A
where T is the temperature, u is the fluid velocity, A is the thermal conductivity, p is the density, and ¢, is the specific
heat at constant volume. The term involving dpgos/dT accounts for the thermodynamic coupling due to the non-ideal
equation of state.

To numerically solve Eq. 19, spatial derivatives must be discretized appropriately. In this work, a central difference
scheme based on lattice directions is employed to approximate both the gradient and Laplacian operators [11]. The
discretization is given as:

0 1
G = g ller) e xre.
K : (20)

2

Trn - oo Z o (jei) [¢ (x + ei51) — p(x)].
where @ € {x,y,z} denotes the spatial coordinate direction, ¢ is a scalar physical quantity (e.g., temperature), e; are
the discrete lattice velocities, and w is a weight function associated with the magnitude of e;.

In order to conserve the heat flux, particularly across the liquid-vapor interface where sharp gradients may occur,
the diffusion term V - (AVT) is discretized using a finite volume method [12]. This approach provides better accuracy
and stability when handling discontinuities and steep gradients, which are common in phase-change phenomena.

For temporal discretization, the right-hand side of Eq. 19 is denoted as K(T'), representing all spatially discretized
contributions to the temperature evolution. The time integration is carried out using a fourth-order Runge-Kutta (RK4)
method:

TH = Tt 4 %’(hl + hy + h3 + hy),
hy = K(T"),
hy = K(T’ +%hy), @b
hy = K(T'+ 4hy),
hy = K(T" + 6ths).

Alessandro Gabbana et al. / Procedia Computer Science 267 (2025) 52—61 57

2.3. Non-ideal equation of state

The pseudopotential CLBM described in Section 2.1 is coupled with the finite-difference temperature solver in-
troduced in Section 2.2 through a non-ideal equation of state. Specifically, temperature variations affect the local
thermodynamic pressure pgos, which in turn modifies the interparticle interaction force in the pseudopotential CLBM
via Egs. 14 and 15.

To model the non-ideal thermodynamic behavior of the fluid, various equations of state—such as the van der Waals,
Carnahan-Starling, or Peng-Robinson EOS—can be incorporated into the framework through the square-root form of
the pseudopotential defined in Eq. 15. Following a previous study [2], the Peng-Robinson EOS is employed:

pRT ap(T)p*
1-bp 1+2bp—b2p?’

PEOS = (22)

where the temperature-dependent function ¢(7') is defined as:

o(T) = [1 + (037464 + 1.54226w — 0.26992w°) (1 - \/T/TC)]2 ,

and the parameters a = 2/49, b = 2/21 have been established following the analysis in Refs. [13, 9], with @ = 0.344
and R = 1. The corresponding critical temperature and pressure are computed as 7. = 0.07292 and p. = 0.05957,
respectively.

Furthermore, in the simulation of pool boiling phenomena, the motion of vapor bubbles and surrounding liquid is
significantly influenced by buoyancy forces arising from density differences. The buoyancy force is modeled as:

F, = —(p - p)gk, (23)

where is the average density in the computational domain, g is the gravitational acceleration, and Kk is the unit vector
in the vertical (gravity) direction.

As a result, the total body force acting on the system is given by the sum of the interparticle interaction force and
the buoyancy force:

F=Fy +F,.

This coupling strategy ensures that both temperature-induced pressure variations and gravitational effects are con-
sistently incorporated into the fluid dynamics, enabling accurate simulation of liquid-vapor phase-change processes
such as boiling and condensation.

3. Implementation

To achieve simultaneously high performance and portability across heterogeneous computing architectures, our
LBM code is implemented using the OpenACC programming model. OpenACC enables incremental parallelization
of existing C/C++ and Fortran codebases and supports a broad range of accelerators and CPUs. The primary goal of
this implementation is to ensure that the same codebase can be deployed efficiently on NVIDIA GPUs, multi-core
CPUs, and potentially other accelerators, without requiring architecture-specific modifications.

The core compute routines, such as streaming, collision, macroscopic moment computation, boundary conditions
and the Runge-Kutta solver for the temperature fields, are offloaded to the accelerator using OpenACC directives.
Loop-level parallelism is expressed through the kernels construct, allowing the compiler to generate optimized code
for the target architecture.

To support parallel updates of all grid points during both streaming and collision operations, we store two copies of
the lattice for the particle distribution functions f;, following the so-called A-A pattern. The lattice data is transferred to
the accelerator memory at the beginning of the time-stepping loop, and an OpenACC data region is used to minimize
communication between the host and the device, restricting data transfers to essential operations such as disk writes
and MPI communications.

The code adopts a Structure of Arrays (SoA) data layout, which aligns with memory coalescing requirements on
GPUs and supports efficient vectorization on CPUs. In this layout, the particle distribution functions are stored with

58 Alessandro Gabbana et al. / Procedia Computer Science 267 (2025) 52—61

spatial indices contiguously in memory. This organization enhances memory bandwidth utilization, which is a key
performance factor in LBM algorithms due to their memory-bound nature. Although more sophisticated data struc-
tures for LBM have been proposed, offering performance benefits on architectures with large cache hierarchies [14],
they often introduce additional complexity. For the sake of simplicity and maintainability, we opt not to adopt them in
the current implementation.

To support large-scale simulations, the computational domain is decomposed and distributed across multiple com-
pute nodes using MPI. For simplicity, we adopt a one-dimensional domain decomposition, where each MPI rank
handles a subdomain. Halo regions (ghost layers) are exchanged at each time step to maintain data consistency across
subdomain boundaries. The code is designed for multi-node execution, with one MPI process assigned to each GPU
when running on GPU clusters.

Inter-process communication is implemented using non-blocking MPI routines, enabling the overlap of computa-
tion and communication. Specifically, the interior nodes of each subdomain are updated while halo data is exchanged
asynchronously. This overlap is explicitly managed by partitioning the domain into interior and halo regions and
launching separate OpenACC kernels for each subdomain. When possible, the kernels are executed on different CUDA
streams to further reduce potential overheads introduced by small kernels reserved to the preparation of buffers used
in MPI communications and kernels operating on the boundary layers.

We leverage a CUDA-aware MPI library, which allows communication buffers to reference device memory directly.
This enables efficient pipelining of data movement between host and device memory, reducing overhead and improv-
ing scalability, and also enables seamless use of NVLink for direct GPU-to-GPU data transfers between devices on
the same node.

4. Results

In this section we provide a brief overview of the performances of the code.

All results are obtained using a realistic physical configuration that replicates the pool boiling setup illustrated in
Fig. 1. We perform three-dimensional simulations where the bottom plate is maintained at a fixed temperature, with a
small perturbation applied at ¢ = 0 to trigger bubble nucleation. At the top boundary, we impose a constant pressure
condition along with a Neumann boundary condition for velocity, enforcing that the normal derivative of the velocity
field is set to zero. Periodic boundary conditions are applied in the remaining directions. The initial condition consists
of a domain half-filled with liquid and half with vapor. The flow field is solved using the D3Q19 LBM (cf. Fig. 2),
while the temperature field is evolved using a fourth-order Runge-Kutta method.

We begin by analyzing the performance obtained on a single GPU. As a representative case, we consider the
performance of the two main computational kernels: streaming and collide. The streaming kernel is responsible for
moving pseudo-particles between neighboring grid points and is thus entirely memory-bound. On a single NVIDIA
A100 GPU, this kernel achieves a bandwidth of 1245.31 GB/s, which corresponds to approximately 62% of the
theoretical peak. In contrast, the collide kernel is the most compute-intensive component of the code. On the same
A100 GPU, it reaches 2745.43 GFLOP/s, about 28% of the theoretical peak performance, comparing well against
results of previous LBM implementations from the literature [15, 16]. These figures nearly double when running on a
single H100 GPU at the MareNostrum 5 supercomputer (BSC), achieving 2659.13 GB/s for the streaming kernel and
5616.93 GFLOP/s for the collide kernel. These figures show that the code allows to extract a significant fraction of
the performance peak on some of the latest GPU cards.

Moving now to the evaluation of the multi-GPU implementation, Fig. 3a reports on the strong scalability and
corresponding parallel efficiency achieved on the MareNostrum 5 cluster.

We consider three representative domain sizes: a small domain of size 1536 X 512 X 512, a medium domain of
3072 %1024 x 1024, and a large domain of 6144 x 2048 x 2048. In the strong scalability test, the domain is partitioned
along the x-dimension as L,/p, where p is the number of GPUs. We evaluate performance for p = 4,8, ...,512 GPUs.

We compare two code variants: one where communication and computation are overlapped, and another where
they are executed synchronously. The plot clearly shows the benefit of overlapping, which brings performance close
to ideal scaling up to 256 GPUs. At p = 512, execution times of the two variants converge, suggesting that the
execution time becomes dominated by the cost of MPI communications. Since this overhead is roughly constant

Alessandro Gabbana et al. / Procedia Computer Science 267 (2025) 52—61

(a) T T T T T T T T (b) T T T T T T T T T
X~ — - ===
- 100 == ===R= < x
~ . ~. o ‘.
102 F w3 S ‘\ ‘\‘\\
, 90 \'\ \\\ A
\
\] \>< \\\ \‘\ \)(]
80 \ M\ \
— \ \ \
é) \ g \ \Q \\\
z e Nooony]
()
g XooAn®
Z10t F ~ 4 E:E 60 .\4 \]
= 5| \, \
= ® overlap ,\ \ \
. L . \ m
X no-overlap % 50 \>< \
ideal scaling - \ \\\
B 1536 x 5122 40 \]
3072 x 10242 s0b N\
o] W ouax 20482 N

4 8 16 32 64 128 256 512 4 8 16 32 64 128 256 512
Number of GPUs Number of GPUs

1 1

Fig. 3. (a) Strong scalability results for three domain sizes on the MareNostrum 5 cluster, using up to 512 GPUs. Two code variants are compared:

with and without overlapping of communication and computation. (b) Parallel efficiency corresponding to the strong scaling test, with baseline
GPU counts of 4, 32, and 256 for the small, medium, and large domains, respectively.

with respect to p under 1D partitioning, scalability plateaus. Higher-dimensional domain decompositions could help
alleviate this bottleneck, albeit at the cost of added code complexity.

In Fig. 3b, we show the corresponding parallel efficiency, defined as:
T(b)
E(p)= =" (24)
T(p)b
where T'(p) is the execution time using p GPUs, and b is the minimum number of GPUs required to fit a given problem
size in memory (4 for the small domain, 32 for the medium, 256 for the large).
Remarkably, for the medium-size domain, efficiency remains close to 100% up to 256 GPUs. Minor super-linear
speedups can be observed and are attributed to runtime kernel scheduling on CUDA streams. These effects are difficult

to predict a priori and depend on available GPU resources. When the workload per GPU decreases (at higher p), the
potential for concurrent kernel execution increases, which may yield slight performance boosts.

5. Conclusions and future work

We have presented a multi-GPU implementation of a Lattice Boltzmann Method (LBM) code designed for large-
scale simulations of pool boiling.
The code exhibits excellent strong scaling, reaching near-ideal performance up to 256 GPUs on representative

three-dimensional domains. This opens up the possibility of performing high-resolution numerical studies of the
complex dynamics of boiling at scales that were previously computationally prohibitive.

Extended details on the implementation, validation strategy, and performance analysis will be provided in an ex-
tended version of this work. Moreover we plan to use the code for studying in detail the transition between boiling
regimes as a function of wall superheat, the spatiotemporal evolution and distribution of bubble footprint areas, and
the influence of geometrical and thermophysical properties on boiling curves. Work along these lines is in progress.

Acknowledgments

We acknowledge HPC-Europe computational facilities and allocation on the MareNostrum 5 supercomputer (BSC,
Spain) through grant EHPC-EXT-2023E02-035, and the Karolina cluster (IT4I, Czech Republic) through grant

60 Alessandro Gabbana et al. / Procedia Computer Science 267 (2025) 52—61

EHPC-DEV-2023D04-032. A.G. gratefully acknowledges the support of the U.S. Department of Energy through the
LANL/LDRD Program under project number 20240740PRD1 and the Center for Non-Linear Studies for this work.

Appendix A. Scaling performance Data
For completeness, in Table A.1 we report the data presented in Fig. 3.

Table A.1. Scaling performance: time per iteration [ms], speedup, and parallel efficiency for different problem sizes and GPU counts

No overlap | With overlap

nGPUs nNodes‘
‘ Time [ms] Speedup Efficiency [%] ‘ Time [ms] Speedup Efficiency [%]

Small problem size: 1536 x 512 x 512

4 1 152.87 1.00 100.0 141.69 1.00 100.0
8 2 77.23 1.98 99.0 70.92 2.00 100.0
16 4 38.48 3.97 99.3 35.15 4.03 100.8
32 8 20.56 7.44 92.9 17.71 8.00 100.0
64 16 11.63 13.14 82.1 8.74 16.21 101.3
128 32 7.40 20.66 64.6 4.70 30.15 94.0
256 64 5.24 29.17 45.6 3.11 45.56 71.2
512 128 4.57 33.44 26.1 4.29 33.04 25.8
Medium problem size: 3072 x 1024 x 1024
32 8 163.74 1.00 100.0 145.61 1.00 100.0
64 16 84.72 1.93 96.7 71.48 2.04 102.0
128 32 45.99 3.56 89.0 35.66 4.08 102.0
256 64 27.65 5.92 74.0 18.14 8.03 100.4
512 128 19.45 8.42 52.6 18.76 7.76 48.5
Large problem size: 6144 x 2048 x 2048

256 64 194.34 1.00 100.0 140.57 1.00 100.0
512 128 115.54 1.68 84.0 107.87 1.30 65.0

Appendix B. EuroHPC Supercomputers

In this appendix, we provide detailed hardware specifications for the supercomputing systems employed in this
study.

Karolina Cluster — Accelerated Compute Nodes

The accelerated partition of the Karolina Cluster, hosted at IT4Innovations National Supercomputing Center (Czech
Republic), comprises 72 GPU-accelerated nodes equipped with NVIDIA A100 GPUs. This system was primarily
utilized for early-stage benchmarking and development of the code.

Total Nodes: 72

Processor: 2x AMD EPYC™ 7763 (2.45 GHz, 64 cores each) per node

CPU Cores per Node: 128 (9,216 cores in total)

Main Memory: 1,024 GB DDR4 3200 MT/s per node

GPU Configuration: 8x NVIDIA A100 GPUs per node (320 GB HBM2 memory per node)
Peak Performance: 361.27 TFLOPS

Interconnect: 4x 200 Gb/s InfiniBand ports per node

Alessandro Gabbana et al. / Procedia Computer Science 267 (2025) 52—61 61

MareNostrum 5 ACC (Accelerated Partition)

The accelerated partition of MareNostrum 5, operated by the Barcelona Supercomputing Center (Spain), consists

of 1120 nodes based on the latest Intel Sapphire Rapids processors and NVIDIA Hopper GPUs. This system was used
for large-scale performance evaluation and production runs.

Total Nodes: 1,120

Processor: 2x Intel Sapphire Rapids 8460Y+ (2.3 GHz, 40 cores each) per node

CPU Cores per Node: 80

Main Memory: 512 GB DDRS per node

GPU Configuration: 4x NVIDIA Hopper GPUs with 64 GB HBM?2 memory each

Storage: 480 GB NVMe (scratch space)

Interconnect: 4x NDR200 ports (800 Gb/s per node)

Peak Performance: 260 PFLOPS

Network Topology: Fat-tree topology with full non-blocking 160-node islands and 2:1 contention between
islands

References

(1]
(2]

(3]
(4]
(5]
(6]
(7]
(8]
(91
[10]
[11]
[12]

[13]
[14]

[15]

[16]

V. Dhir, Boiling heat transfer, Annual review of fluid mechanics 30 (1) (1998) 365-401. doi:10.1146/annurev.fluid.30.1.365.

L. Fei, J. Yang, Y. Chen, H. Mo, K. H. Luo, Mesoscopic simulation of three-dimensional pool boiling based on a phase-change cascaded lattice
Boltzmann method, Physics of Fluids 32 (10) (2020) 103312. doi:10.1063/5.0023639.

H. Jiang, Y. Liu, H. Chu, A review of numerical investigation on pool boiling, Journal of Thermal Analysis and Calorimetry 148 (17) (2023)
8697-8745. doi:10.1007/s10973-023-12292-0.

S. Succi, The Lattice Boltzmann Equation: For Complex States of Flowing Matter, OUP Oxford, 2018. doi:10.1093/0s0/9780199592357 .
001.0001.

L. Fei, K. H. Luo, Q. Li, Three-dimensional cascaded lattice boltzmann method: Improved implementation and consistent forcing scheme,
Physical Review E 97 (5) (2018) 053309. doi:10.1103/PhysRevE.97.053309.

X. Shan, H. Chen, Lattice boltzmann model for simulating flows with multiple phases and components, Physical Review E 47 (3) (1993) 1815.
doi:10.1103/PhysRevE.47.1815.

X. Shan, H. Chen, Simulation of nonideal gases and liquid-gas phase transitions by the lattice boltzmann equation, Physical Review E 49 (4)
(1994) 2941. doi:10.1103/PhysRevE.49.2941.

Q. Li, K. H. Luo, X. Li, Forcing scheme in pseudopotential lattice boltzmann model for multiphase flows, Physical Review E 86 (1) (2012)
016709. doi:10.1103/PhysRevE.86.016709.

Q. Li, K. H. Luo, X. Li, Lattice boltzmann modeling of multiphase flows at large density ratio with an improved pseudopotential model,
Physical Review E 87 (5) (2013) 053301. doi:10.1103/PhysRevE.87.053301.

Q. Li, Q. Kang, M. M. Francois, Y. He, K. H. Luo, Lattice boltzmann modeling of boiling heat transfer: The boiling curve and the effects of
wettability, International Journal of Heat and Mass Transfer 85 (2015) 787-796. doi:10.1016/j.ijheatmasstransfer.2015.01.136.
T. Lee, C.-L. Lin, A stable discretization of the lattice boltzmann equation for simulation of incompressible two-phase flows at high density
ratio, Journal of Computational Physics 206 (1) (2005) 16—47. doi:10.1016/j.jcp.2004.12.001.

R. Huang, H. Wu, N. A. Adams, Lattice boltzmann model with self-tuning equation of state for multiphase flows, Physical Review E 99 (2)
(2019) 023303. doi:10.1103/PhysRevE.99.023303.

P. Yuan, L. Schaefer, Equations of state in a lattice boltzmann model, Physics of Fluids 18 (4) (2006) 042101. doi:10.1063/1.2187070.

E. Calore, A. Gabbana, S. F. Schifano, R. Tripiccione, Optimization of lattice boltzmann simulations on heterogeneous computers, The Inter-
national Journal of High Performance Computing Applications 33 (1) (2019) 124-139. doi:10.1177/1094342017703771.

E. Calore, A. Gabbana, J. Kraus, E. Pellegrini, S. Schifano, R. Tripiccione, Massively parallel lattice-boltzmann codes on large gpu clusters,
Parallel Computing 58 (12) (2016) 1-24. doi:10.1016/j.parco.2016.08.005.

E. Calore, A. Gabbana, J. Kraus, S. F. Schifano, R. Tripiccione, Performance and portability of accelerated lattice Boltzmann applications with
OpenACC, Concurrency and Computation: Practice and Experience 28 (12) (2016) 3485-3502. doi:10.1002/cpe.3862.

Available online at www.sciencedirect.com

ScienceDirect Procedia

Computer Science

CrossMark

Procedia Computer Science 267 (2025) 6271

www.elsevier.com/locate/procedia

Proceedings of the Third EuroHPC user day
Hierarchical Dynamic Load Balancing Strategy for a p-adaptive
Discontinuous Galerkin Compressible LES Solver
Paolo Valvo®*, Antonella Abba?

“DAER Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano Via la Masa 34, Milan, 20161, Italy

Abstract

The current work proposes a dynamic hierarchical load balancing strategy for a p-adaptive local discontinuous Galerkin compress-
ible LES solver. Firstly, the load balancing problem is properly reformulated as a graph partitioning problem. Then, the graph
partitioning step is solved exploiting the partitioning capabilities of the Zoltan library. Finally, this approach is validated on a clas-
sic benchmark for LES simulations, that is, the flow past a square cylinder. The hardware-informed load balancing capabilities and
the overall performance of the proposed strategy are discussed. Lastly, the influence of load balancing on the results is investigated.
Results demonstrate the goodness of the current framework, that allows for dynamically balanced adaptive simulations of complex
and unsteady turbulent flows.

© 2025 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY 4.0 license (https://creativecommons.org/licenses/by/4.0)
Peer-review under responsibility of the scientific committee of the Proceedings of the Third EuroHPC user day

Keywords: Hierarchical Load Balancing, Discontinuous Galerkin, LES;

1. Introduction

The discontinuous Galerkin (DG) methods are one of the emerging methods in CFD. One of their main characteris-
tics is their reduced stencil, that allows for highly local formulations and all the implied advantages. Remarkably, such
schemes allow for the straightforward implementation of adaptive strategies, as demonstrated by the plenty of pub-
lished works about the design of good indicators to drive p-, h- and hp-adaptation. Although remarkable results have
been achieved concerning the optimum placement of degrees of freedom, this is only a part of the problem. Indeed,
adaptation alters the computational effort over time, especially with dynamic adaptation and unsteady flows. This is
a potential problem for any parallel implementation, since the best parallel efficiency is achieved by distributing as
evenly as possible the overall computational effort among the different tasks. For this reason, in the last years some
authors have begun to introduce some load balancing strategies in their codes. For example, both [9] and [3] employs
the serial METIS library to perform load balancing at run-time in their ILES p-adaptive solvers. In particular, [3] divide
the load among the parallel tasks by assigning a portion of the computational grid to each task, basically formulating

* Corresponding author.
E-mail address: paolo.valvo@polimi.it

1877-0509 © 2025 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY 4.0 license (https://creativecommons.org/licenses/by/4.0)
Peer-review under responsibility of the scientific committee of the Proceedings of the Third EuroHPC user day
10.1016/j.procs.2025.08.233

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2025.08.233&domain=pdf

Paolo Valvo et al. / Procedia Computer Science 267 (2025) 6271 63

the load balancing problem as a grid partitioning problem. The grid is then described as a graph and the problem is
addressed through the multi-weight multilevel graph partitioner of METIS. In order to avoid the potential bottleneck
due to the serialization of the partitioning process, subsequent works [26, 14] on p-adaptive DG ILES solvers always
reformulate the problem as a graph partitioning problem, but address it through ParMETIS, the parallel version of
METIS. For the sake of completeness, [17] proposes a different parallel solution to the load balancing problem. This
approach is based on the capabilities of the Charm++ system to auto-instrument a code to measure the effective CPU
load and consequently move the data objects. However, code instrumentation is potentially detrimental to perfor-
mance, so this idea is not considered in the current work. Notice that the researches [9, 3, 26, 14] basically adopt the
same partitioning approach, only exploring different possible weights for the vertices of the graph. To the authors’
knowledge, the only contribution to explore different graph partitioning methods in the framework of adaptive DG
LES/ILES solvers is [15], who proposes a two-step partitioning where geometric and multilevel connectivity-based
methods from METIS/ParMETIS, Zoltan and GeMPa are combined together.

This two-step strategy is a peculiar case of what is better known in literature as hierarchical partitioning. In particu-
lar, this concept was first introduced by [23] and, as pointed out by [16, 18], it can significantly improve the quality of
partitions. Indeed, it allows for partitions aware of the hardware locality and then of the communication buses. In this
way, the resulting partition can be optimized from both the perspectives of load and communication imbalance. More-
over, it also improves the overall quality of partitions with respect to a single step partition, which can perform badly
when a large number of partitions are required [16]. Notice that [15] focuses only on parallel scalability, marginally
exploring these potential advantages.

In light of this discussion, the present work introduces a dynamic load balancing strategy with full hierarchical
partitioning capabilities inside a p-adaptive local DG (LDG) scheme. Following the previous activity of the present
research group [2, 24, 1], this result is practically achieved by embedding the Zoltan toolkit [6] inside the p-adaptive
LDG solver dg-comp, implemented in the FEMilaro Fortran library [13]. The remainder of this paper briefly recalls
the mathematical formulation in section 2, then presents the load balancing strategy in section 3 and discusses the
validation of the current implementation in section 4.

2. Math formulation

This section briefly recalls the mathematical formulation behind the dg-comp solver. The present discretization is
based on Cockburn et al. [8] and Bassi and Rebay [4]. Its details have been extensively discussed in previous works
[2, 24], to which the interested reader is referred for further details. In particular, the dg-comp LDG formulation
searches the solution in the vector space V), = {v, € LX(Q) : vh| « € PY(K),YK € Ty}, where T}, is a tessellation of
tetrahedra of the computational domain Q and K is an element of this tessellation, while P?(K) is the polynomial space
of order g with compact support K. The basis functions used to describe V), are, for each element K, the orthonormal
Legendre polynomials defined over K. The resulting weak form of the compressible Navier-Stokes equation is:

o, f Uv,dQ — f F¢ - Vv, dQ + f (F" —F595) . Vy,dQ+
K K K
+ f F - nggv,ds — f (F" —F5%) . nggvpdZ = 0 ()
oK oK

fg-rth+f(I>V-rth— ®nyy - 1,dE = 0
K K 0K

In equation (1), r, € V¢, with d the dimension of the domain. Furthermore, F¢ = F¢(U), F* = F*(U, G) and FS¢5 =
F5C¢S(U, G) are, respectively, the convective (or Eulerian), the diffusive (or viscous) and the subgrid fluxes. Here,
G = VU, U = [p,pe”,pu], ¢ = e+ |[u]|>/2, and ® = [T, u], where p is the density, u the velocity, e the internal
energy and 7' the temperature. In general, dg-comp offers both LES and ILES capabilities. In this work, an explicit
LES approach is adopted. As a consequence, all the above quantities must be intended in a Favre-filtered sense [12],
where the LES filter is implicitly determined by the numerical discretization as the projection of the exact solution in

64 Paolo Valvo et al. / Procedia Computer Science 267 (2025) 6271

the polynomial space where the numerical solution is searched [2]. In particular, this work adopts the turbulent closure
of Smagorinsky for modeling FS¢S. Concerning the fluxes on the surfaces 9K, F¢ is estimated by the approximated
Riemann solver of Rusanov [7] up to a minor modification, since the sound speed is computed using the state variables
in place of the ROE ones. Instead, F* and F$¢S are modeled with a centered scheme as in [4]. The resulting equation is
advanced in time with the explicit five-stages fourth-order strong stability preserving Runge-Kutta method (SSPRK54)
[21].

Concerning p-adaptivity, the adaptation process is driven by the estimate of the amount of under-resolved turbu-
lence [24]. The selected indicator is based on the second order structure function D; (X, r) and is reported in equation
(2). Here, {-) denotes the expected value operator.

Indsp(K) = \/Z[DU-(K) - ij O] where Djj(x,r) = ((ui(X +r,0) — u;(X, D][u;(X +r,0) —uj(x, 0]} ()

ij

The indicator is calculated for all elements at each dt;,4icq0 time instant and averaged over a time interval of width
dtadapr- Every dtaqqp the solution is adapted according to a series of thresholds €, with i = 1,..., piay, such that if
Indsr(K) > €41 the degree of K is increased by one, while if Indsr(K) < €, is decreased by one.

3. Hierarchical load balancing strategy

The dg-comp solver is based on a pure MPI programming model, where the load is distributed among the various
MPI tasks by assigning to each task a portion of the computational grid. Thus, the load balancing problem is naturally
reformulated as a grid partitioning and then as a graph partitioning problem. As discussed in section 1, the classic
approach in the literature generates a graph G based on the grid connectivity information. In particular, each vertex
v; of G describes an element K; of the grid and the edges e;; of G link K; to and only to its neighboring elements K;.
This idea is sketched in figure 1. Moreover, each vertex v; is equipped with one or more weights w;, which describe
the computational cost of K;. However, notice that this strategy produces partitions that are balanced only from the
load viewpoint, completely neglecting the communication cost between partitions. For this reason, the present work
describes the grid with a hypergraph G’ based on the stencil of the numerical method. The various hyperedges then
qualitatively describe the communication pattern implied by the numerical method and, if they are equipped with a
proper weights, such a description is even quantitative. In this case, connectivity-based partitioning schemes minimize
both load and communication imbalance. In the peculiar case of a LDG scheme, the stencil is very reduced. Indeed, the
computation of the solution on the element K; requires data only from the neighboring elements and K; itself. Then,
the hypergraph G’ basically collapses to the graph G, up to the edge’s weights wfj and the grid sides with periodic
boundary conditions. Indeed, elements on these sides communicate across the periodic boundary. Then, the proposed
graph G’ has some additional edges that link these physically disjoint but logically connected pairs of elements. In
addition, the description G’ also attributes to each v; the coordinates of the baricenter of K;. In this way, the graph
partitioning step is solvable both with geometric and connectivity-based methods. Concerning the choice of weights,
w; is the number of Gauss quadrature points on the element K;, while w?, the number of quadrature points on the
surface K; N K. Indeed, a previous study by this research group [25] shows that these weights are accurate enough to
estimate the effective CPU load and the total exchanged data between the various tasks.

The partitioning of G’ is performed through a hierarchical partitioning strategy. In particular, said Ny the number
of MPI tasks and then of desired partitions. The hierarchical strategy does not generate all partitions in a single step but
performs a recursive split of G’. Then, at the first step s; np; subgraphs are generated, then at the subsequent step s
each subgraph is divided into np, partitions and so on until N, partitions are generated. Moreover, also the overall
set of MPI tasks is recursively divided in groups of tasks and each group is attributed to a given subgraph. In particular,
these groups always contain tasks with subsequent MPI rank. For example, said N fa‘_YkS = Nysks/npi, at the sq step the
tasks are divided into np; groups, where the j-th group contains the tasks of rank jN;' . 1+jN(j+DN' —1,

tasks’
Jj=0,...,np; — 1. Of course, np; must be selected to get no remainder for all splits of the groups of tasks. If such

Paolo Valvo et al. / Procedia Computer Science 267 (2025) 6271 65

Fig. 1: Example of a 2D grid with two periodic boundary sides, in green. On the left, the original grid with the baricenter of each element marked in
red. On the right, its associated graph G’. The red dots are the vertices, located at the same position of the baricenter of the corresponding elements.
The blue lines are the edges that would appears also in G, while the green arrows are the extra edges due to periodic boundary conditions.

a strategy is properly combined with CPU binding of MPI tasks at run-time, a hardware-informed load balancing
strategy is obtained. The concept is better discussed in section 4.

This result is practically obtained embedding the Zoltan toolkit within the dg-comp solver. In particular, at each
partitioning step one of four native Zoltan methods can be employed. The first three are geometric algorithms, based
only on the coordinates of v;. They consider only w;, then the partitions are not optimized for communication. In
detail, these methods are the Recursive Coordinate Bisection (RCB) [5], its variant the Recursive Inertial Bisec-
tion (RIB) [22] and a Hilbert-based space filling curve approach (HSFC) [10, 19]. The fourth method is the Zoltan
native connectivity-based graph partitioning algorithm (here, GRAPH) [11]. Differently from geometric methods,
connectivity-based algorithms perform a multi-constrained optimization, minimizing both load and communication
imbalances. In particular, to avoid communication imbalance the method minimizes the communication volume Vg,
which for a given partition Py is defined as the sum of wi; of the edges which cross 0Py, i.e., which connect Py to other
partitions. In practice, this quantity estimates the amount of data a partition exchanges with the other partitions. This
definition is summarized in the equation (3).

Veomm = Z ij (3)

e;jNOP#0

In the GRAPH case, the options coded inside dg-comp imply a multilevel graph partitioning, with an agglomerative
inner product matching coarsening strategy and an approximate Fiduccia-Mattheyses refinement algorithm.

4. Square cylinder simulations
4.1. Setup of the simulation

The proposed load balancing strategy is validated on a classic benchmark for LES simulations, i.e., the flow past
a square cylinder. Due to the strong unsteadiness of the wake, this test case is very suitable also to validate adaptive
strategies and then load balancing techniques. In particular, the selected flow conditions are a Reynolds number of
22000 and a Mach number of 0.3.

The computational domain is sketched in figure 2a. The origin of the reference frame is in the center of the cylinder
and the dimensions of the domain are, in dimensionless units, Ly = 1, L, = 10, Ly = 10 and L, = 20. This domain
is extruded in the z direction, from z = 2 to z = —2 and meshed with an unstructured grid of 23816 thetraedra, more
refined near the cylinder. A zoom of the grid is reported in figure 2b. The simulation over this domain requires periodic

66 Paolo Valvo et al. / Procedia Computer Science 267 (2025) 6271

(a) Domain (b) Slice of the mesh at z = 2.

Fig. 2: The computational domain with its characteristic dimensions and the mesh.

conditions along the z direction, Neumann slip wall conditions on the top and bottom sides and unitary Dirichlet
conditions on the front and rear sides. In order to better enforce Dirichlet conditions, a sponge layer of thickness 2
is employed on the front and 4 on the rear. The simulation is advanced in time with a time step d¢t = 0.0004, which
implies a maximum CFL of 0.24. Concerning the initial conditions, a preliminary simulation is advanced for 30 time
units with uniform polynomial degree p = 2, starting from a uniform flow field with a Gaussian damping on velocity
around the cylinder. The resulting flow field is the initial condition for all the other simulations of this work.

4.2. Numerical results

The present simulations run on Leonardo supercomputer, hosted by CINECA at Bologna, Italy. The employed
partition of Leonardo is composed of nodes equipped with two 56-cores Intel Xeon Platinum 8480+ processors. All
simulations are run on three nodes. The resulting 336 MPI tasks are sequentially bound to the hardware. The run
time layout is schematically depicted in figure 3. In order to demonstrate the effectiveness of the hierarchical load

‘ 112 168 ’ 224 280 ’
167 H 223 L 279 335

Fig. 3: Hardware layout and run-time CPU binding of MPI tasks. The black rectangles the nodes, the blue ones the processors and the arrows
describe the data buses. The numbers are the MPI ranks of the tasks according to the adopted CPU binding.

balancing proposed in section 3, a set of ten simulations is performed. Starting from the initial conditions described
in section 4.1, the simulation is advanced in time for 60 time units. The first simulation is with uniform polynomial
degree p = 4 and uniform load distribution. The second simulation uses the same fixed load distribution but performs
p-adaptation, varying the polynomial degree from p = 2 to p = 4. The indicator thresholds are €,-3 = Se — 4
and €,-4 = le — 2, the indicator is computed each dt;gicaror = 4dt and the solution is adapted each dity4q,r = 0.05.
This setup has already been validated by this research group in [1]. The other simulations perform both adaptation and
dynamic load balancing, repartitioning the grid and then redistributing the loads every dt,epar = dtagqp:- In particular, a
three-step hierarchical load balancing is performed, creating 3 and 2 partitions with the GRAPH method at the first two
levels and 56 partitions at the third level, using one among RCB, RIB, HSFC and GRAPH. Thus, this approach divides
the grid into three parts at the first level, attempting to minimize both the load and the communication imbalances.

Paolo Valvo et al. / Procedia Computer Science 267 (2025) 6271 67

Then, each subgrid is split into two further parts, always minimizing the load and the communication imbalances.
Finally, each second-level subgrid is divided again into 56 parts, considering or not the communication cost according
to the selected method. Moreover, a similar splitting scheme is applied to MPI tasks. In particular, at the first level
the first subgrid is assigned to tasks with MPI ranks 0-111, the second to ranks 112-223 and the third to 224-335. At
the second level, each of these groups of tasks is divided again, assigning to the first second-level subgrid the first
half of the ranks and to the second the remaining part. Finally, a subgrid per task is assigned with the last partitioning
step. As a consequence, when this strategy is combined with the CPU binding exposed in figure 3, a hardware-
informed load balancing is obtained. Indeed, the first level minimizes the node-to-node communication, while the
second level the processor-to-processor communication within the same node. These simulations are compared with
both the references and the single-step application of the four partitioning methods, that is, asking for 336 partitions
at the same time with one of RCB, RIB, HSFC or GRAPH.

All these simulations have an equivalent level of accuracy, as discussed later in the paper. For now, consider only
the performances of these simulations in terms of elapsed times and communication volumes. In particular, consider
two kinds of volumes. The first one is the group communication volume V., that is, the communication volume
computed considering all partitions from i to j as a single partition. In this context, they are of interest VO, 111 y/112-223
and V224335 These are the communication volumes associated with the partitions resulting from the first hierarchical
step and then represent the amount of data a node exchanges with the other two. Secondly, consider the metrics V7ira |
which expresses the amount of exchanged data between the two processors on a single node. For the first node, this
quantity is computed as Viral = (y0-55 4 yS6 11l _ yO-llly /5 Similar definitions are possible for the second and
the third node. This metrics is preferred to the communication volume of the resulting partition assigned to a single
processor, as V935 or V36-111 'since this latter choice would not distinguish between the intra-node and inter-node
communications of a processor. These data are summarized in table 1 according to the following naming scheme:
identify with p4 and ADnoLB the p = 4 and adaptive references and with the names of the partitioning method
the other ones. In hierarchical cases, the name is the method of the last partitioning step with the prefix HIER. For
example, HIER-RCB denotes the simulation in which the 6 groups of 56 partitions at the last partitioning step are

computed with the RCB method.

Table 1: Load balancing performances. The group communication volume is the communication volume considering the partitions assigned to a
group of tasks as a single partition. In this case, VO, 111 V112223 354 1224-335 4re the communication volumes of the nodes. Instead, V74! is the
intra-node communication volume for node 1, i.e., the sum of all wfj of the edges connecting the two partitions assigned to the different processors

of node 1. Communication volumes are reported for the last time instant.

Simulation Elapsed time [s] Group communication volume [-] Intra-node volume [-]
Computation Balancing total yoill y112-223 V224335 yintral
p4 18568 0 18568 13128 18912 12432 5844
ADnoLB 16866 0 16866 7155 9315 5166 3861
RCB 9446 839 10285 14142 22935 10491 6996
RIB 9634 912 10546 12630 24120 14490 4344
HSFC 9924 827 10751 20460 9114 20712 1824
GRAPH - - - - - - -
HIER-RCB 9886 864 10750 4164 1944 2532 1848
HIER-RIB 9860 882 10742 4626 2538 2262 2040
HIER-HSFC 9899 848 10747 4047 2064 2583 1866
HIER-GRAPH 10364 989 11353 4350 2535 2253 1539

Looking at the degrees of freedom, the p4 simulation has 883455 dof's, while the adaptive simulations are around
456000 dof's, that is, a reduction of about —48% with respect to p4. Then, in the ideal case, the adaptive simulations
should approximately halve their total elapsed time. However, it is rather evident that, without load balancing, the
obtained gain is much smaller. Indeed, the reduction in the elapsed time is just —9.8% for ADnoLB. Instead, all
dynamically balanced simulations almost achieve this result, with the exception of the GRAPH case. Indeed, this

68 Paolo Valvo et al. / Procedia Computer Science 267 (2025) 6271

simulation does not converge due to an internal failure of Zoltan, that likely depends on the peculiar options used
to invoke the main partitioning routine. In particular, the options coded in dg-comp ask for a full partitioning of the
graph from scratch, which is a rather demanding task. Invoking the GRAPH method with less severe requirements may
avoid this failure. However, it is worth noting that the HIER-GRAPH partitioning scheme converges, stressing how
hierarchical partitioning is generally more robust than the single step application of a certain partitioning algorithm
when a large number of partitions is required [16].

Furthermore, the proposed hierarchical procedure successfully minimizes the data communication along some
given data buses. Considering the node-to-node communication, RCB, RIB and HSFC have much larger node com-
munication volumes VO 111 y112°223 4pq 1224335 than their hierarchical counterparts, even ten times larger. Then,
the first step of the hierarchical procedure, which generates the subgrids for the groups of tasks 0-111, 112-223 and
224-335, successfully minimizes the node-to-node communication. In the same way, the intra-node communications
between the two processors on the same node are minimized by the second hierarchical step. Indeed, looking at table
| vinral jg reduced by the hierarchical strategy, even if the advantage is smaller than at the node level. Comparable
results are found for the other nodes. Thus, the second hierarchical step actually minimizes the intra-node communi-
cation. Then, the proposed coupling of run-time CPU binding and hierarchical load balancing successfully results in
a hardware-informed load balancing strategy, reducing the data communication along all the main data buses.

Concerning the total elapsed time, hierarchical partitioning is slightly slower than the single-step approaches for the
RCB and RIB cases, while it is almost the same for HSFC and HIER-HSFC. This suggests that, by virtue of its high
locality, the present LDG scheme is not communication-limited when simulations are executed on supercomputers as
Leonardo. Indeed, these machines have the state of the art of communication buses, with very large bandwidths and
low latency. However, different situations may produce different results. This could likely be the case of a computation
executed on different remote nodes that are hosted at different locations and must communicate between themselves
through, e.g., internet.

Finally, consider the accuracy of the current computations. Table 2 reports the Strouhal number and statistics for
the force coefficients. The p4 and ADnoLB simulations agree, legitimizing the adaptation parameters selected for

Table 2: Accuracy of numerical results. The Strouhal number is estimated as a weighted average of the highest contributions of the Fourier transform
of the Cy, time history. The mean results for all the performed simulations are expressed with their 90% confidence interval.

Simulation Mean drag coefficient [-] RMS force coeflicients [-] Strouhal number
(Cp) RMS ¢, RMSc, St
p4 2.445 0.1531 1.366 0.1398
ADnoLB 2.3818 0.1934 1.305 0.1378
RCB 2.3852 0.1934 1.321 0.1383
RIB 2.442 0.2187 1.410 0.1374
HSFC 2.4281 0.1793 1.417 0.1372
GRAPH - - - -
HIER-RCB 2.381 0.1903 1.289 0.1390
HIER-RIB 2.374 0.1975 1.308 0.1381
HIER-HSFC 2.441 0.2012 1.419 0.1333
HIER-GRAPH 2412 0.1873 1.360 0.1383
Other LES data [20] 1.66 - 2.77 0.10-0.27 0.38-1.79 0.066 - 0.15

this work. Moreover, the numerical results are also in good agreement with data in the literature [20] at the same
Reynolds number. Nevertheless, it is worth noting that ADnoLB results do not perfectly coincide with the other
adaptive runs, even if, in principle, they are the same simulation. Indeed, a load balancing strategy redistributes the
loads, but should not alter the results. However, this only is a purely theoretical requirement, that cannot be really
satisfied. In fact, floating point arithmetic is non-commutative and the load balancing procedure unavoidably alters
the order of computations, at least in some points. For example, dg-comp code at first performs all the computation on

Paolo Valvo et al. / Procedia Computer Science 267 (2025) 6271 69

a single partition, then a communication step takes place and after the remaining computations are completed. As a
consequence, the repartition of the grid at every load balancing step modifies the order of some operations, introducing
a small numerical disturbance. At first, the difference between two adaptive simulations is inappreciable. Nevertheless,
if a very long simulation is performed, it is reasonable that, at a given instant, these differences may be amplified and
become non-negligible for some points in the domain. Then, different simulations would slowly differ one from the
other. This is exactly the present case. Indeed, the simulations start to differ after about 30 time units. This is rather
evident in figure 4, which reports the time history of Cp, for the p4, ADnoLLB, RCB, RIB and HSFC cases. The other
simulations are not reported in the figure, but exhibit the same behavior. This slow change from ADnoLB time history
explains the differences in the (Cp) value in table 2, as well as the other discrepancies. The same result is found by

Cp

—)
— ADnoLB

1.6 -
30 40 50 60 70 80

Fig. 4: Time history of the drag coefficient for p4, ADnoLB, RCB, RIB and HSFC simulations. The simulation starts from ¢ = 30 since the p = 2
startup goes from ¢ = 0 to ¢ = 30.

looking at figure 5, which reports the profiles of the pressure statistics at x = 0 on the upper side of the cylinder. After
30 time units from the beginning of the simulation, the adaptive simulations still agree perfectly. Indeed, after this
time interval all profiles except the one of p4 are overlapped, both for the mean pressure profile (p) in figure 5a and
the RMS profile of p —(p) in figure 5b. Instead, at the end of the simulation, statistics show a small scattering. A small
but no longer negligible difference arises. Similar results are obtained for all the other simulations and all the other
meaningful quantities as, e.g., the statistics of density and velocity components.

Profiles for p,,,, at z =0

X . . Profiles for at z =0 . .
After 30 time untis <IJ> After 60 time units After 30 time untis After 60 time units
2 4 2 2 2
——ADnoLB| | [——ADnoLB| ——ADnoLB T ——ADnoLB
18l|~e-p4 i 1.8le-pd 18 ~e—pd 18 | —e-p4
RCB RCB 4 RCB ° RCB
6 l—-RIB | 16 |~—RIB \ |-RIB | |—-RIB
HSFC | HSFC 16) HSFC Lor HSFC
14 { 14 14 14
o o)
<12 (j <12 g2
3 '3 3 3
2 / 7 A7
21 I EE Zo
3 3 = os
S 08 08 S 08
= = = §
0.6 0.6 0.6 0.6 “\
0.4 0.4 / 04 0.4 \ "
0.2 0.2 / 02 02
0 0 0 0
7 7 7 7.6 7 3 0.2 0 0.05 0.1 0.15

0 0.05 0.1 0.15
/ ,
) Drms Prms

(a) Mean pressure profiles after 30 and 60 time units. (b) Profiles after 30 and 60 time units for the rms of p’ = p — (p).

Fig. 5: Profiles of pressure statistics on the upper side of the cylinder, at x = 0. Data are reported for p4, ADnoLB, RCB, RIB and HSFC simulations.

This produces a concern about the reliability of the results. However, notice that a certain level of uncertainty is
implicitly accepted considering p4 and ADnoLB simulations as equivalent. Thus, the observed numerical noise must
be compared with this uncertainty in order to determine its importance. For this reason, consider two sets of data, one
made of the p4 and ADnoLB results and the other made of all adaptive results including ADnoLLB. Table 3 reports

70 Paolo Valvo et al. / Procedia Computer Science 267 (2025) 6271

the statistical comparison of the results of these two sets of simulations for the data in table 2. Observe that, except

Table 3: Statistical comparison between the accepted uncertainty and the numerical noise. For each considered set of simulations, the data in table
2 are elaborated statistically.

Set of simulations Mean Standard deviation o

(Cp) RMS ¢, RMS ¢, St (Cp) RMS ¢, RMS ¢, St
p4 and ADnoLB 2.414 0.1732 1.335 0.1388 0.045 0.0285 0.043 0.0014
Adaptive 2.407 0.1951 1.354 0.1374 0.029 0.0116 0.055 0.0018

for RMS ¢, the standard deviations of all the considered data are smaller for the second set of simulations. Then,
on average, the variability of the results due to the load balancing scheme is smaller than the uncertainty accepted
in the adaptive results. As a consequence, the load-balanced simulations can be considered equivalent to each other
exactly as the p4 and the ADnoLB simulations are assumed statistically equivalent. The statistical meaningfulness of
the results is conserved independently of the load balancing strategy, even if the time histories of instantaneous values
can exhibit appreciable differences on long simulations.

5. Conclusions

The present work successfully designs a dynamic hierarchical load balancing strategy, that produces a hardware-
informed load balancing when properly combined with CPU binding of MPI tasks. The strategy has been formulated
in its details for a LDG-LES solver and practically implemented in the open source p-adaptive dg-comp solver of
the FEMilaro library [13]. However, the proposed methodology is easily generalizable to other solvers and even to
different numerical schemes.

Furthermore, the present work investigates the effects of a load balancing strategy on the results of the simulations.
For long simulations the partitioning approach marginally affects the solution. Results cannot be expected to coincide
any longer, but the discrepancy is limited and contained within the range of the accepted uncertainty. This ensures the
statistical significance of the computations, independently of the adopted load balancing strategy.

In conclusion, the state of the art of load balancing is combined with one of the most promising emerging methods
in CFD for the simulation of turbulent unsteady flows.

Acknowledgements

We acknowledge EuroHPC Joint Undertaking for awarding us access to LEONARDO at CINECA, Italy.

References

[1] Abba, A., Recanati, A., Tugnoli, M., Bonaventura, L., 2020. Dynamical p — adaptivity for LES of compressible flows in a high order DG
framework. Journal of Computational Physics 420, 109720. doi:10.1016/j. jcp.2020.109720.

[2] Abba, A., Bonaventura, L., Nini, M., Restelli, M., 2015. Dynamic models for large eddy simulation of compressible flows with a high order
DG method. Computers & Fluids 122, 209-222. doi:10.1016/j.compfluid.2015.08.021.

[3] Bassi, F., Colombo, A., Crivellini, A., Fidkowski, K.J., Franciolini, M., Ghidoni, A., Noventa, G., 2020. Entropy-adjoint p-adaptive discon-
tinuous Galerkin method for the under-resolved simulation of turbulent flows. ATAAJ 58, 3963-3977. doi:https://doi.org/10.2514/1.
J058847.

[4] Bassi, F.,, Rebay, S., 1997. A high-order accurate discontinuous finite element method for the numerical solution of the compressible
Navier—Stokes equations. Journal of Computational Physics 131, 267-279. doichttps://doi.org/10.1006/jcph.1996.5572.

[5] Berger, M.J., Bokhari, S.H., 1987. A partitioning strategy for nonuniform problems on multiprocessors. IEEE Transactions on Computers
C-36, 570-580. d0i:10.1109/TC.1987.1676942.

[6] Boman, E.G., Catalyurek, U.V., Chevalier, C., Devine, K.D., 2012. The Zoltan and Isorropia parallel toolkits for combinatorial scientific
computing: Partitioning, ordering and coloring. Scientific Programming 20, 129-150. doi:10.1155/2012/713587.

[7]1 Chen, S.s., Yan, C., Xiang, X.h., 2018. Effective low-Mach number improvement for upwind schemes. Computers and Mathematics with
Applications 75, 3737-3755. doi:10.1016/j . camwa.2018.02.028.

(8]

[9]

[10]

[11]

[12]

[13]

[14]
[15]

[16]

[17]

[18]

[19]
[20]
[21]
[22]

[23]

[24]
[25]

[26]

Paolo Valvo et al. / Procedia Computer Science 267 (2025) 6271 71

Cockburn, B., Shu, C.W., 1998. The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM Journal on
Numerical Analysis 35, 2440-2463. doihttps://doi.org/10.1137/50036142997316712.

Colombo, A., Manzinali, G., Ghidoni, A., Noventa, G., Franciolini, M., Crivellini, A., Bassi, F., 11 June 2018. A p-adaptive implicit discon-
tinuous Galerkin method for the under-resolved simulation of compressible turbulent flows, in: 6th European Conference on Computational
Mechanics (ECCM 6) & 7th European Conference on Computational Fluid Dynamics (ECFD 7). Glasgow, UK.

Dennis, J., 2003. Partitioning with space-filling curves on the cubed-sphere, in: Proceedings International Parallel and Distributed Processing
Symposium, IEEE. doi:10.1109/IPDPS.2003.1213486. Conference held at Nice, France, 22-26 April 2003.

Devine, K.D., Boman, E.G., Heaphy, R.T., Bisseling, R.H., Catalyurek, U.V., 2006. Parallel hypergraph partitioning for scientific computing, in:
Proceedings 20th IEEE International Parallel & Distributed Processing Symposium, IEEE. doi:10.1109/IPDPS.2006.1639359. Conference
held at Rhodes Island, Greece, 25-29 April 2006.

Favre, A.J., 1965. The equations of compressible turbulent gases. Technical Report 1. Institut de mecanique statistique de la turbulence.
Marseille, France. Annual summary report for Contract AF 61 (052)-772, Air Force office of scientific research.

FEMilaro, a finite element toolbox, 2025. URL: https://bitbucket.org/mrestelli/femilaro/wiki/Home. available under GNU GPL
v3. Results of the current paper are generated with the code under the Zoltan branch, version date 2025-04-24. The code will be merged in the
master branch in the next future.

Ghoreishi, R., Vermeire, B.C., 2024. Dynamic load balancing for vorticity-based polynomial adaptation of turbulent flows, in: AIAA SciTech
2024 Forum. doi:10.2514/6.2024-0912. Orlando, FL.

Jang, Y., Martin, E., Chapelier, J.B., Couaillier, V., 2024. Two-level dynamic load-balanced p-adaptive discontinuous Galerkin methods for
compressible CFD simulations. Computers & Mathematics with Applications 176, 165-178. do0i:10.1016/j . camwa.2024.10.008.

Kong, F., Stogner, R.H., Gaston, D.R., Peterson, J.W., Permann, C.J., Slaughter, A.E., Martineau, R.C., 2018. A general-purpose hierarchical
mesh partitioning method with node balancing strategies for large-scale numerical simulations, in: 2018 IEEE/ACM 9th Workshop on Latest
Advances in Scalable Algorithms for Large-Scale Systems (scalA), IEEE. pp. 65-72. doi:10.1109/ScalA.2018.00012. conference held at
Dallas, TX, USA, 12 November 2018.

Li, W,, Pandare, A.K., Luo, H., Bakosi, J., Waltz, J., 2023. A parallel p-adaptive discontinuous Galerkin method for the Euler equations with
dynamic load-balancing on tetrahedral grids. International Journal Numerical Methods in Fluids 95, 1913-1932. doi:https://doi.org/10.
1002/£1d.5231.

Mohanamuraly, P., Staffelbach, G., 2020. Hardware locality-aware partitioning and dynamic load-balancing of unstructured meshes for large-
scale scientific applications, in: Proceedings of the Platform for Advanced Scientific Computing Conference, ACM, New York, NY, United
States. pp. 1-10. doi:10.1145/3394277 .3401851. conference held at Geneve, Switzerland, 29 June-01 July 2020.

Pilkington, J.R., Baden, S.B., 1996. Dynamic partitioning of non-uniform structured workloads with spacefilling curves. IEEE Transactions
on Parallel and Distributed Systems 7, 288-300. doi:10.1109/71.491582.

Rodi, W., Ferziger, J.H., Breuer, M., Pourquie’e, M., 1997. Status of large eddy simulation: Results of a workshop. Journal of Fluids
Engineering 119, 248-262. doi:10.1115/1.2819128.

Spiteri, R.J., Ruuth, S.J., 2003. A new class of optimal high-order strong-stability-preserving time discretization methods. SIAM Journal on
Numerical Analysis 40, 469—491. doi:10.1137/S0036142901389025.

Taylor, V.E., Nour-Omid, B., 1994. A study of the factorization fill-in for a parallel implementation of the finite element method. International
Journal for Numerical Methods in Engineering 37, 3809-3823. doi:https://doi.org/10.1002/nme.1620372205.

Teresco, J.D., Faik, J., Flaherty, J.E., 2006. Hierarchical partitioning and dynamic load balancing for scientific computation, in: Dongarra, J.,
Madsen, K., Wasniewski, J. (Eds.), Applied Parallel Computing. State of the Art in Scientific Computing. Springer Berlin Heidelberg, Berlin,
Heidelberg. volume 3732, pp. 911-920. doi:10.1007/11558958_110. series title: Lecture Notes in Computer Science. First appeared in
conference PARA, 20-23 June 2004, Lyngby, Denmark.

Tugnoli, M., Abba, A., Bonaventura, L., Restelli, M., 2017. A locally p-adaptive approach for large eddy simulation of compressible flows in
a DG framework. Journal of Computational Physics 349, 33-58. doi:10.1016/j.jcp.2017.08.007.

Valvo, P., Abba, A., . A hardware-informed dynamic load balancing for a p-adaptive local discontinuos galerkin LES solver. Submitted to
Computer & Fluids the 16th of April, 2025.

Wang, L., Gobbert, M.K., Yu, M., 2020. A dynamically load-balanced parallel p-adaptive implicit high-order flux reconstruction method
for under-resolved turbulence simulation. Journal of Computational Physics 417, 109581. doi:https://doi.org/10.1016/j.jcp.2020.
109581.

Available online at www.sciencedirect.com

ScienceDirect Procedia

Computer Science

CrossMark

Procedia Computer Science 267 (2025) 72-81

www.elsevier.com/locate/procedia
Proceedings of the Third EuroHPC user day

Enabling Ginkgo as Numerics Backend in nekRS Employing A
Loosely-Coupled Configuration File Concept
Yu-Hsiang Mike Tsai®, Mathis BodeP, Hartwig Anzt*“*

@Technical University of Munich, Heilbronn, Germany
b Forschungszentrum Jiilich, Germany
“The Innovative Computing Laboratory, The University of Tennessee, USA

Abstract

In computational fluid dynamics (CFD), the choice of numerical methods can significantly impact the overall simulation runtime.
While it is virtually impossible to know the optimal solver plus preconditioner configuration for every hardware and application
setup, it is valuable for CFD engineers to have access to and evaluate different numerical methods to customize the setup for
efficient execution. In this paper, we demonstrate how the Ginkgo high-performance numerical linear algebra library is integrated
as a math toolbox into the nekRS state-of-the-art computational fluid dynamics simulation library to give CFD engineers access to a
plethora of solvers and preconditioners CFD engineers. Using three application test cases, we demonstrate how picking numerical
methods from the Ginkgo library can accelerate simulations on supercomputers featuring NVIDIA’s Ampere GPUs and Grace
Hopper superchips.

© 2025 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY 4.0 license (https://creativecommons.org/licenses/by/4.0)
Peer-review under responsibility of the scientific committee of the Proceedings of the Third EuroHPC user day

Keywords: Spectral Element Methods; GPU; linear solver

1. Introduction

Computational fluid dynamics (CFD) simulations drive a large portion of high-performance research and develop-
ment. Based on a discretization of the Navier-Stokes equations, CFD simulations attempt to simulate the free-stream
flow and the interaction between the flows and gases with applications ranging from airplanes, reactors and combustion
to ocean and atmospheric flows as well as astrophysical problems. CFD simulations resolving all relevant physical
scales are called direct numerical simulations (DNSs), but they are not possible for all applications due to compu-
tational cost. Reduced order methods (ROMs), such as Reynolds-averaged Navier Stokes (RANS) and large-eddy
simulation (LES), can be used as cheaper alternatives. However, their accuracy strongly depends on the availability of

* Corresponding author.
E-mail address: hartwig.anzt@tum.de

1877-0509 © 2025 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY 4.0 license (https://creativecommons.org/licenses/by/4.0)
Peer-review under responsibility of the scientific committee of the Proceedings of the Third EuroHPC user day
10.1016/j.procs.2025.08.234

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2025.08.234&domain=pdf

Yu-Hsiang Mike Tsai et al. / Procedia Computer Science 267 (2025) 72-81 73

suitable closure models. For handling these models on supercomputers, CFD libraries need access to fast and robust
numerical methods that are designed for efficient execution on modern hardware.

Virtually all modern supercomputers are GPU-centric. That means that a significant portion of the computing
performance is provided by the GPUs of a system. For example, on the latest TOP500 list ranking the supercomputers
according to their HPL performance on FP64 precision, only one of the top ten systems is not GPU-centric. Although
the performance and memory bandwidth of GPUs have both grown quickly in recent years driven by applications such
as artificial intelligence, the communication between host memory and GPUs” memory is still often a performance
bottleneck. Thus, realizing all numerical computations of a CFD simulation on the GPUs of a system without any data
movement between the GPUs and the CPUs has become the dominant approach in high-performance computing.

In this paper, we integrate the high-performance numerical linear algebra library Ginkgo as a math toolbox into
the state-of-the-art CFD library nekRS. Ginkgo provides a plethora of performance-portable direct and iterative linear
solvers, preconditioners, and algebraic multigrid (AMG) that are efficient in the solution of problems arising in LES
and RANS turbulence models. After providing some background about the nekRS and Ginkgo libraries and their usage
in Section 2, we detail in Section 3 how configuration files can be used to instruct nekRS to employ a specific solver +
preconditioner combination from the Ginkgo. We then demonstrate in Section 4 that employing Ginkgo functionality
in nekRS simulations can indeed render attractive runtime savings on GPU-centric supercomputers. In Section 5, we
summarize the results and how the approach taken in the Ginkgo integration transfers to other simulation software
stacks.

2. Background

nekRS[15, 6] is a CFD library based on libparanumal[10, 3] and Nek5000[14]. It mainly uses OCCA[11] as a
portability layer to support different vendors’ hardware. nekRS starts from the spectral element method (SEM), which
combines high accuracy with flexibility concerning flow geometry. A high-order SEM approximates the solution and
data in terms of locally structured Nth-order tensor product polynomials on a set of globally unstructured elements.
Thus, in addition to exponential convergence for smooth solutions with increasing polynomial order, which provides
high accuracy at lower computational cost, it offers the flexibility to handle complex geometries via domain decom-
position. As a result, nekRS is well suited for the efficient simulation of turbulence, where the number of grid points
grows faster than quadratically with the Reynolds number when all flow features must be resolved.

nekRS highly optimizes the components for their simulation. They especially apply their domain knowledge to
accelerate the solving process based on the problems’ properties. nekRS usually uses p-multigrid as a preconditioner,
which uses different approximate orders on the problem for different multigrid levels. In multigrid, nekRS needs a
solver to solve the coarse problem of p-multigrid. Previously, nekRS used HYPRE[S, 17] and NVIDIA AmgX][13] as
the coarse solver options. This paper introduces Ginkgo as another coarse solver option, which brings more solvers
into the nekRS stack.

Ginkgo[1] is a software library focusing on the efficient solution of sparse linear systems on GPU-centric super-
computers. The software features multiple backends in hardware-native languages: CUDA for NVIDIA GPUs, HIP
for AMD GPUs, and SYCL for Intel GPUs in [4]. Also, Ginkgo considers software sustainability to be of high priority,
so all functionality is unit-tested against a sequential reference implementation and employs continuous integration
(CI) to ensure the correctness of compilation and execution. Ginkgo contains a plethora of iterative solvers, including
Krylov solvers, direct solvers, algebraic multigrid (AMG), and parallel preconditioners like block-Jacobi, incomplete
LU factorization (ILU) and parallel variants (ParILU), ILU with thresholding, BDDC preconditioning, and batched
routines for efficient data-parallel processing.

3. Leveraging Ginkgo in nekRS

Integrating Ginkgo as a math toolbox into a simulation software stack is one thing, but easing the use of Ginkgo’s
functionality in simulation runs is a totally different aspect that is equally important to facilitate the hassle-free toolbox
usage for domain scientists who are primarily focused on the CFD applications. To facilitate the hassle-free usage of
Ginkgo’s functionality, we developed a configuration file concept that allows encoding all solver and preconditioner

0NN N R W~

74 Yu-Hsiang Mike Tsai et al. / Procedia Computer Science 267 (2025) 72-81

Library
Library :
solver
config parser | ’ configurator
GMRES ‘ | CG | | LU |] | |
\/M Ginkgo
) GMRES | ’ CG | | ILU | | | |
‘ Ginkgo ‘
(a) Library needs to expose the numerical methods available in the math (b) A single interface to the toolbox is complemented with a configuration
toolbox, then configure the solver in the application code. file that encodes the numerical method selection outside the source code.

Fig. 1: Math toolbox integration options.

Listing 1: CG solver from configuration file for selecting the numerical methods and configuring the parameters.

"type": "solver::Cg",

"criteria": [
{"type": "Iteration", "max_iters": 4},
{"type": "ImplicitResidualNorm",
"reduction_factor": le-4}

settings in a file. Prior to introducing this concept, the simulation software needed to expose all of Ginkgo’s solver
and preconditioner options internally to the users, see Figure la. The configuration file concept removes this burden
by outsourcing all solver and preconditioner configurations into a file. The simulation software only needs to include
one interface to the math toolbox (in this case: Ginkgo) and extracts the specific numerical method configuration from
the configuration file, see Figure 1b. This concept has several advantages: 1) It dramatically eases the maintenance
of a library interface as new methods do not need to be exposed in the simulation software stack but simply become
available as an option in the file configuration, and 2) it eases the toolbox usage for the domain scientists as they
can easily swap solvers and preconditioners and options in the configuration file without even touching the code or
re-compilation.

To provide an example for the configuration file usage, we configure the JSON in Listing 1 to select a Conjugate
Gradient (CG) solver with an iteration limit of four iterations and a relative residual stopping criterion of 1074, Not
significantly more complicated is the configuration of an AMG solver based on Parallel Graph Match (PGM[13]) as
the coarsening method and a CG coarse grid solver for the bottom-level system of size smaller than 512 in Listing 2.

The nekRS domain scientist instructs nekRS to use Ginkgo by modifying the nekRS run file, see Listing 3: Speci-
fying ginkgo in coarseSolver instructs nekRS to the generic interface to Ginkgo in the coarse solver of the nekRS
multigrid, the path specified in the [GINKGO] section of the runfile provides the path to a Ginkgo configuration file
like Listing 2. Domain scientists can quickly change the Ginkgo solver configuration by modifying the Ginkgo con-
figuration file or changing the path to the configuration file in the nekRS run file.

4. Experiments Result

With Ginkgo being integrated into nekRS and the configuration file enabling the hassle-free use of Ginkgo’s nu-
merical methods in nekRS, the remaining question is whether domain scientists can benefit from utilizing Ginkgo
functionality in nekRS simulations. To demonstrate the practical benefits the Ginkgo toolbox brings to nekRS, we fo-
cus on three scientifically relevant benchmark applications and their solution on the latest GPU-centric clusters at the
Jiilich Supercomputing Centre (JSC). The two supercomputers we run on are the JURECA-DC GPU system, which

0NN R W=

D) m m o e e e
OO X1 B W= OO

NN R W =

Yu-Hsiang Mike Tsai et al. / Procedia Computer Science 267 (2025) 72-81 75

Listing 2: AMG solver from configuration file for selecting the numerical methods and configuring the parameters.

"type": "solver::Multigrid",
"min_coarse_rows": 512,
"mg_level": [
{
"type": "multigrid::Pgm", "deterministic": true
)
1,

"coarsest_solver": |

"type": "solver::Cg",
"criteria": [
{"type": "Iteration", "max_iters": 4},
{"type": "ImplicitResidualNorm",
"reduction_factor": le-4}
]
}s
"criteria": [
{"type": "Iteration", "max_iters": 1}

]
}

Listing 3: Using Ginkgo as the coarse solver and set the ginkgo solver from the file.

[PRESSURE]

preconditioner = multigrid

coarseSolver = ginkgo

[GINKGO]

configFile = <path to cg.json or mg.json>

is based on 4 A100 GPUs hosted by 2 AMD EPYC 7742 CPUs per node, and the JEDI system, which is composed
of 4 Grace Hopper superchips per node. Each Superchip integrates a 72-core Grace CPU and a Hopper GPU (96 GB
HBM3) connected via NVLink-C2C (900 GB/s). JEDI is the development system for the first European Exascale su-
percomputer JUPITER. In fact, it features one future JUPITER rack of hardware. We compile the nekRS and Ginkgo
codes with GCC 12.3.0, CUDA 12.2, and OpenMPI 4.1.6 with GPU-aware features on these machines.

Different CFD problems can be numerically very different. E.g. the pressure solve, which is usually the most critical
part, can be simpler or more difficult to solve from different problems. The benchmark applications are 1) GABLS
in Figure 2a - GEWEX Atmospheric Boundary Layer Study[8, 7] focusing on boundary layer turbulence and near
surface process on the stable boundary layers over ground and under clear skies; 2) RBC in Figure 2b - Rayleigh-
Bénard convection[16, 2] focusing on the natural convection in the container when heating the container; and 3) PB in
Figure 2c - Pebble Bed[9] focusing on the flow past non-contacting, randomly-packed, equally sized spheres staked
in cylindrical or annular container. Also, we collect the problem size and corresponding polynomial order in Table 1.
Additionally, we collect the global size of the coarse problem from nekRS’s multigrid which is solved by Ginkgo in
the last column of Table 1. nekRS almost distributes the problem equally to GPUs, so each GPU handles = {the total
number of elements} / N elements when we run the problem on N GPUs. Because the problem in the pressure solve
can be varied in terms of difficulty, we pick Ginkgo’s CG and AMG solvers with the configurations listed in Listing |
and Listing 2, respectively for the comparison against the nekRS-internal solvers. nekRS specifics single precision for
the coarse solver, so Ginkgo’s solver also uses single precision to set the solver.

76 Yu-Hsiang Mike Tsai et al. / Procedia Computer Science 267 (2025) 72-81

(a) GABLS (b) RBC (c) PB from the paper[12]

Fig. 2: The application visualization.

polynomial order | the total number of elements | global problem size from nekRS to Ginkgo
GABLS_64 8 262,144 266,240
GABLS_128 8 2,097,152 2,113,536
RBC_40 7 2,160,000 2,182,500
RBC_80 9 2,160,000 2,182,500
ann3344 7 1,080,003 1,238,974
cylllk 8 3,575,076 4,096,583

Table 1: The application size

4.1. GABLS cases

We report the performance of GABLS_64 (643 discretization) and GABLS_128 (1283 discretization) on JURECA-
DC GPU in Figure 3 and Figure 4. The node count is chosen to fulfill the weak scaling requirement of the local
problem size remaining constant for both node counts. The parallel efficiency for the weak scaling experiment is
visualized in Figure 5. The GABLS benchmark cases are relatively easy to solve, and Ginkgo CG outperforms both
Ginkgo AMG and nekRS smoother. For the largest node count, Ginkgo CG achieves a 1.1x speedup against nekRS
smoother for GABLS_64 in Figure 3 and 1.12x speedup for GABLS_128 in Figure 4. In terms of parallel efficiency,
Ginkgo and nekRS are comparable, reaching about 70% parallel efficiency, see Figure 5. We collect the memory
consumption per GPU from the report of nekRS smoother settings:

o GABLS_64: 17.11 GB per GPU when using 16 A100, 9.83 GB per GPU when using 28 A100, and 4.93 GB per
GPU when using 56 A100.

e GABLS_128: 19.61 GB per GPU when using 112 A100, 9.97 GB per GPU when using 220 A100, and 5.02 GB
per GPU when using 440 A100.

Besides the performance results on A100 on JURECA, we also perform the same experiments on JEDI to as-
sess the performance gains coming from NVIDIA’s Grace Hopper architecture. We collect the performance data of
GABLS_128 on both machines in Figure 6. Overall, we see a 2x speedup when moving from the A100-powered
supercomputer to the Grace Hopper superchips system. This speedup matches the experience from the other applica-
tions on JEDI. Grace Hopper superchips equip more memory than A100, so we only use a half the number of machine
nodes of JURECA-DC GPU for the experiments on Grace Hopper superchips. For example, we set 14 machine nodes
(56 Grace Hopper superchips) on JEDI from 28 machine nodes (112 A100) on JURECA-DC GPU. Because we set
the number based on the number of machine nodes, we set 27 machine nodes by rounding down from the number %
We set up 28 machine nodes on JEDI, which contains 112 Grace Hopper superchips, rather than 55 machine nodes

Yu-Hsiang Mike Tsai et al. / Procedia Computer Science 267 (2025) 72-81 77

GABLS_64 on JURECA: Strong Scalability

® nekRS smoother ® Ginkgo CG Ginkgo AMG == ideal = = 80% efficiency
30.0E+0

20.0E+0

10.0E+0

8.0E+0
7.0E+0

solving time of 100 step [s]

20 30 40 50

The number of A100 GPUs

Fig. 3: The performance of GABLS_64 (64> discretization) on JURECA-DC GPU.

GABLS_128 on JURECA: Strong Scalability

® nekRS smoother ® Ginkgo CG Ginkgo AMG =- ideal = = 80% efficiency
50.0E+0
40.0E+0 ~-

30.0E+0

20.0E+0

9.0E+0

solving time of 100 steps [s]

200 300 400

The number of A100 GPUs

Fig. 4: The performance of GABLS_128 (128° discretization) on JURECA-DC GPU.

by reducing half from 110 machine nodes on JURECA-DC GPU because it is the maximum number of nodes we can
request. We collect the memory consumption per GPU from the report of nekRS smoother settings:

e GABLS_128: 38.97 GB per GPU when using 56 Grace Hopper superchips, 20.30 GB per GPU when using 108
Grace Hopper superchips, and 19.61 GB per GPU when using 112 Grace Hopper superchips.

4.2. RBC cases

We next use the same hardware configurations for the RBC benchmark applications. The suffix number of RBC
indicates the minimal machine node requirement on JURECA-DC GPU. RBC_40 uses polynomial order 7 and a
Rayleigh number to 10%, but RBC_80 uses polynomial order 9 and a Rayleigh number to 10°. In this performance

78 Yu-Hsiang Mike Tsai et al. / Procedia Computer Science 267 (2025) 72-81

GABLS on JURECA: Weak Scaling Efficiency
B 16 A100 -> 112 A100 = 28 A100 -> 220 A100 56 A100 -> 440 A100

0.80
(2]
2
5
o 0.60
[%]
o
2 040
T
()]
(]
& 020
cC
ko]
k3]
5 o000

Ginkgo CG nekRS smoother

Fig. 5: The weak scaling efficiency of GABLS (from 643 to 128%) on JURECA-DC GPU.

GABLS_128 Performance on JURECA (A100) and JEDI (Grace Hopper)

60 ® nekRS smoother
50 ® Ginkgo CG

40 Ginkgo AMG
4 nekRS smoother
30 \ 4 Ginkgo CG
\ Ginkgo AMG
i \

10

solving time of 100 steps [s]

60 80 100 200 400

The number of GPUs (@: A100, A: GraceHopper)

Fig. 6: The performance of GABLS_128 (128° discretization) on JURECA-DC GPU and JEDI.

experiment, we increment the node count by steps of 40 until we run on the full JURECA-DC GPU machine. In
Figure 7 we see that all solvers perform similarly for the RBC_40 case. Ginkgo CG shows 1.15x speedup over nekRS
smoother on 160 nodes (640 A100) on JURECA-DC GPU in Figure 8. For GABLS(128%) Figure 4, nekRS smoother
outperforms Ginkgo AMG for large GPU counts, but Ginkgo AMG starts outperforming nekRS smoother for large
node counts for the RBC_80 benchmark application, see Figure 8. We collect the memory consumption per GPU from
the report of nekRS smoother settings:

e RBC_40: 11.59 GB per GPU when using 160 A100, 5.89 GB per GPU when using 320 A100, 3.89 GB per
GPU when using 480 A100, and 2.92 GB per GPU when using 640 A100.

e RBC_80: 11.34 GB per GPU when using 320 A100, 7.58 GB per GPU when using 480 A100, and 5.70 GB per
GPU when using 640 A100.

Yu-Hsiang Mike Tsai et al. / Procedia Computer Science 267 (2025) 72-81 79

RBC_40 on JURECA: Strong Scalability
® nekRS smoother ® Ginkgo CG Ginkgo AMG =- ideal = = 80% efficiency

>,

w

S 1.00E+01

>

o 8.00E+00

o

G 6.00E+00 =

q.) ~

g = ~ - \U

@ 4.00E+00 e

[e] .

2
200 300 400 500 600

The number of A100 GPUs

Fig. 7: The performance of RBC_40 on JURECA-DC GPU.

RBC_80 on JURECA: Strong Scalability

® nekRS smoother ® Ginkgo CG Ginkgo AMG == ideal = = 80% efficiency
20E+1 « _

1.0E+1

9.0E+0

8.0E+0 P
400 500 600

solving time of 100 steps [s]

The number of A100 GPUs

Fig. 8: The performance of RBC_80 on JURECA-DC GPU.

4.3. PB cases

We now address a numerically challenging problem coming from the PebbleBed benchmark application. The
ann3344 problem contains 3,344 spheres in an annular container, and the cyll 1k problem contains 11,145 spheres
in a cylindrical container. The solver runtime visualization for the pebble bed series problem reveals that Ginkgo
AMG largely outperforms Ginkgo CG and nekRS smoother: Ginkgo AMG outperforms nekRS smoother by 3x for
the ann3344 test case and 8x for the larger cyll1k test case in Figure 9. These speedups stem from the significant
convergence acceleration: the AMG reduces the iteration count by more than 8x, see Figure 10. Ginkgo CG seems
superior to Gingko AMG and nekRS smoother for GABLS and RBC cases because the problems are relatively easy
to solve. For PB cases, Ginkgo AMG shows clear advantages against Ginkgo CG and nekRS smoother. We collect the
memory consumption per GPU from the report of nekRS smoother settings:

80 Yu-Hsiang Mike Tsai et al. / Procedia Computer Science 267 (2025) 72-81

Pebble bed cases on JURECA: Performance
B nekRS smoother B Ginkgo CG Ginkgo AMG

8E+3
@
2
& 6E+3
®
2
o AE+3
o
(=]
N
S 2E+3
[}
E
= O0E+0

ann3344 (32 A100) cyl11k (192 A100)

Fig. 9: The performance of pebble bed cases on JURECA-DC GPU.

Pebble bed cases on JURECA: Convergence
B nekRS smoother B Ginkgo CG Ginkgo AMG
3E+5

2E+5
2E+5
1E+5

5E+4

preconditioner iteration

OE+0
ann3344 (32 A100) cyl11k (192 A100)

Fig. 10: The convergence of pebble bed cases on JURECA-DC GPU.

e ann3344: 36.37 GB per GPU when using 32 A100.
e cyll1k: 32.80 GB per GPU when using 192 A100.

5. Conclusion

Using the Ginkgo library as an example, we demonstrated how a lightweight integration into the nekRS library
can give domain scientists easy access to a plethora of numerical methods in the Ginkgo toolbox. The use of a
configuration file workflow enables quick testing of different methods and their suitability for a given application
and hardware setup. We furthermore demonstrated that the CG and AMG methods available in Ginkgo through this
lightweight interface can offer attractive runtime savings, particularly for numerically challenging problems. While we

Yu-Hsiang Mike Tsai et al. / Procedia Computer Science 267 (2025) 72-81 81

do not claim that the performance we demonstrate on the latest GPU architecture from NVIDIA cannot be matched
by other solvers or libraries, we are convinced that the integration strategy is a blueprint for other math toolbox
integrations as it combines sustainability through low maintenance and productivity through the hassle-free usage by
domain scientists.

Acknowledgements

This research is supported by the Inno4Scale project under Inno4scale-202301-099. Inno4Scale has received fund-
ing from the European High Performance Computing Joint Undertaking (JU) under grant agreement No 101118139.
The JU receives support from the European Union’s Horizon Europe Programme. The authors acknowledge the Gauss
Centre for Supercomputing e.V. (www.gauss-centre.eu) for funding this project by providing computing time on the
GCS Supercomputers at Jiilich Supercomputing Centre (JSC) and the JUPITER Research and Early Access Program
(JUREAP).

References

[1] Anzt, H., Cojean, T., Flegar, G., Gobel, F., Griitzmacher, T., Nayak, P., Ribizel, T., Tsai, Y.M., Quintana-Orti, E.S., 2022. Ginkgo: A modern
linear operator algebra framework for high performance computing. ACM Transactions on Mathematical Software (TOMS) 48, 1-33.

[2] Bode, M., Alvarez, D., Fischer, P., Frouzakis, C.E., Gobbert, J.H., Insley, J.A., Lan, Y.H., Mateevitsi, V.A., Min, M., Papka, M.E., et al., 2025.
Deciphering boundary layer dynamics in high-rayleigh-number convection using 3360 gpus and a high-scaling in-situ workflow. arXiv preprint
arXiv:2501.13240 .

[3] Chalmers, N., Karakus, A., Austin, A.P., Swirydowicz, K., Warburton, T., 2022. libParanumal: a performance portable high-order finite element
library. URL: https://github.com/paranumal/libparanumal, doi:10.5281/zenodo.4004744. release 0.5.0.

[4] Cojean, T., Tsai, YH.M., Anzt, H., 2022. Ginkgo—a math library designed for platform portability. Parallel Computing 111, 102902.

[5] Falgout, R.D., Yang, U.M., 2002. hypre: A library of high performance preconditioners, in: International Conference on Computational
Science, Springer. pp. 632-641.

[6] Fischer, P., Kerkemeier, S., Min, M., Lan, Y.H., Phillips, M., Rathnayake, T., Merzari, E., Tomboulides, A., Karakus, A., Chalmers, N.,
Warburton, T., 2022. Nekrs, a gpu-accelerated spectral element navier—stokes solver. Parallel Computing 114, 102982. URL: https://www.
sciencedirect.com/science/article/pii/S0167819122000710, doithttps://doi.org/10.1016/j.parco.2022.102982.

[7] Holtslag, A., 2006. Gewex atmospheric boundary-layer study (gabls) on stable boundary layers. Boundary-Layer Meteorol 118, 234-246.

[8] Kosovié, B., Curry, J.A., 2000. A large eddy simulation study of a quasi-steady, stably stratified atmospheric boundary layer. Journal of the
atmospheric sciences 57, 1052-1068.

[9] Lan, Y.H., Fischer, P., Merzari, E., Min, M., 2021. All-hex meshing strategies for densely packed spheres. arXiv preprint arXiv:2106.00196 .

[10] libparanumal, . libparanumal. [Online] https://github.com/paranumal/libparanumal.

[11] Medina, D.S., St-Cyr, A., Warburton, T., 2014. Occa: A unified approach to multi-threading languages. arXiv preprint arXiv:1403.0968 .

[12] Merzari, E., Yuan, H., Min, M., Shaver, D., Rahaman, R., Shriwise, P., Romano, P., Talamo, A., Lan, Y.H., Gaston, D., et al., 2021. Cardinal:
A lower-length-scale multiphysics simulator for pebble-bed reactors. Nuclear Technology 207, 1118-1141.

[13] Naumov, M., Arsaev, M., Castonguay, P., Cohen, J., Demouth, J., Eaton, J., Layton, S., Markovskiy, N., Reguly, I., Sakharnykh, N., et al., 2015.
AmgX: A library for GPU accelerated algebraic multigrid and preconditioned iterative methods. SIAM Journal on Scientific Computing 37,
S602-S626.

[14] nek5000, . nek5000. [Online] https://github.com/Nek5000/Nek5000.

[15] nekRS, . nekRS. [Online] https://github.com/Nek5000/nekRS.

[16] Samuel, R.J., Bode, M., Scheel, J.D., Sreenivasan, K.R., Schumacher, J., 2024. No sustained mean velocity in the boundary region of plane
thermal convection. Journal of Fluid Mechanics 996, A49.

[17] Yang, UM, etal., 2002. BoomerAMG: a parallel algebraic multigrid solver and preconditioner. Applied Numerical Mathematics 41, 155-177.

Available online at www.sciencedirect.com

ScienceDirect Procedia

Computer Science

CrossMark

Procedia Computer Science 267 (2025) 82-91

www.elsevier.com/locate/procedia
Proceedings of the Third EuroHPC user day

An efficient multigrid solver for finite element methods on
multi-GPU systems

Chris N. Richardson®®*, Igor A. Baratta®?, Joseph P. Dean®?, Adrian Jackson®®,
Garth N. Wells@*

“Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, United Kingdom
bEdinburgh Parallel Computing Centre, Bayes Centre, 47 Potterrow, Edinburgh, EH8 9BT, United Kingdom

Abstract

We present a matrix-free p-multigrid method for solving the Poisson problem using the finite element method on GPU-based
supercomputers. The solver uses optimised matrix-free kernels to compute the action of arbitrary-degree finite element operators,
matrix-free interpolation between finite element spaces of different polynomial degrees, and parallel vector updates, all operating
on the GPU. On the coarsest level, we use an algebraic multigrid solver. We examine performance and scalability for the Poisson
problem on a number of different meshes. Numerical experiments on the LUMI supercomputer show good parallel performance.

© 2025 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY 4.0 license (https://creativecommons.org/licenses/by/4.0)
Peer-review under responsibility of the scientific committee of the Proceedings of the Third EuroHPC user day

Keywords: Finite Element; Multigrid; GPU; HPC; iterative methods

1. Introduction

Solving elliptic and parabolic partial differential equation problems, such as heat conduction and elasticity, on
GPU architectures poses a number of challenges. Firstly, implicit solution methods are required, which would usually
involve the assembly of a sparse matrix. High-order finite element methods are usually preferred on GPUs over more
commonly used low-order methods because the kernels have higher arithmetic intensity, which potentially allows
a greater fraction of the floating point performance of the GPU to be utilised. However, the performance of sparse
matrix implementations degrades with increasing polynomial degree, with an evaluation complexity of O(p?) per
matrix row [8] for p-degree elements in d-dimensional space. Moreover, scalable solvers typically perform many
matrix—vector products, and sparse matrix—vector products have very low arithmetic intensity, meaning that they only
achieve a percent or two of peak compute performance on modern hardware [2]. To compound these challenges, large
problems require efficient solvers with optimal cost complexity of O(n), where n is the number of degrees-of-freedom
(DoFs), to be tractable to solve. Multigrid-preconditioned Krylov subspace methods can provide optimal solvers, and

* Corresponding author. Tel.: +44 1223 765700
E-mail address: cnr12@cam.ac.uk

1877-0509 © 2025 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY 4.0 license (https://creativecommons.org/licenses/by/4.0)
Peer-review under responsibility of the scientific committee of the Proceedings of the Third EuroHPC user day
10.1016/j.procs.2025.08.235

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2025.08.235&domain=pdf

Chris N. Richardson et al. / Procedia Computer Science 267 (2025) 82-91 83

——&— CSR matrix
on-the-fly geometry
—4— precompute geometry

=

o
w
L

=
o
Y

bytes per degree-of-freedom

101 4

1 2 3 4 5 6
degree (p)

Fig. 1: Memory requirement per degree-of-freedom for different implementations of the Laplacian operator for Lagrange elements on hexahedral
cells of different polynomial degrees. First-order cell geometry is assumed.

implementations of algebraic multigrid (AMG) methods for GPUs are available [9, 6]. However, the performance of
AMG methods degrades at higher-orders; they become increasingly expensive and converge more slowly [2].

Matrix-free finite element methods have attracted considerable attention on GPU architectures to circumvent the
issues associated with sparse matrices. The main operation in Krylov methods is the computation of a sparse matrix—
vector product, i.e. computation of the action y = Ax of a matrix (operator) A on a vector x. For finite element methods,
the action of the operator can easily be computed directly without forming a sparse matrix. By exploiting the structure
of tensor product elements and using sum-factorisation techniques, the evaluation complexity reduces to O(dp) per
DoF [8]. Moreover, the amount of data required is lower than for a sparse matrix for p > 2 [8]. To highlight differences
in memory requirements for assembled sparse matrices and matrix-free methods, fig. 1 shows the storage required per
DoF for the Poisson operator for (i) an assembled CSR matrix, (ii) computing the action of the Laplacian operator
with lowest-order geometry cells and with the geometry data computed ‘on-the-fly” and (iii) computing the action of
the Laplacian with pre-computed geometry data stored at quadrature points. Note that at higher orders the memory
required for an assembled matrix is significantly greater than the memory required for the matrix-free approach.

While matrix-free methods can allow GPUs to take advantage of the higher arithmetic intensity of higher-order
elements whilst avoiding some of the drawbacks of sparse matrices, the absence of an assembled matrix operator can
make preconditioning difficult; for example, algebraic multigrid methods normally construct the preconditioner from
an assembled operator matrix. One approach, which we explore here, is to use p-multigrid with the finite element
method [11], where coarsening is achieved by reducing the element polynomial degree. On the coarsest level, linear
elements can be used, for which a matrix can be assembled and for which algebraic multigrid performs well. Matrix-
free operators can be used on the finer levels.

Kronbichler and Ljungkvist [8] developed a parallel GPU accelerated geometric multigrid solver for the Poisson
equation. Their approach employs matrix-free operators, tensor-product cells, and sum factorisation. They compare the
performance of their GPU implementation, running on NVIDIA P100 GPUs, with an optimised CPU implementation
on a comparable CPU. The GPU implementation is approximately 1.5-2 times faster. Brown et al. [2] demonstrate that
even for real engineering problems, where solutions often exhibit singularities due to boundary conditions/complex
geometry, etc., high-order p-multigrid schemes on GPUs can still significantly outperform industry-standard low-
order alternatives. They focus on hyperelastic simulations of multiscale structures, and present performance results on
the AMD MI250x, NVIDIA A100 and NVIDIA P100 GPUs for problems with billions of DoFs.

We develop and test a p-multigrid finite element solver for the Poisson problem on GPUs, targeting the GPU
partition of the LUMI supercomputer, which is equipped with AMD MI250x GPUs. The method uses unstruc-

84 Chris N. Richardson et al. / Procedia Computer Science 267 (2025) 82-91

Q1 Q3 Q6

b B

> >

Fig. 2: A p-multigrid hierarchy on hexahedral cells.

tured meshes of hexahedral cells, and uses sum-factorisation techniques for fast integration and interpolation. The
source code used in this paper is available under an open-source license at https://github.com/Wells-Group/
pmg-dolfinx-1lumi. The code can also be compiled for CUDA and has been tested on NVIDIA A100 and GH200
GPUs.

2. p-multigrid algorithm

We consider the homogeneous Poisson problem, given by

—Vlu=f inQcR? (1)
u=0 onoQ, 2)

where u is the unknown field and f is prescribed. We discretise eq. (1) using a standard conforming Lagrange finite
element method using hexahedral cells.

The discrete systems generated by the finite element method for eq. (1) can be solved efficiently by a multigrid
method. In the p-multigrid method, the polynomial degree (and therefore the problem size) is reduced when moving
from the ‘fine grid’ (the solution level grid), through intermediate grids, to the ‘coarse grid’. The mesh (triangulation)
at each level is the same; we use the multigrid jargon ‘grid’ to indicate resolution and problem size level, rather than a
grid size. Figure 2 illustrates a three-level p-hierarchy of finite elements. The coarse, intermediate, and fine levels use
degree one (‘Q1°), three (‘Q3’), and six (‘Q6’) Lagrange elements, respectively. In this approach, the problem size on
the coarse level grid (level 0) may still be a very large problem, and too large for the efficient use of a direct solver. We
therefore use an algebraic multigrid solver for the coarse grid. We note that algebraic multigrid methods are observed
to perform well for the lowest-degree elements, and their performance degrades with increasing element degree. We
use a Q1 geometric map for cells on all levels.

The choice of the number of levels and the polynomial degree for each level is somewhat heuristic. Our choice of
levels Q6 — Q3 — Q1 (three levels, see fig. 2) was guided by some simple numerical tests which showed that this choice
gave the lowest computational cost on a simple geometry. Theoretical approaches are possible [12], but in practice the
above choice works well for the problems we have considered.

A three-level p-multigrid procedure is presented in algorithm 1. The prolongation operator P; takes a field on the
ith level and interpolates it on the finer i + 1 level. This is straightforward with Lagrange elements, since the degrees-
of-freedom are defined via pointwise evaluations of the field being interpolated. The finite element space on the i + 1
level contains the space on level i, hence the interpolation is exact. The restriction operator R;, which restricts to the
ith level a field defined on the finer level i + 1, is taken to be the transpose of the prolongation, PiT. On the coarse
level (level 0), lowest-degree continuous Lagrange elements are used, and the matrix operator Aq is formed and is
solved using an algebraic multigrid method. On all other levels, we follow a matrix-free approach where the action of
a matrix operator A on a vector is computed — the (sparse) matrix A is never formed.

Chris N. Richardson et al. / Procedia Computer Science 267 (2025) 82-91 85

Algorithm 1 Three level p-multigrid V-cycle for solving the fine-level problem A,u; = b;. The initial estimate of the
solution u, is improved on each application of this algorithm.

1: up < Smooth(A,, uy, by) > Smooth solution, see algorithm 3
2: 11— Ri(by — Asup) > Restrict residual — level 1
3: u; < Smooth(Aq, u, ry)
4: ry «— Ro(r1 — Aruy) > Restrict level 1 residual — level O
5: uy «— AMG(Ay, 1) > Algebraic multigrid solver on coarse level
6: up «— up + Polug) > Prolongate level O correction — level 1
7: uy < Smooth(Ay, ui,ry)
8: up — up + Pi(uy) > Prolongate level 1 correction — level 2
9: uy < Smooth(A,, uy, by)

In the remainder of this section, we consider in more detail (i) the restriction and prolongation operations, (ii) the
smoothing (relaxation) step and (iii) the computation of the operator (matrix) action.

2.1. Prolongation and restriction

Prolongation and restriction operations applied to residual vectors could be implemented using assembled sparse
matrices. However, we aim here to avoid forming sparse matrices where possible. The bandwidth of the matrices
operating between the Q6 and Q3 levels is substantial. Moreover, computation with the transpose of the prolongation
matrix (to get the restriction matrix) is not straightforward in a distributed memory (multi-GPU) setting. We therefore
implemented ‘matrix-free’ interpolation (restriction) and prolongation (algorithm 2). Prolongation (the coarse-to-fine
operator,) is straightforward to implement cell-wise, since the fine DoFs only depend on coarse values from the
same cell. However, the transpose operation (the fine-to-coarse restriction operator, R) requires summation at the
coarse degrees-of-freedom and division by a ‘multiplicity’ factor, which is the number of cells that a DoF is shared
with.

Algorithm 2 Cell-wise restriction/prolongation operator from the degree p input space to the degree p; output space
using sum factorisation. ¢ is the (rectangular) 1D interpolation matrix from the input to the output space.

1: Copy input cell DoFs to u; jx > Input data is conceptually stored an indexed 3D block of size (pg + 1)>.
2: if restriction then

3: Uik < Wi/ Moy > Input DoFs are divided by the “multiplicity”
4: ﬁ?jk — g Piallajk > Interpolate in x
5: ﬁl.ljk — Y jaﬁgyk > Interpolate in y
6 Vijk — Do ¢kﬂ/ﬁi1jag > Interpolate in z
7: if restriction then

8: atomicAdd(v; ;) to output DoFs > Output data is stored in a 3D block of size (p; + 1)°.
9: else
10: Copy v to output DoFs

Figure 3 shows the throughput (in DoFs processed per second) of the restriction and prolongation operators against
the total number of DoFs on a single Graphics Compute Die (GCD) of the AMD MI250x GPU. Overall, restriction
and prolongation operations make up only a very small fraction (a few percent) of the total time taken for the multigrid
cycle. This is quantified in section 4.

2.2. Relaxation (smoothing)

On each level, the solution is smoothed using matrix-free Chebyshev iteration [10] with polynomials of the fourth
kind, see algorithm 3. The required operator eigenvalue upper bound estimates are computed using a few Conjugate

86 Chris N. Richardson et al. / Procedia Computer Science 267 (2025) 82-91

1010 4

109 4

Throughput (DoF/s)

Operation
—%— R(0)

P(0)
—— R(1)

100 4 = P(1)

T T T T
104 10° 108 107
Number of DoFs

Fig. 3: Restriction and prolongation throughput for R(0)[Q3—Q1], R(1)[Q6—Q3], P(0)[Q1—Q3], and P(1)[Q3—Q6], against input vector size on
one GCD of an MI250X on a cube mesh.

Gradient iterations on each level at setup time. To accelerate convergence, the Chebyshev iterations use a Jacobi
preconditioning step. Jacobi preconditioning involves division by the matrix diagonal of the operator matrix. Since
we do not wish to assemble the operator matrix, we have implemented a GPU kernel that precomputes the matrix
diagonal entries for each level. The number of Chebyshev iterations used (n in the algorithm) can be increased for
stronger smoothing.

Algorithm 3 Chebyshev iterations of the fourth kind [10].
. re—b—-Au > Initial residual

2. 7 TM “Ir > Amax 1S the maximum eigenvalue estimate of A
max

3: for k in range(1, n + 1) do
4 Ue—u+z

5: re—r—A
6

Z
2k—-1 8k +4
— zZ+
2k+3" (2k+3)Amax

Z r > M~ is a simple preconditioner of A

2.3. Operator application

The most substantial computation in the p-multigrid solver is computation of the operator action, y = Ax. We com-
pute the action using the sum-factorisation technique on hexahedral cells and using full Gauss quadrature integration
(p + 2 quadrature points in each direction). Implementation and analysis of the action kernel is technical, and we
report this in detail elsewhere [4]. The performance of the operator is limited by shared memory bandwidth, and the
Q6 kernel achieves approximately 45% of DRAM bandwidth.

3. Implementation

The p-multigrid solver is built on the DOLFINX finite element library [1]. DOLFINx supports distributed mem-
ory unstructured grids, parallel data structures and DoF map construction. The coarse level problem uses Q1 finite
elements and is solved using algebraic multigrid. We use the BoomerAMG library from HYPRE [6] for this. GPU
kernels are implemented in HIP.

When running on multiple GPUs, we use MPI to communicate across devices. The mesh is partitioned across the
GPUs with approximately equal numbers of cells on each process. The mesh partition is computed by ParMETIS [7].

Chris N. Richardson et al. / Procedia Computer Science 267 (2025) 82-91 87

Receive from
Send to Receive from other processes Send to
other processes /' iper brocesses other processes

(EEEE] (EEEEEE unpack (mEE CITITT]
%:CKV \ %lunpack /+U+\ %Tpad(
-) - !
Y Y
Owned values Ghost values Owned values Ghost values
(a) Forward scatter (b) Reverse scatter

Fig. 4: When a vector is shared across processes, some values are ‘ghosted’ on other processes. (a) The forward scatter takes local values which are
required elsewhere, and packs them into an appropriate send buffer for network communication. When data is received from other processes, it is
unpacked into the ghost region. (b) The reverse scatter takes values from the ghost region, and sends them to the owning process. In this case, it is
possible to receive multiple values from different processes, and they must be added together in the receiving vector.

With a continuous finite element function space, DoFs on a partition boundary are shared between processes. For
each shared DoF we assign an ‘owning’ MPI rank. On other ranks that require the DoF, it is a ‘ghost” DoF. Collecting
DoFs into a vector x, computation of the action of the discrete finite element operator, Ax, requires that shared entries
in x are available on all processes that share the entry. We support this by packing ghost DoFs at the end of the x array
on each process, as illustrated in fig. 4(a). Updating ghost values with the value from the owner is a forward scatter.
When computing y = Ax, each process will compute contributions to the shared DoFs in y. This normally requires a
reverse scatter to accumulate the contributions on the owning MPI rank, and is illustrated in fig. 4(b).

The need for the reverse scatter can be removed by adding a mesh ghost (halo) cell region (which will also increase
the number of ghost entries in x). In this case, when computing y = Ax (matrix-free), each process has enough data to
compute its owned entries in y without communication.

Overlapping the communication and computation is straightforward for matrix-free evaluation of operators. Com-
munication of values in x from owners to ghosting ranks can be started, followed by the evaluation of the action on the
local (owned) part of x. Once computation using the part of x is complete and ghost values in x have been received,
the computation of the action requiring ghost values is executed.

4. Results

To solve the Poisson problem at large scale, we used a multigrid scheme with a hierarchy of levels: Q6—Q3—Q1 on
each element (fig. 2), followed by an AMG coarse grid solver based on the Q1 DoFs. All examples use 64-bit floats.
We use one MPI rank per GCD. All computations are performed on the GPU partition of the LUMI supercomputer
(LUMI-G). LUMI-G has four AMD MI250x GPUs per node, 512 GB of RAM per node and a HPE Cray Slingshot-11
Interconnect.

4.1. Smoother and coarse grid solver performance

Figure 5 shows the computed residual against time for different smoother and coarse grid (AMG) solver settings.
Each dot in fig. 5 is for one V-cycle. The results indicate that two applications of the Chebyshev smoother perform
considerably better than one application, and that 5-10 cycles of the coarse grid AMG solver is appropriate.

4.2. Operator evaluation

Before considering the full multigrid solver, we examine briefly the performance of the operator evaluation, which
is the most costly step in algorithm. We assess the operator evaluation using the CEED BP3 problem [3], which
involves computing the action of the Laplacian operator within a conjugate gradient loop using p + 2 Gauss—Legendre
quadrature points in each direction, i.e. for Q6, we have 8 x 8 X 8 quadrature points.

88 Chris N. Richardson et al. / Procedia Computer Science 267 (2025) 82-91

10-2 —8— Cheb=1,AMG=1
Cheb=1,AMG=5

10-3 1 —8— Cheb=2,AMG=1
—8— Cheb=2,AMG=5

104] —o— Cheb=2,AMG=10

Residual norm
=
o
1
&
"

1077 4

1078 4

107° 4

10-10 4

Time (s)

Fig. 5: Convergence of the multigrid scheme on a 160M DoF problem on a cube, using 8 GCDs, showing the effect of different choices of the
number of coarse level AMG cycles and the number of Chebyshev smoothing iterations (algorithm 3). The residual norm for fine level problem is
shown against elapsed time, and each multigrid cycle is highlighted with a dot. At least two Chebyshev passes are needed in the smoother to obtain
fast convergence; it can be seen that 5 AMG iterations lead to fewer iterations, and faster convergence, compared to just using 1, but using 10 AMG
iterations is slower overall.

1010

w
g
[<]
<)
5 10°4
Q
=
= P
e -5 2
=
= =< 3
- 4
o -« 5
=>=_6
-7
8
108 T T T
10° 10° 107

Number of DoFs
Fig. 6: Throughput for the CEED BP3 problem on MI250x on one GCD using a cube mesh: the maximum efficiency is reached above 10® DoFs.
Figure 6 shows the throughput in DoFs per second for different polynomial degrees (Q2—Q8) on a single MI250x
GCD as a function of the problem size. Note that a single MI250x GPU device has two GCDs. For problems below
approximately 10° DoFs, the throughput drops due to kernel launch latency. This sets a lower bound on the amount of
work per device required for efficient computation. Note from fig. 6 that the Q6 element yields the highest throughout,

peaking at 3.4 GDoF/s. The throughout at lower degrees is lower, but this has minimal effect on overall runtime
because the lower degree grids are considerably smaller.

4.3. Full Poisson solver

We examine performance by solving a homogeneous Poisson problem eq. (1) with the right-hand side:

f = sin(k,x) sin(k,y) sin(k;z) 3)

Chris N. Richardson et al. / Procedia Computer Science 267 (2025) 8291 89

(a) B16 (b) cube (c) rocker

Fig. 7: Solutions to eq. (1) on hexahedral meshes: Meshes (a) and (c) are taken from Evocube [5]; contour surfaces of the solution are shown at
values of +0.1.

Other

axpy

Mat Diag
Jacobi

AMG b Operator (Q6)

Prolongation

Restriction 9.1%

Operator (Q3)

Fig. 8: Proportion of time spent in different parts of the p-multigrid iterations, run on a single node (8 GCDs) with 20M DoFs per GCD: 160M
DoFs in total. Two Chebyshev passes are used per smoothing operation, and five AMG cycles on the coarse level. The timings are averaged over
60 V-cycles.

with the wavenumbers k, = 2, k, = 3 and k; = 4 in the x, y and z directions. For comparison purposes, we used a
fixed number of multigrid cycles rather than terminating once a convergence criterion is met.

Weak scaling performance is shown in fig. 9 on unit cube meshes of increasing size, providing a weak scaling
from one GCD to a maximum of 1024 — an example solution is shown in Figure 7(b). A consideration for weak
scaling for this problem is that at low numbers of MPI ranks the domain portion on each rank will likely include
the external boundary, and will therefore involve relatively less parallel communication than for larger problems on a
greater number of ranks. This effect diminishes for large problems.

To investigate strong scaling, we refined the rocker mesh (fig. 7(c)) to create problems with (i) 105 million and (ii)
840 million DoFs. The strong scaling parallel efficiency for each case is shown in fig. 10. The efficiency is reasonable,
but highlights a typical problem that can limit the strong scaling of GPU solvers: kernel launch latency. The latency
issue is evident in fig. 6, which shows that there is a lower bound on the amount of ‘work’ per GPU for hiding kernel
launch latency.

Figure 8 shows the fraction of time spent in each kernel on each V-cycle. It is clear that evaluation of the operator
action on the fine grid is the dominant cost, followed by the AMG solver on the coarse grid.

90 Chris N. Richardson et al. / Procedia Computer Science 267 (2025) 82-91

—8— including AMG
1.0 multigrid cycle
—&— fine grid operator only
0.81
>
o
=4
@
S 0.6
&
9]
©
T
5 0.4
0.21
0.0

T T T
10t 102 103
Number of GCDs

Fig. 9: Weak scaling on a unit cube (10M DoFs/GCD) from 1 to 1024 GCDs. Parallel efficiency is shown for 40 iterations of P-multigrid; timings
are shown for the fine-grid operator alone, then with the multigrid cycle added, and finally also with algebraic multigrid (BoomerAMG) on the
coarse level.

1.0 1.0
0.8 08
o o
s g
5] 4 [4
£ 06 £ 0.6
s 5
l z
© K
8 0.4 8 0.4
0.21 0.21
0.0 41— - T - 0.01— - -
1 2 4 8 8 16 32
Number of GCDs Number of GCDs
(a) 105M DoFs. (b) 840M DoFs.

Fig. 10: Strong scaling parallel efficiency on the rocker mesh with (a) 105M DoFs and (b) 840M DoFs. Case (b) is too large for a single GCD; the
smallest number of GCDs that can be used for this case is 8.

5. Conclusions

We have described a p-multigrid method and implementation for solving finite element problems efficiently on
multi-GPU systems. There are numerous ingredients (kernels) in the solver, including kernels for geometry data pre-
computation, operator evaluation, interpolation and restriction between levels, diagonal preconditioning, interfacing
to existing algebraic multigrid packages, and distributed memory ghost updates. The performance of the method and
implementation has been tested on the LUMI supercomputer and demonstrates good parallel performance. Further
work is needed to generalise to other equation operators, and to extend to other cell shapes. Tetrahedral cells give
greater geometric flexibility but efficient algorithms at higher orders are more complex as tetrahedral cells do not have
a natural tensor-product structure that can be exploited by sum factorisation.

Chris N. Richardson et al. / Procedia Computer Science 267 (2025) 82-91 91

Acknowledgements

We acknowledge EuroHPC benchmarking and development access (EHPC-BEN-2022B11-044, EHPC-DEV-

2023D06-031 and EHPC-DEV-2024D05-052). CNR, IAB, AJ and GNW acknowledge the support of EPSRC through
EP/S005072/1, and CNR, JPD and GNW acknowledge the support of UKRI/EPSRC through EP/W026635/1.

References

(1]
(2]
(3]
[4]
(3]
(6]

(71
(8]

(9]
[10]
[11]

[12]

Baratta, I.A., Dean, J.P.,, Dokken, J.S., Habera, M., Hale, J., Richardson, C.N., Rognes, M.E., Scroggs, M.W., Sime, N., Wells, G.N., 2023.
DOLFINX: the next generation FEniCS problem solving environment URL: https://doi.org/10.5281/zenodo.10447666.

Brown, J., Barra, V., Beams, N., Ghaffari, L., Knepley, M., Moses, W., Shakeri, R., Stengel, K., Thompson, J.L., Zhang, J., 2022. Performance
portable solid mechanics via matrix-free p-multigrid. arXiv preprint arXiv:2204.01722 .

CEED Team, 2025. CEED bake-off problems. https://ceed.exascaleproject.org/bps/. Accessed: April 8, 2025.

Dean, J.P., 2025. Algorithms and performance analysis for finite element operators on GPUs.

Dumery, C., Protais, F., Mestrallet, S., Bourcier, C., Ledoux, F., 2022. Evocube: A genetic labelling framework for polycube-maps, in:
Computer Graphics Forum, Wiley Online Library. pp. 467-479.

Falgout, R.D., Yang, U.M., 2002. hypre: A library of high performance preconditioners, in: International Conference on computational science,
Springer. pp. 632-641.

Karypis, G., Schloegel, K., Kumar, V., 1997. Parmetis: Parallel graph partitioning and sparse matrix ordering library .

Kronbichler, M., Ljungkvist, K., 2019. Multigrid for matrix-free high-order finite element computations on graphics processors. ACM
Transactions on Parallel Computing (TOPC) 6, 1-32.

Naumov, M., Arsaev, M., Castonguay, P., Cohen, J., Demouth, J., Eaton, J., Layton, S., Markovskiy, N., Reguly, I., Sakharnykh, N., et al., 2015.
AmgX: A library for GPU accelerated algebraic multigrid and preconditioned iterative methods. SIAM Journal on Scientific Computing 37,
S602-S626.

Phillips, M., Fischer, P., 2022. Optimal Chebyshev smoothers and one-sided V-cycles. arXiv preprint arXiv:2210.03179 .

Rgnquist, E.M., Patera, A.T., 1987. Spectral element multigrid. I. formulation and numerical results. Journal of Scientific Computing 2,
389-406.

Thompson, J.L., Brown, J., He, Y., 2023. Local Fourier analysis of p-multigrid for high-order finite element operators. SIAM Journal on
Scientific Computing 45, S351-S370.

Available online at www.sciencedirect.com

ScienceDirect Procedia

Computer Science

CrossMark

Procedia Computer Science 267 (2025) 92-101

www.elsevier.com/locate/procedia

Proceedings of the Third EuroHPC user day

Large-scale simulations of lattice QCD for nucleon structure using
N¢=2+1+1 flavors of twisted mass fermions

C. Alexandrou®?, S. Bacchio®, L. Chacon®, J. Finkenrath®, M. Garofalod, C. Tona?,
B. Kostrzewad, G. Koutsou®*, Y. Li?, F. Pittler®, B. Prasad®, A. Sen¢, C. Urbachd

“Department of Physics, University of Cyprus, 20536 Nicosia, Cyprus
b Computation-based Science and Technology Research Center, The Cyprus Institute, 2121 Nicosia, Cyprus
CTheoretical Physics Department, CERN 1211 Geneva 23, Switzerland
4Helmholtz-Institut fiir Strahlen und Kernphysik (Theory), Rheinische Friedrich-Wilhelms-Universitit Bonn, Nussallee 14-16, 53115 Bonn,
Germany

Abstract

Understanding the internal structure of protons and neutrons is a fundamental challenge in nuclear physics that requires both the-
oretical and computational advances. In this work, we present results from large-scale lattice Quantum Chromodynamics (QCD)
simulations performed on European supercomputing facilities to calculate key nucleon structure quantities. Our calculations use
gauge field configurations with Ny=2+1+1 twisted mass Wilson-clover fermions at physical quark masses and multiple lattice
spacings, allowing for controlled continuum extrapolations. The highly optimized tmLQCD software, combined with the QUDA
library for GPU acceleration, enables efficient execution on current heterogeneous computing architectures. We provide details of
this computational approach and present our latest results on nucleon structure observables, including nucleon charges, electromag-
netic form factors, and momentum fraction. These results include the first continuum extrapolation of nucleon structure quantities
using only simulations at physical quark masses, eliminating systematic uncertainties associated with chiral extrapolations.

© 2025 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY 4.0 license (https://creativecommons.org/licenses/by/4.0)
Peer-review under responsibility of the scientific committee of the Proceedings of the Third EuroHPC user day

Keywords: lattice QCD; nucleon structure; Hybrid Monte Carlo

1. Introduction

The strong interactions, described by Quantum Chromodynamics (QCD), bind quarks and gluons to form protons
and neutrons, the building blocks of atomic nuclei. Understanding the internal structure of these particles is crucial
for advancing nuclear and particle physics, however deriving their properties directly from QCD remains challenging
due to its non-perturbative nature at low energies. Lattice QCD provides a first-principles computational framework
to tackle this challenge by discretizing space-time on a four-dimensional lattice and numerically evaluating the path

* Corresponding author. Tel.: +357-22-208-633
E-mail address: g.koutsou@cyi.ac.cy

1877-0509 © 2025 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY 4.0 license (https://creativecommons.org/licenses/by/4.0)
Peer-review under responsibility of the scientific committee of the Proceedings of the Third EuroHPC user day
10.1016/j.procs.2025.08.236

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2025.08.236&domain=pdf

C. Alexandrou et al. / Procedia Computer Science 267 (2025) 92—101 93

Ensemble L/la Tla ~alfm] ~ M,;[MeV] pB Csw K ape aply aps Niraj T
cA211.12.48 48 96 0.091 174 1.726 1.7400 0.1400650 0.00120 0.14080 0.15210 2721 1.0
cA211.15.64 64 128 - 194 - - 0.1400640 0.00150 - - 3415 -
cA211.15.48 48 9% - - - - 0.1400640 - - - 6147 -
cA211.30.32 30 64 - 272 - - 0.1400645 0.00300 - - 10234 -
cA211.40.24 24 48 - 315 - - 0.1400645 0.00400 - - 4882 -
cA211.53.24 24 48 - 360 - - 0.1400645 0.00530 - - 4489 -
cAp211.085.56 56 112 0.087 145 1.745 1.7112 0.1400083 0.00085 0.13839 0.14656 5494 2.0
cAp211.085.48 48 9% - - - - - - - - 15003 1.0
cB211.072.96 96 192 0.080 140 1.778 1.6900 0.1394267 0.00072 0.1246864 0.1315052 3428 1.0
cB211.072.64 64 128 - - - - - - - - 3165 -
cB211.072.48 48 9% - - - - - - - - 3534 -
cB211.14.64 64 128 - 194 - - - 0.00140 - - 4397 1.5
cB211.14.48 48 9% - - - - - 0.00140 - - 2897 -
cB211.25.48 48 9% - 260 - - - 0.00250 - - 5349 1.0
cB211.25.32 32 64 - - - - - - - - 3959 -
cB211.25.24 24 48 - - - - - - - - 4585 -
cC211.06.112 112 224 0.068 137 1.836 1.6452 0.13875285 0.00060 0.106586 0.107146 1303 1.0
cC211.06.80 80 160 - - - - - - - 3147 -
cC211.20.48 48 9% - 250 - - 0.00200 - - 2727 -
cD211.054.128 128 256 0.057 141 1.900 1.6112 0.137972174 0.00054 0.087911 0.086224 838 -
cD211.054.96 9% 192 - - - - - - - 3386 -
cE211.044.112 112 224 0.049 136 1.960 1.5792 0.137412880 0.00044 0.077707 0.074647 4079 -

Table 1. Algorithmic and bare action parameters of the ETMC N¢=2+1+1 Wilson clover twisted mass ensembles. Lattice spacing (a) and pion mass
M values are approximate. The trajectory length in molecular dynamics units is given by 7. The trajectory counts Nyy,; correspond to the state at
the time of writing and might have increased since. Dashes () indicate that the value from the row above is implied.

integral of QCD through Monte Carlo methods [1]. Lattice QCD calculations involve two computationally intensive
stages; first, the generation of gauge field configurations via Markov chain Monte Carlo sampling of the QCD path
integral, and second the analysis of these configurations to extract physical observables. Both stages require significant
high performance computing resources and specialized algorithms. In this proceeding, we present results from large-
scale computational efforts of our Extended Twisted Mass collaboration (ETMC) in both the simulation component
and the extraction of nucleon structure quantities using European supercomputing facilities.

For gauge field generation, our simulations use the tmLQCD software package [2, 3, 4] with significant portions
of the computation offioaded to GPUs through the QUDA library [5, 6], enabling efficient use of heterogeneous
supercomputing resources. For the analysis phase, recent algorithmic advances, including highly optimized multigrid
solvers for the inversion of the Dirac operator [7, 8, 9] and effective noise reduction techniques for disconnected quark
diagrams [10, 11], have made it possible to perform these calculations directly at physical quark masses, eliminating
the need for extrapolations from heavier-than-physical quark masses that introduce uncontrolled systematic errors.

In the remainder of this proceeding, we outline our simulation program and present results for key nucleon structure
observables using Ny=2+1+1 twisted mass fermions using exclusively physical quark mass simulations (physical
point) with different lattice spacings, providing a first continuum extrapolation of these quantities [12, 13].

2. Overview of Current Ensembles

An overview of the current ETMC ensembles, using the Ny=2+1+1 twisted-mass Wilson clover formulation [14,
15], is listed in Table 1, including the bare parameters of each ensemble. In Figure 1, we plot the available lattice
spacings (a) and lattice volumes in terms of M, L, where L is the spatial extent and M, the pion mass. Gradient flow
observables are shown in the left panel of Figure 2, whereas the right panel illustrates the evolution of the topological
charge, demonstrating that no noticeable freezing is present even at the smallest lattice spacing of a~0.049 fm.

3. Computational Setup

A main component of our computations is the repeated inversion of the twisted-mass Dirac matrix, for which we
employ a highly optimized iterative multigrid solver [6, 7], allowing us to efficiently invert the matrix for multiple

94 C. Alexandrou et al. / Procedia Computer Science 267 (2025) 92—101

T I
(0091?41 00 O O O 554 ! o
(0.087)% 1 B @
: sim. status 5:07 A,k o o}
__(00802-0 O © O done 454 4
NE | A ongoing ’q | (2 o
=R ! a [fm] & 4.07 L 5 o
RS (0.068)2—6 A 4 ® 0.091 55 %A o o
| ® 0.087 ' o
! ® 0.08 1 'o o
(0,057 4 A ® 0.068 307
| ® 0.057 Ko)
(0049)2_ | 0.049 2.5 | O
| |
oh o o s o o e o o S o o
= Ea 8] 3 A] ST 3
M, [MeV] My [MeV]

Fig. 1. Overview of all Ny=2+1+1 ETMC Wilson clover twisted mass ensembles as a function of the pion mass, the lattice spacing and M, L. Points
are slightly displaced either horizontally or vertically to improve visibility. Lattice spacing and pion mass values are approximate.

8%% - (cAp211.085.48,a ~ 0.087 f, Lja = 4§] 25 4 (cAp211.085.48,a ~ 0.087 fm, L/a = 48)
030 W 0 '\1ernWMWWWM%MWWMMM
0291 MWW 225+
0.28 -
8%% : (cAp211.085.56,a ~ 0.087 fm, L/a = 56) 28 | [cAp211.085.56,a ~ 0.087 fn, L/a = 56)
0:30 307
0.29 307
305 4 (eB211.072.64,a ~ 0.080 fm, L/a = 64) 3(5) | [eB211.072.64,a ~ 0.080 fm, L/a = 64]
[a =)
30.300 -

¢B211.072.96,a ~ 0.080 fm, L/a = 96

N'“T' 0.305 4 WWW“% 28 | [eC211.06.80,a ~ 0.068 fm, L/a = 80]

3150.300] \”\MM‘W\WWMWMWW WW
* 0.295 1 2]

0.304 4 (¢D211.054.96,a ~ 0.057 fm, L/a = 96 , 20 4
0.300 A 04
0.296 - -20 1

F211.044.112,a ~ 0.049 fm, L/a = 112

0.304 ¢ J 20 -
0.300 0
0.296 - 20

0 500 1000 1500 2000 0 500 1000 1500 2000
tMmD tMD

¢B211.072.96,a ~ 0.080 fm, L/a = 96

oo 202
w
S
=
1

Esym ()]

(eD211.054.96,a ~ 0.057 fm, L/a = 96)

(cE211.044.112, 0 ~ 0.049 fm, L/a = 112

Fig. 2. Left: Molecular dynamics histories for different ensembles close to or at the physical point of the flow-time derivative of the gradient-flowed
energy density, interpolated to the flow time where the ensemble average tﬁ{tz(E 1)} = W(t)ltzw% = 0.3. Only the first 2,200 unit-length molecular
dynamics units are shown in the histories whereas the histograms in the right sub-panels represent the number of trajectories listed in Table 1.

Right: Similar histories for the gradient-flowed topological charge in the clover definition evaluated at a flow time 7 = w2,

C. Alexandrou et al. / Procedia Computer Science 267 (2025) 92—101 95

3.0 . -3.0
= =
B ! 2.5 P >07 (GPU force]. »
IS /’ S 4.5+ /
w0 w0
~§ ' 2.0 & -%')—)o'l'”_ / 00 %
/ F2. RS
£ & Ess- Iy g
-] £ = £
5] L1 = o 3.0 o 1=
= S .
] 7 O 2.9 7 /
g / g . /
= F1.0 5 20- -1.0
1.5-
. SuperMUC, 512 nodes, 4096 cores . Frontera, 343 nodes, 19208 cores
B Juwels Booster, 8 nodes, 32 A100 [l L0, 28 nodes, 112 MI250

Fig. 3. Left: Time per unit length trajectory of tmLQCD+QUDA (green) for a 643 x 128 ensemble at the physical point compared to the CPU
machine it was originally generated on (purple) using tmLQCD+DD-a¢AMG [7]. The different speedups correspond to increasing levels of QUDA
offloading. Right: The same comparison, but between tmLQCD+QUDA and tmLQCD+DD-¢AMG+QPhiX [16] running a 1123 x 224 ensemble
at the physical point on LUMI-G and Frontera, respectively.

right-hand sides at a reduced cost. Multigrid proceeds by solving the system on coarser grids, using the solution as
a preconditioner for the full system and yielding orders of magnitude improvement compared to standard solvers,
such as Conjugate Gradient (CG). Within our group, we have developed a multigrid specifically for twisted mass
fermions, which allows tuning the twisted mass parameter at each level of the multigrid algorithm [6, 7]. The solver,
as implemented in the QUDA community library optimized for multi-GPU systems [5, 17], results in a highly ef-
ficient implementation that has allowed us to efficiently carry our these calculations on several flagship European
supercomputers. As a first step in interfacing our main code, tmLQCD, to QUDA [4] we offloaded the inversion of
the various Dirac operators as well as the gauge force computation. To ensure optimal performance on different GPU
architectures we utilize an auto-tuner for the solver parameters [18]. Recently, we further offloaded all computations
of the fermionic force. In this way, tmLQCD can reach GPU utilizations over 70% and even up to 90% depending
on the number of available CPU cores per GPU. The evolution of the performance of this tmLQCD+QUDA setup is
shown in the left panel of Figure 3.

4. Nucleon Structure

Understanding nucleon structure is essential for gaining insights into the fundamental properties of QCD. In this
section, we briefly introduce our methodology and present representative results of the continuum limit for key
nucleon structure observables, using three ensembles at physical values of the pion mass, namely the ensembles
cB211.072.64, cC211.060.80, and cD211.054.96 from Table 1. We focus on the isovector axial charge, proton
and neutron electromagnetic form factors, and the momentum fraction. i) The nucleon axial charge governs the rate
of neutron beta decay and is crucial for tests of the Standard Model’s CKM matrix unitarity [12, 19]. Its precise lattice
determination serves as a key benchmark due to its well-established experimental value [20]. ii) The electromagnetic
form factors of the proton and neutron, which parameterize the distribution of charge and magnetization within these
particles, are essential for interpreting electron scattering experiments [21] and resolving puzzles such as the proton
radius discrepancy between muonic hydrogen spectroscopy and electron scattering measurements [22, 23]. iii) Quark
momentum fractions determine how the nucleon’s momentum is distributed among its constituents, providing crucial
constraints for parton distribution functions used to interpret high-energy collider experiments [24, 25].

96 C. Alexandrou et al. / Procedia Computer Science 267 (2025) 92—101

4.1. Methodology

Nucleon structure quantities are extracted from matrix elements of local operators between nucleon states. On the
lattice, these matrix elements are extracted from correlation functions computed using appropriately defined inter-
polating operators with the quantum numbers of the nucleon. The standard nucleon interpolating field used in our
calculations is Jy(x) = €®u?(x) [ubT(x)CYSd”(x)], where u(x) and d(x) are up and down quark fields, C = yyy is
the charge conjugation matrix, and a, b, ¢ are color indices. For nucleon structure, we compute two- and three-point
functions given by

CTo. Bitssto) = Y &S PTe [Co(F (1)T w0, %)) . and (1)
¥
CH(Ty, G, Pt inss) = | € 0T =07 T [0 (T (2, %O (fnss Tins) Tto, %))
finsafx

where ¢, is the source time, ¢, is the sink time, I'j = %(1 + ¥0) is the unpolarized projector and I’y = i[yysy, with
k = 1,2,3 are polarized projectors, O is the operator of interest inserted at time ,5, 4 is the momentum transfer, j’
is the sink momentum, and the traces are over spinor indices.

Three-point functions receive contributions from both so-called connected and disconnected diagrams. The former
correspond to the operator being inserted on one of the valence quarks, while the latter involve operator insertions
on sea quarks, resulting in quark loops. The evaluation of disconnected diagrams is computationally very demand-
ing, requiring advanced noise reduction techniques [26]. For the connected contributions, we use standard techniques
involving the computation of the sequential propagator through the sink. In this approach, the sink-source time sepa-
ration, the projector and the momentum at the sink p,” are kept fixed. For the disconnected contributions, we employ
stochastic techniques combined with dilution schemes, hierarchical probing [11], and deflation of low modes [27]. To
illustrate the scale of computations required, Table 2 shows the statistics used for calculating the connected three-point
functions for our three ensembles. As the sink-source separation ¢, increases, we increase the number of source posi-
tions to maintain similar statistical precision. Indicatively, for the statistics given in Table 2 we find a relative statistical
error between 0.8% to 2% depending on the value of the time (¢,) for the nucleon isovector axial three-point function.
The computational resources required are approximately 250,000 GPU-hours for B64, 550,000 GPU-hours for C80,
and 600,000 GPU-hours for D96, in units of NVIDIA A100 GPU-hours. This means that the analysis of the connected
contributions alone for a single ensemble, requires resources comparable to an annual extreme scale allocation for this
statistical accuracy.

Ens. ID (short name) Vol. a[fm] Neons (ts/a)n,, str‘z
cB211.072.64 (B64) 64x128 0.080 750 81, 102, 125, 1419, 1632, 18112, 20128 477
cC211.060.80 (C80) 80x160 0.068 400 61, 82, 104, 1210, 149, 1648, 1845, 20116, 22046 650

cD211.054.96 (D96) 96x192 0.057 500 8y, 104, 124, 143, 1616, 1832, 2064, 2216, 2432, 2664 480

Table 2. We show details of the ensembles analyzed, including their short name (first column), lattice volume (second column), lattice spacing in fm
(third column), number of configurations analyzed (fourth column), sink-source separations (f5/a) analyzed for the connected three-point functions
with number of source positions per configuration (Ng) indicated as a subscript (fifth column), and number of source positions per configuration
analyzed for the two-point function (NSZ,%).

For the disconnected contributions, we use the techniques and parameters shown in Table 3. The calculation of
quark loops is particularly intensive, requiring specialized algorithms and significant computational resources.

As in the case of the simulations, the most demanding component of our nucleon structure program is the inversion
of the twisted-mass Dirac matrix to obtain the quark propagators which are in turn contracted appropriately to produce

C. Alexandrou et al. / Procedia Computer Science 267 (2025) 92—101 97

cB211.072.64 cC211.060.80 cD211.054.96
Flavor Naen N, NHad Nyect Naef N, NHad Nyect Naet N, NHad Nyect
Light 200 1 512 6144 450 1 512 6144 0 8 512 49152
Strange 0 2 512 12288 0 4 512 24576 0 4 512 24576
Charm 0 12 32 4608 0 1 512 6144 0 1 512 6144

Table 3. Parameters and statistics used for the evaluation of the disconnected three-point functions, for the same N¢onf as Table 2. For each ensemble,
in the columns from left to right we give: i) the number of deflated eigenvectors Ngef, ii) the number of stochastic sources N, iii) the number of
Hadamard vectors Ny,q, and iv) the total number of computed vectors, Nyect, Which after color and spin dilution are obtained via 12 X N, X Nyag.

the nucleon two- and three-point functions. For each configuration and source position listed in Tables 2 and 3, we
require O(10) inversions of the Dirac matrix, meaning for any given ensemble we require O(10°) inversions. The
multigrid solver via QUDA is crucial in this step, as it allows us to efficiently solve for the required number right hand
sides within a typical annual allocation on a range of supercomputing systems, as shown in the left panel of Figure 4.

¢8 710 412 %14 % 16 ¢ 18 20

Lattice size: 80° x 160 23 % 224
- | 1.30 L {-
g TIVGTE L
@ =
£ | &ﬁﬁi}}}ﬁ it
£] L2120 L3,
s? } } A%S 3 § .’fz ‘
n 40 H100 GPUs
§ aroni Leonardo i, Q"QQ ' %b [
£, 160100 GRUS B0AI00GPUS | Lrog 308 ahus 1.10 ‘e -
QUDA multigrid 050 000 050 060 1.00 140 1.80 0.60 0.80 1.00
° tins — 15/2 [fm] t; [fm] 110 [fm)

Fig. 4. Left: Time per inversion of the QUDA multigrid solver when using the C80 and E112 ensembles on European supercomputers. The bars
indicate the standard deviation over a number of inversions spanning between hundreds of thousands to millions, depending on the system. Right:
Excited state analysis for determining the isovector axial charge g%‘d on the cB211.072.64 ensemble. Left panel: Ratio data for different source-
sink separations 7 (different symbols) as a function of the insertion time shifted by #;/2. The bands show two-state fits. Middle panel: Ratio values
for ting = t4/2, with the grey band showing the predicted time-dependence from the two-state fit. Right panel: Extracted values of gf“" using
different two-state fit ranges. The open symbol indicates the selected value, with the red band showing its statistical error.

The two- and three-point functions contain contributions from the ground state as well as excited states. Their
spectral decomposition takes the form, C(3,1,) = X, ci(Pe EP% ... and CX(T,, B, B, ts, tins) = YijA ”(FV, ", PIX
e BiPs—tn)=Ei(Pins 4 ... respectively, where E;(j) is the energy of the i-th state with momentum f, and A}’ are the

transition matrix elements. To isolate the ground state contribution, we form the ratio:

C'u(rw [5),, ﬁ; ts, tins) C(FO’ ﬁQ Iy — tms)C(FO’ tms)C(FOa "ty)
C(FQ, ﬁ/7 tb) C(FQ, ﬁ/7 ts - tinS)C(F()? P’ tins)C(FO: P’ ts)

R (pr [77 th tlns) = (3)

In the limit of large Euclidean time separations, this ratio yields the desired ground state matrix element, I[T*(T',; 3, p),

. 15 ling>

ie. Ry, P/, Pi by, ting) —— e (Ty; p’, P). In practice, we cannot take the time separations arbitrarily large due to
tins >

ins

the exponential increase of the relative statistical errors. Therefore, to ensure ground state dominance, we explicitly
include contributions from excited states, fitting the two- and three-point functions to forms including terms for both
ground and excited states [12]. In many cases, we find the excited state energies extracted from fits to two-point
functions cannot fully describe the excited-states in three-point functions, as also predicted from chiral perturbation
theory [28]. Therefore, we allow different excited state energies in the two- and three-point functions, which is critical
for reliably extracting ground state matrix elements. The right panel of Figure 4 shows an example of our excited
state analysis for the isovector axial charge g4~ 4 on the cB211.072.64 ensemble. The right panel, which shows

98 C. Alexandrou et al. / Procedia Computer Science 267 (2025) 92—101

the extracted g/'g‘d values from the two-state fit as we increase the smallest sink-source separation, demonstrates the
convergence of our analysis. For our final result, we use a model averaging procedure based on the Akaike Information
Criterion (AIC) [29] to combine results from different fit ranges and ansitze, which allows us to reliably estimate both
statistical and systematic uncertainties.

4.2. Isovector nucleon matrix elements in the continuum limit

As mentioned, in the results that follow we take the continuum limit using three ensembles with different lattice
spacings and approximately the same physical volume of about (5 fm)? [30, 12]. The nucleon axial charge g/’i‘d

130} ' '] 1@ ETM25
FLAG average
1281 1 % Callatig o9
T 1260 1z H-H BNBME 18
S T TR R Cal=rld
124+ 1 f W PNDME 16
Q_ T
122 . . R , 4, PDG
0.000 0.002 0.004 0.006 112 13 14
a2 [fm?] o)

Fig. 5. Left: Continuum extrapolation of the isovector axial charge gf"’]. The filled symbols represent results from individual ensembles, while the
open symbol shows the extrapolated value at the continuum limit. Right: Comparison of our result for g;“‘d with other lattice QCD results and with
their average as done in the recent FLAG review [31].

is defined as the nucleon matrix element of the isovector axial current at zero momentum transfer, (N|i&y, ysu —
cfy,,y5d|N) = gz‘du,vyﬂ)gu,v, where uy is a nucleon spinor. This quantity determines the rate of neutron beta decay
and is measured to high precision experimentally, making it an important benchmark for lattice QCD calculations.
In the left panel of Figure 5 we show our continuum extrapolation of the isovector axial charge. Our final result
in the continuum limit is gﬁ;“’ = 1.250(24) [13], which is in excellent agreement with the experimental value of
gf““ = 1.2754(13) [20]. We also compare our result to lattice QCD results as aggregated by the Flavor Lattice
Averaging Group (FLAG) in their most recent review [31], published prior to our result.

¥ a=0.080fmJ a=0.068fm¥ a=0.057fm z-exp Continuum at Q% = 1.0 GeV? —-Experiment [Galster-like at Q%,,= 0.3 GeV? @ Experiment
T T T T T

1od G2@ " a0 \G"mozi " ' ood Gf,(Q?) ' GpQY

3 -]
204 i\& z; !}i“"""" ood] {% q}z %I}-
: T ™ g N %ﬁ iy ﬁ

Bl .. B

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.1 0.2 0.3 0.4 0.5
Q2 [GeV?] Q2 [GeV?) Q? [GeV?) Q? [GeV?]

Fig. 6. From left to right, the proton electric, magnetic, and neutron magnetic and electric form factors as functions of Q2 for the three ensembles
(green, yellow, and blue points with decreasing a) and at the continuum limit (red and blue bands). Black dashed lines for the proton and black
circles for the neutron show a collection of recent experimental results.

The electromagnetic form factors parameterize the nucleon matrix element of the electromagnetic current, yielding
the Dirac and Pauli form factors, F;(Q%) and F,(Q?), respectively, where Q? is the momentum transfer squared.

These can be rewritten in terms of the electric and magnetic Sachs form factors, Gz(Q%) = F(Q?) + 4?':2 F»(0%
N

and Gy (Q?%) = F1(Q?%) + F2(Q?). We calculate both isovector and isoscalar form factors, accounting for disconnected
contributions in the latter, and combine them to obtain proton and neutron form factors [21, 32]. Figure 6 shows the 0?
dependence of the proton and neutron electromagnetic form factors and their continuum limit. We extract the electric
and magnetic radii of the proton (p) and neutron (n), i.e. (ré)”/ " and (r/2W>”/ ", as well as the magnetic moments (i, and

C. Alexandrou et al. / Procedia Computer Science 267 (2025) 92—101 99

Qz, - I?DG'|0|' Mode! Avg h"rl I?iaole' M' z-exp Ml Gals'ter—llike

B0t | o |F o | | |E Kea ' '

085 PH|F PH [P PP (F PO 0.20 .

o7o r PH|F P [P PP (F PO

oso I F b Pe(F PP |F o |F -

040 b | bHIE P |F O EHIE Tt~

040 | | WESSTRN | iy | L 0.18 "“4£“~ T

040 [HAd |fad A [| - T~

030 [r C r r - e TTees
F Fed || ted | Fed |F Fed |F Fed |f 0.6 .
N R S L ||
0.7 0?8 0:90:75 1A(.)0 2..75 3,.00 —1I.9—1..7 018 1,IO —(.).2—(':'.1 OOOIO OOIOZ 0()'04 00I06

wre ez H o H gy a? [fm?]

[fm] [fm] [fm] [fm?]

Fig. 7. Left: Electric and magnetic radii and magnetic moments of the proton and neutron for all ng for the z-expansion (purple downward-pointing

triangles) and, in the dipole case, using both one-step (filled green triangle) or two-step (open green triangle) approaches. The blue diamond and
blue band corresponds to Galster-like fit to GY;. The red point and band denoted “Model average” is obtained by weighting according to the AIC.
Right: Continuum extrapolation of the isovector momentum fraction (x),—4. The filled symbols represent results from individual ensembles, while
the open symbol shows the extrapolated value at the continuum limit.

i), using a range of Q* — 0 extrapolations, including varying the maximum Q value used, varying the fit function
between the so-called z-expansion and dipole forms, and via either a one-step extrapolation, where the dependence in
Q? and a? are fitted simultaneously, or a two-step extrapolation, where the Q*-dependence is fitted first for the three
ensembles and then the continuum extrapolation is taken in a second step. More details are provided in Ref. [32]. The
results are shown in the left panel of Figure 7 and are compared to the experimentally determined values.

The average momentum fraction carried by quarks in the nucleon, (x)?, is obtained from the forward matrix element
of the traceless part of the energy-momentum tensor, (N(p)|gyiD\qIN(p)) = (x)iin(p)yyupyun(p), where {---}
denotes symmetrization and subtraction of the trace [33, 30]. Figure 7 shows our continuum extrapolation of the
isovector combination of the momentum fraction, (x)*~“. Our final result in the continuum limit is (x)*~¢ = 0.171(18)
[30], which is in good agreement with recent phenomenological determinations from NNPDF [34], JAM [35], and
CTEQ-TEA using data from LHC [36].

5. Conclusions

We have presented an overview of our large-scale lattice QCD calculations for both simulations and analysis using
European supercomputing facilities. Our gauge field generation program has successfully produced multiple ensem-
bles with N¢=2+1+1 twisted mass Wilson-clover fermions at physical quark masses and with varying lattice spacings,
enabled by the highly optimized tmLQCD software package with GPU acceleration through QUDA. Significant com-
putational improvements have resulted in GPU utilization of up to 90%, depending on the target machine.

The analysis of these gauge configurations has yielded precise determinations of key nucleon structure observables,
including the axial charge, electromagnetic form factors, and momentum fraction. These results, enabled by large scale
computational resources such as those provided by EuroHPC, are the first to include continuum limit extrapolations
exclusively using simulations with physical quark masses. This represents a significant advancement, since so far such
results included simulations with heavier-than-physical quark masses, thus requiring a modeling of the quark mass
dependence of the nucleon structure quantities, which in turn introduced an unknown systematic error.

Current computational efforts are focused on incorporating results with finer lattice spacing, namely the
cE211.044.112 ensemble in our analysis, with a~0.049 fm, which will further improve the robustness of our con-
tinuum extrapolations and reduce overall systematic uncertainties. As an indicative example, preliminary results for
the isovector tensor charge, (N|iio,,u — c?a'wysle)y = g‘;‘dﬁNO'WuN, available at low statistics are shown in Figure 8.
This continued progress in both simulation methodology and analysis techniques promises to deliver increasingly pre-

100 C. Alexandrou et al. / Procedia Computer Science 267 (2025) 92—101

a €[0.049,0.080] fm ; linear . a€[0.049,0.080] fm; const. . a€[0.049,0.068] fm ; linear a€[0.049,0.068] fm; const.

09t 1t 1

-d
ot

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0% 20% 30%
a?[fm?)] prob.

Fig. 8. Continuum limit of the isovector tensor charge gl}’d with preliminary results for the cE211.044. 112 ensemble included. We vary between

linear and constant fits as described in the figure title, and show the value obtained from each fit and its probability in the right panel.

cise determinations of hadron properties directly from QCD, contributing to our fundamental understanding of strong
interaction physics.

Acknowledgements

We acknowledge EuroHPC Joint Undertaking for awarding the projects with ID EHPC-EXT-2023E02-052 with
access to MareNostrum5, EHPC-REG-2022R02-094 and EHPC-REG-2023R03-187 with access to Meluxina, EHPC-
EXT-2022E01-033 access to Leonardo and EHPC-REG-2021R0095 access to LUMI. The authors also gratefully
acknowledge access to the Marvin cluster of the University of Bonn and support by the HRZ-HPC team and acknowl-
edge the Texas Advanced Computing Center (TACC) at the University of Texas at Austin for proving HPC resources
on Frontera (Project ID PHY21001). C.A. and G.K. acknowledge partial support from the European Joint Doctorate
AQTIVATE (Grant Agreement No. 101072344). C. A, S. B, G. K., and F. P. acknowledge support by the projects
“IMAGE-N” (EXCELLENCE/0524/0459), “Baryon8” (POSTDOC/0524/0001), “HyperON” (VISION ERC-PATH
2/0524/0001), “MuonHVP” (EXCELLENCE/0524/0017), “PulseQCD” (EXCELLENCE/0524/0269), and “DeNu-
Tra” (EXCELLENCE/0524/0455), co-financed by the European Regional Development Fund and the Republic of
Cyprus through the Research and Innovation Foundation. L. C. and B. P. are supported by ENGAGE, which received
funding from the EU’s Horizon 2020 Research and Innovation Programme under the Marie Sktodowska-Curie GA
No0.101034267. J. F. acknowledges financial support from the Next Generation Triggers project. B. K. and A. S. ac-
knowledge financial support by CRC 1639 NuMeriQS - project no. 511713970.

References

[1] J. Finkenrath, Review on Algorithms for dynamical fermions, PoS LATTICE2022 (2023) 227. arXiv:2402.11704, doi:10.22323/1.430.
0227.

[2] K. Jansen, C. Urbach, tmLQCD: A Program suite to simulate Wilson Twisted mass Lattice QCD, Comput. Phys. Commun. 180 (2009) 2717-
2738. arXiv:0905.3331, doi:10.1016/j.cpc.2009.05.016.

[3] A. Abdel-Rehim, F. Burger, A. Deuzeman, K. Jansen, B. Kostrzewa, L. Scorzato, C. Urbach, Recent developments in the tmLQCD software
suite, PoS LATTICE2013 (2014) 414. arXiv:1311.5495, doi:10.22323/1.187.0414.

[4] B. Kostrzewa, S. Bacchio, J. Finkenrath, M. Garofalo, F. Pittler, S. Romiti, C. Urbach, Twisted mass ensemble generation on GPU machines,
PoS LATTICE2022 (2023) 340. arXiv:2212.06635, doi:10.22323/1.430.0340.

[5] M. A. Clark, R. Babich, K. Barros, R. C. Brower, C. Rebbi, Solving Lattice QCD systems of equations using mixed precision solvers on GPUs,
Comput. Phys. Commun. 181 (2010) 1517-1528. arXiv:0911.3191,d0i:10.1016/j.cpc.2010.05.002.

[6] M. A. Clark, B. Joo, A. Strelchenko, M. Cheng, A. Gambhir, R. Brower, Accelerating Lattice QCD Multigrid on GPUs Using Fine-Grained
Parallelization (12 2016). arXiv:1612.07873.

[7] C. Alexandrou, S. Bacchio, J. Finkenrath, A. Frommer, K. Kahl, M. Rottmann, Adaptive Aggregation-based Domain Decomposition Multigrid
for Twisted Mass Fermions, Phys. Rev. D 94 (11) (2016) 114509. arXiv:1610.02370, doi:10.1103/PhysRevD.94.114509.

[8] S. Bacchio, C. Alexandrou, J. Finkerath, Multigrid accelerated simulations for Twisted Mass fermions, EPJ Web Conf. 175 (2018) 02002.
arXiv:1710.06198,doi:10.1051/epjconf/201817502002.

[9]
[10]
[11]

[12]

[13]
[14]
[15]
[16]
(17]
(18]
[19]
[20]
[21]

[22]
[23]

[24]
[25]

[26]

[27]
[28]
[29]
[30]
[31]
[32]

[33]

[34]
[35]

[36]

C. Alexandrou et al. / Procedia Computer Science 267 (2025) 92—101 101

C. Alexandrou, S. Bacchio, J. Finkenrath, Multigrid approach in shifted linear systems for the non-degenerated twisted mass operator, Comput.
Phys. Commun. 236 (2019) 51-64. arXiv:1805.09584, doi:10.1016/j.cpc.2018.10.013.

C. McNeile, C. Michael, Decay width of light quark hybrid meson from the lattice, Phys. Rev. D 73 (2006) 074506. arXiv:hep-lat/
0603007, doi:10.1103/PhysRevD.73.074506.

A. Stathopoulos, J. Laeuchli, K. Orginos, Hierarchical probing for estimating the trace of the matrix inverse on toroidal lattices (2013).
arXiv:1302.4018.

C. Alexandrou, S. Bacchio, M. Constantinou, J. Finkenrath, R. Frezzotti, B. Kostrzewa, G. Koutsou, G. Spanoudes, C. Urbach, Nucleon axial
and pseudoscalar form factors using twisted-mass fermion ensembles at the physical point, Phys. Rev. D 109 (3) (2024) 034503. arXiv:
2309.05774, doi:10.1103/PhysRevD.109.034503.

C. Alexandrou, S. Bacchio, J. Finkenrath, C. Iona, G. Koutsou, Y. Li, G. Spanoudes, Nucleon charges and o-terms in lattice QCD, Phys. Rev.
D 111 (5) (2025) 054505. arXiv:2412.01535,doi:10.1103/PhysRevD.111.054505.

C. Alexandrou, et al., Simulating twisted mass fermions at physical light, strange and charm quark masses, Phys. Rev. D 98 (5) (2018) 054518.
arXiv:1807.00495, doi:10.1103/PhysRevD.98.054518.

J. Finkenrath, et al., Twisted mass gauge ensembles at physical values of the light, strange and charm quark masses, PoS LATTICE2021 (2022)
284. arXiv:2201.02551, doi:10.22323/1.396.0284.

M. Schrock, S. Simula, A. Strelchenko, Accelerating Twisted Mass LQCD with QPhiX, PoS LATTICE2015 (2016) 030. arXiv:1510.08879,
doi:10.22323/1.251.0030.

R. Babich, M. A. Clark, B. Joo, G. Shi, R. C. Brower, S. Gottlieb, Scaling lattice QCD beyond 100 GPUs, in: International Conference for
High Performance Computing, Networking, Storage and Analysis, 2011. arXiv:1109.2935, doi:10.1145/2063384.2063478.

M. Garofalo, B. Kostrzewa, S. Romiti, A. Sen, Autotuning multigrid parameters in the HMC on different architectures, PoS LATTICE2024
(2025) 276. doi:10.22323/1.466.0276.

C. Alexandrou, M. Constantinou, K. Hadjiyiannakou, K. Jansen, C. Kallidonis, G. Koutsou, A. Vaquero Aviles-Casco, Nucleon axial form
factors using Ny = 2 twisted mass fermions with a physical value of the pion mass, Phys. Rev. D96 (5) (2017) 054507. arXiv:1705.03399,
doi:10.1103/PhysRevD.96.054507.

S. Navas, et al., Review of particle physics, Phys. Rev. D 110 (3) (2024) 030001. doi:10.1103/PhysRevD.110.030001.

C. Alexandrou, S. Bacchio, M. Constantinou, J. Finkenrath, K. Hadjiyiannakou, K. Jansen, G. Koutsou, A. V. A. Casco, Proton and neutron
electromagnetic form factors from lattice QCD (2018). arXiv:1812.10311.

R. Pohl, et al., The size of the proton, Nature 466 (2010) 213-216. doi:10.1038/nature09250.

V. Punjabi, C. F. Perdrisat, M. K. Jones, E. J. Brash, C. E. Carlson, The Structure of the Nucleon: Elastic Electromagnetic Form Factors, Eur.
Phys. J. A 51 (2015) 79. arXiv:1503.01452, doi:10.1140/epja/i20156-156079-x.

C. Alexandrou, M. Constantinou, K. Hadjiyiannakou, K. Jansen, F. Manigrasso, Flavor decomposition for the proton helicity parton distribution
functions, Phys. Rev. Lett. 126 (10) (2021) 102003. arXiv:2009.13061, doi:10.1103/PhysRevLett.126.102003.

C. Alexandrou, et al., Moments of nucleon generalized parton distributions from lattice QCD simulations at physical pion mass, Phys. Rev. D
101 (3) (2020) 034519. arXiv:1908.10706, doi:10.1103/PhysRevD.101.034519.

C. Alexandrou, M. Constantinou, V. Drach, K. Hadjiyiannakou, K. Jansen, G. Koutsou, A. Strelchenko, A. Vaquero, Evaluation of disconnected
quark loops for hadron structure using GPUs, Comput. Phys. Commun. 185 (2014) 1370-1382. arXiv:1309.2256, doi:10.1016/j.cpc.
2014.01.009.

A. S. Gambhir, A. Stathopoulos, K. Orginos, Deflation as a Method of Variance Reduction for Estimating the Trace of a Matrix Inverse, SIAM
J. Sci. Comput. 39 (2017) A532-A558. arXiv:1603.05988, doi:10.1137/16M1066361.

O. Bir, Nn-state contamination in lattice calculations of the nucleon axial form factors, Phys. Rev. D 99 (5) (2019) 054506. arXiv:1812.
09191, doi:10.1103/PhysRevD.99.054506.

W. L. Jay, E. T. Neil, Bayesian model averaging for analysis of lattice field theory results, Phys. Rev. D 103 (2021) 114502. arXiv:2008.
01069, doi:10.1103/PhysRevD.103.114502.

C. Alexandrou, S. Bacchio, M. Constantinou, J. Finkenrath, K. Hadjiyiannakou, K. Jansen, G. Koutsou, A. Vaquero Aviles-Casco, Nucleon
axial, tensor, and scalar charges and o-terms in lattice QCD, Phys. Rev. D 102 (5) (2020) 054517. arXiv:1909.00485, doi:10.1103/
PhysRevD.102.054517.

Y. Aoki, et al., FLAG Review 2024 (11 2024). arXiv:2411.04268.

C. Alexandrou, S. Bacchio, G. Koutsou, B. Prasad, G. Spanoudes, Proton and neutron electromagnetic form factors using Nf=2+1+1 twisted-
mass fermions with physical values of the quark masses, PoS LATTICE2024 (2025) 332. arXiv:2502.11301,doi:10.22323/1.466.0332.
C. Alexandrou, M. Constantinou, K. Hadjiyiannakou, K. Jansen, C. Kallidonis, G. Koutsou, A. Vaquero Avilés-Casco, C. Wiese, Nucleon
Spin and Momentum Decomposition Using Lattice QCD Simulations, Phys. Rev. Lett. 119 (14) (2017) 142002. arXiv:1706.02973, doi:
10.1103/PhysRevLett.119.142002.

R. D. Ball, et al., Parton distributions from high-precision collider data, Eur. Phys. J. C 77 (10) (2017) 663. arXiv:1706.00428, doi:
10.1140/epjc/s10052-017-5199-5.

N. Sato, C. Andres, J. J. Ethier, W. Melnitchouk, Strange quark suppression from a simultaneous Monte Carlo analysis of parton distributions
and fragmentation functions, Phys. Rev. D 101 (7) (2020) 074020. arXiv:1905.03788, doi:10.1103/PhysRevD.101.074020.

T.-J. Hou, et al., New CTEQ global analysis of quantum chromodynamics with high-precision data from the LHC, Phys. Rev. D 103 (1) (2021)
014013. arXiv:1912.10053, doi:10.1103/PhysRevD.103.014013.

Available online at www.sciencedirect.com

ScienceDirect Procedia

Computer Science

CrossMark

Procedia Computer Science 267 (2025) 102—111

www.elsevier.com/locate/procedia

Proceedings of the Third EuroHPC user day
Production-scale Performance Analysis and Optimization of Vlasiator

Valentin Seitz®*, Markus Battarbee®, Urs Ganse®, Vertti Tarvus?, Minna Palmroth®, Marta
Garcia-Gasulla?

“Barcelona Supercomputing Center, Plaga Eusebi Giiell, 1-3, 08034 Barcelona, Spain
bUniversity of Helsinki, PL 68 (Pietari Kalmin katu 5), 00560 Helsinki, Finland

Abstract

As HPC systems scale toward the exascale era, the ability to efficiently utilize the growing number of parallelism available becomes
critical. Traditional performance validation methods - such as scalability studies, and aggregated performance metrics obtained by
profilers and mini-apps - often fall short when applied to complex, full-scale production runs. In this paper, we present a novel
methodology for in-depth performance analysis of large-scale simulations, demonstrated on Vlasiator, a space plasma simulation
code executed on up to 500 nodes of a European pre-exascale supercomputer. Our approach combines targeted instrumentation,
programming model-based performance metrics, and iterative investigation to identify and address performance bottlenecks that
are otherwise hidden in conventional analyses. The methodology led to optimizations, resulting in improved parallel efficiency
and measurable speedups. This work highlights the importance of production-level analysis for HPC applications and provides a
practical framework for similar efforts across other scientific domains.

© 2025 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY 4.0 license (https://creativecommons.org/licenses/by/4.0)
Peer-review under responsibility of the scientific committee of the Proceedings of the Third EuroHPC user day

Keywords: HPC, Performance Analysis; Vlasiator; Optimization

1. Introduction

High-Performance Computing (HPC) clusters continue to grow in size, providing access to increasing numbers of
CPU cores and GPUs. At the same time, HPC applications are evolving to tackle increasingly complex simulations
with higher resolution and greater physical detail. Amid this progress, it is critical to ensure the efficient use of
computational resources.

HPC developers often rely on scalability curves to validate and showcase the performance of their codes. When
scalability results are insufficient, profiling tools are often the next step. These tools provide information on how time
is spent across various parts of the code, such as specific subroutines or key regions like I/O and MPI communication.
Additional approaches include the use of mini-apps or per-kernel benchmarks.

* Corresponding author
E-mail address: valentin.seitz@bsc.es

1877-0509 © 2025 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY 4.0 license (https://creativecommons.org/licenses/by/4.0)
Peer-review under responsibility of the scientific committee of the Proceedings of the Third EuroHPC user day
10.1016/j.procs.2025.08.237

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2025.08.237&domain=pdf

Valentin Seitz et al. / Procedia Computer Science 267 (2025) 102—111 103

Yet, these methods often fall short of capturing the true efficiency of full-scale production runs. For example, scal-
ability curves can obscure underlying inefficiencies if the base case itself contains issues that scale with the problem
size — as we will demonstrate later in this paper. Similarly, profiling tools may not provide enough insight into the root
causes of inefficiencies, and mini-apps or benchmarks might fail to reflect the complexity of a real-world simulation.

In this paper, we introduce a methodology and supporting tools to analyze the performance of a full-production
plasma simulation running on up to 500 nodes of a European pre-exascale HPC system. We present the performance
analysis conducted, the insights obtained, and how these led to optimizations that improved execution efficiency and
resulted in meaningful speedups.

The remainder of the paper is organized as follows: Section 2 introduces Vlasiator, the HPC code, and the sim-
ulation use case analyzed. Section 3 presents the methodology and tools used for the performance study. Section 4
details the step-by-step analysis and its findings. In Section 5, we discuss the main challenges encountered and the
key findings. Finally, Section 6 concludes the paper and outlines future work.

2. Vlasiator

Vlasiator [17] is a HPC plasma simulation code, designed for modeling the collisionless plasma environment
surrounding Earth. It simulates the solar wind — magnetosphere — ionosphere interaction through ion-kinetic physics
and response through electromagnetic fields. In Vlasiator, ions are modeled through the particle distribution function,
discretized onto a Cartesian grid, with electrons contributing to the system as a charge-neutralizing fluid. Closure is
achieved through the Hall MHD Ohm’s law. Vlasiator is developed in C++ and parallelized using MPI and OpenMP.

Vlasiator simulates magnetospheric physics in 6 dimensions, with 3 spatial dimensions and 3 velocity dimensions
(3D-3V). The spatial simulation domain for ions is discretized on a Cartesian grid utilizing the DCCRG library [13, 14]
with regions of interest simulated at higher spatial resolution [8] evaluated through dynamic refinement criteria [15].
This cell-based octree refinement results in highly dynamic and nonuniform geometries contributing to the computa-
tional effort of solutions. The balancing of computational load across MPI domains is further influenced through the
fact that Vlasiator utilizes a sparse velocity mesh [20] for each spatial cell, where only those regions of phase-space
with non-negligible distribution function values are retained and simulated. The Vlasiator simulation grids are het-
erologous, with electromagnetic fields evaluated on a uniform mesh [18] and the ionospheric inner boundary solved
on a further refined triangular mesh [9]. Global 3D-3V Vlasiator simulations model trillions of phase-space cells for
hundreds of thousands of time steps (up to several thousands of seconds of real time), utilizing significant HPC allo-
cations for these runs. Recent efforts in improving parallel performance of Vlasiator include developments to support
heterogeneous architectures [5] and coalescing MPI transfers [4].

2.1. Configuration used in the analysis

Vlasiator simulations are highly dynamic in their computational complexity, with the spatial grid refined in a
dynamic fashion with up to three levels of octree refinement of cells, and the velocity space content of cells varying
by up to several orders of magnitude. To this end, parallel performance analysis was evaluated not on a simulation
starting from initial conditions, but rather from a checkpoint (restart) file storing the full simulation state of a real-life
production run, as showcased in Figure 1. At the analyzed time of the run, the mesh contained nearly 12 million
spatial cells, of which 6.7 million were at the highest refinement level. The velocity space content of these spatial cells
amounted to 1.2 trillion phase-space cells, with a maximum of ca. 5 - 10° phase-space cells and an average of 1 - 10
phase-space cells per spatial cell.

3. Methodology and Tools
3.1. Efficiency driven approach
The approach we follow in this work is driven by first obtaining programming-model-specific efficiency metrics for

different resource configurations. Low values in these efficiencies are then used to guide a detailed trace-based analysis
to identify the root causes of inefficiencies. This approach is similar to the one proposed by Wagner et al. [21].

104 Valentin Seitz et al. / Procedia Computer Science 267 (2025) 102—111

LB weight
5.000e+04
|

1057404 |
2236.
472.9

100.0

Fig. 1: Vlasiator simulation checkpoint state used for performance evaluation, with the colormap indicating the load balance weight, which is
a function of spatial cell phase-space complexity and neighboring geometry. Highlighted are three MPI task domains in red, green, and blue,
showcasing the heterogeneity of the computational domains. Axis labels are in units of Earth radii (RE).

Global Efficiency

Parallel Efficiency (Computation Scalability)

|
MPI \W) IPC (Frequencyj (Instructions)

(MPI Load Balance) (MPI Communication) (OpenMP Load Balance] OpenMP Communication |

Fig. 2: Tree showing the hierarchical programming-model based performance efficiencies

Figure 2 gives an overview of the efficiency metrics that we will explore. These metrics are well-established [3] and
hierarchical. Global efficiency is the product of computation scalability and the parallel efficiency of that execution.
The Computation scalability term describes how the useful computation time of the workload scales when comparing
different runs. This metric (and all its children) is computed relative to a base case. The computational scalability
is divided into 3 factors instructions per cycle (IPC), frequency and number of executed instructions following the
CPU performance equation described by Hennessy and Patterson [12]. For a strong scaling experiment, a perfect
instruction scaling has the same number of instructions across all processes for all resource configurations. If work is
replicated or additional work is required for more resources, the instruction scalability will quantify these effects. IPC
and frequency scaling provide hints if any of those other two factors cause slowdowns or speedups relative to the base
case.

Parallel efficiency is an absolute measure, it expresses how much of the time used by the execution is spent on doing
useful computations vs time spent in parallel runtimes like Message Passing Interface (MPI) or Open Multi-Processing

Valentin Seitz et al. / Procedia Computer Science 267 (2025) 102—111 105

(OpenMP). Load balance indicates how well the application distributes the required computation time across the
resources. We compute it as the factor between the maximum and the average across the resources. Imbalance can
arise for two different reasons. One is caused by distributing work unequally, and the other one is the work being
a bit slower to perform in some CPUs. Some tools can additionally distinguish between the load balance in a node
and the load balance between nodes. Communication efficiency quantifies how much time is spent in coordination or
communication between resources. If there is a lot of time spent in transferring messages e.g. via MPI, this efficiency
will quantify it.

3.2. Tools

An established way to get insight into a program execution and to compute these efficiency metrics is to trace the
program execution and later perform a post-mortem analysis of the trace. For the generation of the execution trace,
we rely on a modified version of Extrae [7]. For the visualization and analysis of the tracing data, we use Paraver [19].

The Tracking Application Live Performance (TALP) [16] component of the DLB [11] library offers a more
lightweight approach to obtain the efficiency metrics. Instead of storing the traces and requiring additional post-
processing, TALP computes the efficiency metrics on the fly and makes them available for the user after the execution.
Using a region annotation API, which is part of TALP, it is able to compute these metrics for different regions of the
application. In Appendix A we provide details on the tools and the respective versions used.

3.3. Integration with Phiprof

Vlasiator has code annotations using the Phiprof [1] library. This provides an easy entry hook for integration
with the BSC performance tools set. Our approach is very similar to the already published integration with the TAU
tools [6]. Compared to the TAU tools integration, we rely on another translation layer that provides a unified region-
annotation interface for both Extrae, DLB, and other performance tools. This enables us to switch easily between
online analysis using DLB and tracing with Extrae without the need to recompile or put any performance tool-specific
code into Phiprof or Vlasiator.

3.4. Methodology

To analyze the application, we implemented some changes to the typical workflow described in [21]. Instead of
selecting the focus of the analysis using an execution trace, we fix it a priori and select it to be a single timestep. As
tracing at production scale becomes a major data processing challenge, we opt to first run an online analysis using
TALP to obtain the efficiency metrics. Harnessing the integration with the Phiprof library, we add code regions through
the TALP Application Programming Interface (API), which enables TALP to compute the efficiencies per region. We
use the information obtained by TALP to drive further analysis. Regions with low efficiencies and high relative runtime
are selected for an in-depth tracing analysis. For the tracing executions, we use the integration with Phiprof and store
the region information in the trace using the translation layer. The translation layer also allows us to easily configure
partial tracing. In partial tracing, we select some regions of interest and enable the tracing package only when in those
regions. For all other regions, we only record the Phiprof annotations and region durations. The benefit of this is a
significant reduction in trace size, while still keeping all information in the regions of interest. Essentially, partial
tracing ensures that the tracer does not record programming-model specific calls e.g. MPI or OpenMP events while
outside the region of interest.

3.5. Marenostrum 5

As HPC machines come in all architectures and sizes, we briefly introduce Marenostrum 5 [2], a EuroHPC petaflop
machine that is hosted by the Barcelona Supercomputing Center. The General Purpose Partition, which was used in
the analysis, consists of 3 islands with 30 racks each. Each rack is filled with 72 compute nodes. Each compute node
consists of two Intel Xeon Platinum 8480+ 56-core CPUs with 224GB of usable 4800MHz DDRS5 memory. Two
nodes share one ConnectX-7 NDR200 InfiniBand network interface with an available bandwidth of 200Gb/s. This
brings the available network bandwidth per node to 12.5 GB/s.

106 Valentin Seitz et al. / Procedia Computer Science 267 (2025) 102—111

MPI: 1

MPI: 7000

0s - 175
Il Velocity-space [Spatial-space M Propagate Fields [l Compute interp moments

Update system boundaries: [l pre-translation post-translation M post-acceleration

Fig. 3: Paraver timeline showing the Phiprof code annotations of the analyzed timestep in the 500 node production run.

4. Performance Analysis and Optimizations

Following the methodology introduced, we first perform a strong-scaling experiment and obtain the efficiencies
using TALP. This is followed by an in-depth analysis of the current performance problems in the spatial-space updates
as well as showcasing a performance improvement of the field solvers that resulted from the insights revealed in the
analysis.

For all experiments included in this study, we launch 7 MPI processes per socket, that is 14 per node. We launch
8 OpenMP threads per process distribute them in a close fashion and bind them to cores while Simultaneous Multi-
threading (SMT) is disabled.

If not stated otherwise, the Vlasiator version used corresponds to the FIC branch, which was used in the original
production run. For details consult Appendix A.

4.1. Strong scaling experiment

As an initial assessment of the parallel performance, we conduct a strong-scaling experiment from 250 nodes in
Marenostrum 5 up to 500 nodes. For the lower node count, we chose 250 nodes, as it was the minimum amount of
nodes needed in terms of total memory to fit the simulation with some additional room for the tracing buffers. Figure
3 shows a timeline overview of the most significant Phiprof regions making up one timestep. We can see, that the
Spatial-space updates take up roughly half of the runtime required for one timestep. The second biggest region
is the field solver in the Propagate Fields region. This is followed by the Velocity Space updates, which only
accounts for about 15% of runtime.

Table 1: Strong scaling efficiency and performance metrics obtained with TALP for different Phiprof regions. Efficiencies are measured without
hardware counters; computation scalability is from runs with hardware counters; run times for the timestep are averages over two runs without
hardware counters.

Propagate Spatial-space ~ Propagate Fields Velocity Space
Number of processors 28000 56000 28000 56000 28000 56000 28000 56000
MPI Parallel Efficiency 0.52 0.43
MPI Load Balance 0.51 0.53 0.35 0.39 0.31 0.54 0.51
MPI Communication Efficiency 0.46 0.40 0.55 0.43 0.58 0.63 0.97 0.84
Computation Scalability 1.00 1.07 1.00 1.08 1.00 1.05 1.00 1.01
Average IPC 1.52 1.59 0.99 1.08 2.38 2.40 1.68 1.68
Average Frequency (GHz) 2.89 291 2.95 2.95 2.84 2.87 291 2.92
Average Runtime (s) 36.8 17.3 21.9 9.40 8.42 4.71 4.82 2.64
Speedup - 2.13 - 2.32 - 1.79 - 1.83

Table 1 shows the results from the strong-scaling experiment. We see that for the region Propagate, which encodes
the timestep, we observe a speedup of 2.1 when doubling the available resources. While this indicates that Vlasiator
benefits from additional resources slightly super-linearly, it falls short of giving the full performance picture. Focusing
on the Parallel efficiency, we observe that the Parallel efficiency is not optimal sitting around 20%. This means, that

Valentin Seitz et al. / Procedia Computer Science 267 (2025) 102—111 107

a) MpL:1

MPI: 3500
0s 7.7s

b) MPL1

MPI: 7000

Os 3.1s 7.7s
M transfer-stencil-data-z [compute-mapping-z [l barrier-trans-pre_remote-z Mupdate_remote-z

Fig. 4: Paraver timeline showing the Phiprof regions for the spatial space updates in z direction. a) shows the 250-node execution. b) the 500-node
execution.

250 Nodes 500 Nodes
le9 lell 1.00 1le9 lell 1.00
== Total bytes sent e 6 == Total bytes sent e
2 F0.75 § = ,(\-"\ F0.75 §
Q wn o I ‘ﬁ wn
0 o w44 bl \ O
m 0505 7 0.50 €
28 o ’ \ B
> -5 4 Ay -
@ 0258 @ 27 - Y 0258
S —— £
0.00 0 0.00
10 15 20 25 0 5 10 15 20 25
Bandwidth (GB/s) Bandwidth (GB/s)

Fig. 5: Effective send-bandwidth achieved by the different nodes in the two execution configurations. Each point corresponds to a node sending a
certain amount of data at a certain effective bandwidth. The dashed line shows the total data sent by all nodes at that bandwidth. We only consider
the initial transfer of the spatial space update in z direction. Both plots include sends that did not go through the network fabric but remained
in-node.

of the overall available CPU time only roughly 20% is spent executing application code, the rest is spent in MPI
runtime code. As the GNU-OpenMP runtime currently does not support the OMPT interface, but TALP requires
that for intercepting the runtime calls, the Table only contains the MPI related efficiencies. We can observe that the
Velocity Space region exhibits a significantly higher parallel efficiency compared to the other 2 regions. We will
therefore focus the following in-depth analysis only on the spatial space updates and the field solver implementation
in the Propagate Fields region.

4.2. Spatial space

The Spatial space computations are split into three very similar regions, each concerned with updating the z,y
and x direction of real space advection. As they exhibit very similar performance characteristics, we will focus on just
the z-dimension, but our findings generalize to the y and x updates as well.

Computing the real space direction advection consists of three steps: first copying over stencil data from other MPI
processes to form the ghost regions, followed by the actual stencil computations. The semi-Lagrangian solver results in
integrated plasma contributions for both local and ghost cells, and as such, in the final step, these contributions spilling
into remote neighbors must be communicated as remote neighbor contributions. Communication is implemented
by instantiating the non-blocking send and receive pairs for each communication partner. This is followed by the
MPI_Waitall for every communication receive request. After that, the MPI_Waitall calls for the send requests are
issued. This communication structure is used for both the initial and later update transfers.

Considering the Spatial-Space column in Table 1 it becomes obvious that both load balance between the MPI
processes and MPI communications seem to be major sources of inefficiency in this region. Load balance seems to
improve slightly at 500 nodes, while communication efficiency drops. We also observe a super-linear speedup when
moving to 500 nodes. We first focus on the communication part, followed by an analysis of the stencil computations.

4.2.1. Communication
Looking at the 250-node timeline in Figure 4 we see that region transfer-stencil-data-z is signif-
icantly imbalanced. The compute-mapping-z region is therefore delayed and reaches the synchronization in

108 Valentin Seitz et al. / Procedia Computer Science 267 (2025) 102—111

the barrier-trans-pre-update_remote-z later. The fastest process finishes the MPI communication in 0.19s
whereas the slowest takes 3.2s and the average time spent in transferring data is around 2.3s for the 250 nodes exe-
cution. Looking at Figure 5 we can see, that in the 250-node execution most nodes communicate data at an effective
bandwidth between 3 and 5 GB/s with a few at around 9-10 GB/s. For the 500-node execution, most data is transferred
at around 12 GB/s, and no bi-modality of the distribution is observed. The reason for the load balance problem in the
initial transfers of the 250-node execution originates from the inability of some nodes to use the available bandwidth.

Based on the communication pattern and the available metrics the most likely reason for the contention, which
is observable at 250 nodes, is either related to maximum message size or incoming message ordering in the MPI
implementation or the underlying transport layer. In a more current version of Vlasiator the MPI_Waitall is called
only once for all receives and later once for all the send requests. This removes the necessity for the MPI runtime
to retire the messages in issue order. Unfortunately, these changes did not show any improvements in bandwidth
utilization for the 250-node execution. This hints strongly towards contention in the MPI or networking stack as the
reason for the low bandwidth utilization.

4.2.2. Load imbalance in the stencil computations

Looking again at Figure 4 focusing on the 500 node execution timeline, we can identify a significant imbalance
in the compute-mapping-z region. This is, compared to the 250-node execution, easier to identify, as the transfers
are much more balanced. TALP is able to distinguish the quality of intra-node and inter-node load balance separately.
For the whole Spatial Space region TALP reports the inter-node load balance efficiency to be 0.82 and for the
most-imbalanced node 0.48. So the load imbalance in the nodes seems to be dominating this inefficiency.

To summarize: The performance of the Spatial-space region is mainly dominated by network transfers and
process-level load imbalance. Uneven bandwidth utilization can lead to additional unfavorable imbalance and con-
tribute significantly to inefficiencies.

To improve communication efficiency, a scheme overlapping communication and computation, thus hiding com-
munication overhead would be beneficial at production scale. In such a scheme, as soon as a portion of data becomes
ready, the corresponding stencil computations are performed. As the load imbalance seems to not be dominated by
inter-node load balance, dynamic intra-node load balancing approaches like Lend When Idle (LeWI) [10] should
certainly be explored.

4.3. Field solver

After the analysis of the spatial-space updates, we now present the analysis of the field-solver implementation. The
computational structure of the Propagate Fields region is to first compute the grid coupling. This links MPI pro-
cesses to each other for the contribution of plasma moments required by the field solver, as the grids are heterologous
[18]. After computing the coupling, the iterative part of the field solver, repeated potentially several times follows.
After electric and magnetic fields have been solved for the new simulation time state, these are communicated back
through coupling so the Vlasov solvers can use them in solving the Vlasov equation.

As the iterative part takes up most of the runtime, we will focus our analysis on this region. Computationally
the iterative part is organized in OpenMP parallel worksharing loops with non-blocking communication between
the parallel regions. This communication is however directly awaited, so no overlap occurs. Communication in the
iterative part is dominantly between neighboring processes. At the end of each iteration global synchronization is
enforced by a MPI_Allreduce.

Looking at Table 1 we find that load balance is the biggest contributor to inefficiency and gets worse when scaling
to large node counts. Communication efficiency, however, seems to improve, but overall parallel efficiency does still
suffer from scaling the application.

4.3.1. Analysis of the load imbalance

Selecting the second iteration and only focusing on the process that arrived the latest in the MPI_Allreduce and its
neighbors we can see the structure of the computation depicted in Figure 6 a). Looking at the second block of the field
solver in Figure 6 a), we clearly see that two threads have a high useful duration indicated by the blue lines starting
in the second phase. This high computation time is identified to be an imbalanced OpenMP work distribution in the
handling of the magnetic field boundary. As these computations need to be finished before communicating, we can

Valentin Seitz et al. / Procedia Computer Science 267 (2025) 102—111 109

a) MPL: 6475

MPI: 6528

0 ms

b) wmpr 6475

MPI: 6528

190 ms

0 ms 8 ms 16 ms

Fig. 6: Paraver timeline view of the granularity between runtime calls of one field solver iteration. Higher values mean longer computation between
runtime calls. a) shows the original code version, b) is the same iteration using the optimized version. Both x-axis have the same length allowing
for easy comparison.

see the effect of this initial delay propagating through the communication dependency chain and affecting neighboring
processes. These initial delays in the magnetic field boundary handling de-synchronize the lockstep pattern and lead
to low load balance values. To conclude, we can say that the field solver’s performance currently is limited by load
balance issues. The small disturbance due to improper worksharing combined with the fine-grained collective calls at
the end of each iteration leads to low load balance efficiencies.

4.3.2. Performance improvement

Using this insight, we were able to provide a fix for this uneven work distribution. Details on the implantation
are provided in Appendix A. Applying the changes and re-running resulted in Figure 6 b) which shows, that the
de-synchronization is no longer visible and the execution of the iteration takes significantly less time.

Looking at the load balance value, we also see a significant improvement from 0.27 to 0.4 reported by TALP
while execution time for this iteration dropped from 0.19 to 0.14 seconds. The overall runtime improvement of the
Propagate Fields region for that timestep is about 10%.

5. Discussion

Any performance improvement efforts should be driven by an in-depth performance analysis. Gathering utilizable
performance data for massively parallel software at production scale using full tracing approaches is not feasible.
The changes to the analysis methodology presented in this work did prove to be effective, as we were able to use
the information provided by TALP to guide our partial tracing efforts. However, as already pointed out, TALP uses
the OMPT interface, which is not implemented by the GNU-OpenMP runtime. This leads to the OpenMP runtime
information being invisible to the tool, only reporting MPI efficiencies. This potentially leads to an overestimation of
efficiencies. For our analysis, this however posed no problem, as most of the inefficiencies are observed at MPI level.
Another downside of using profilers like TALP is that the aggregation of measurement data between the invocations
of the same region leads to a smearing effect. Especially for non-production runs, where the number of timesteps is
rather small and timestep performance varies a lot, it can lead to hard-to-interpret results.

Compared to online analysis approaches like TALP, tracing can resolve these transients and provide data at a higher
resolution without aggregations. At scale, however, the growth of data to store and post-process quickly becomes a
major bottleneck. The average trace size of an execution in our analysis was 500 GB, which is at the boundary of
being manageable and analyzable. If we followed a more typical approach not relying on the online analysis to guide
the partial tracing efforts, we expect to obtain multiple TB of data per execution, which is prohibitive to perform.
Thus, this approach of guided partial tracing is validated as a useful approach when profiling at scale.

110 Valentin Seitz et al. / Procedia Computer Science 267 (2025) 102—111

Tracing applications at scale not only comes at the cost of storage and post-processing times but as tracing tools
intercept runtime calls, they often find themselves in the critical path of the application, so overhead needs to be
tightly monitored to ensure reliable data. For all traces obtained, we observed an overhead of 6-8% for the timestep
with programming model call interceptions enabled. For the rest of the execution where only Phiprof data was added,
we did not observe any significant overhead. We always executed a reference run to compute the overhead in the
same node set, to reduce the machine-specific influence on the performance differences between runs. For the TALP
executions we observed an overhead of around 8%.

The findings in the Spatial Space translation were not unexpected as balancing the load in a highly sparse and
dynamic mesh is a major challenge. The bandwidth utilization-induced load imbalance, however, was something that
we observed now for the first time. Identifying a slowdown as being caused by actual network bandwidth was only
possible due to the utilized tools - timing information alone would not be able to provide this information. As the
network bandwidth available also depends on how busy the machine is and the underlying network topology, we
studied if this has any influence. Our data currently indicates that under-utilization of bandwidth is independent of the
networking topology, as well as machine load. Here a more detailed analysis using the e.g. the MPI tools interface
or network hardware counters would allow us to analyze the reasons for contention in the networking stack. It also
remains to be seen if this is a common feature of the MPI usage of Vlasiator, or if this phenomenon is restricted to
just this machine and MPI implementation.

6. Conclusion and outlook

In this paper we showcased a detailed performance analysis, for only select portions of a production-scale simu-
lation run, driven by parallel efficiency metrics obtained by TALP. Region-based partial tracing enabled us to study
the root causes of the low-efficiency values and identify current bottlenecks in Vlasiator while keeping trace size and
post-processing times at a manageable level. For the spatial space updates, we identify communication and inter-
process load imbalance to be the main contributors to inefficiencies. In the field solver, we identified an unfavorable
work distribution among threads that leads to high idle times due to frequent global synchronizations. We were able
to mitigate this issue partially and improve the field solver performance for that case by roughly 10%.

For future work, we plan to extend the collaboration and evaluate the possibility of an TALP integration into
Vlasiator. We also plan to tackle the in-node component of the load imbalance in the spatial space translation by
investigating the effects of LeWI in this case, and the implications for performance at production scale.

Our approach highlights the importance of using online analysis tools as they provide enough insight to uncover
hidden inefficiencies while keeping the postprocessing effort to a minimum. Our findings also indicate how perfor-
mance analysis at scale is a crucial step that should not be ignored, as the mental model of the execution and the actual
execution behavior can diverge, especially when utilizing a larger portion of a supercomputer in a realistic simulation
scenario.

Acknowledgments

This work have received funding from the European High-Performance Computing Joint Undertaking (JU) under
grant agreement No 101143931 (POP3 project) and No 101093261 (Plasma-PEPSC project). The JU receives support
from the European Union’s Horizon Europe research and innovation programme and Spain, Germany, France, Por-
tugal, the Czech Republic, Sweden, Finland, Greece, and Slovenia. The Plasma-PEPSC project (PCI2022-135050-2)
and the POP3 project (PCI2024-153419) are also co-funded by MICIU/AEI /10.13039/501100011033 and by the UE
NextGenerationEU/PRTR. Access to the computing resources was provided by the EuroHPC Development Access
Call EHPC-DEV-2025D05-038

Appendix A. Reproducibility

We provide a repository to ease the reproducibility of our findings under: https://gitlab.bsc.es/vseitz/
performance-analysis-of-vlasiator-at-production-scale. For access to raw data like traces or profiler
data, please contact the corresponding author.

Valentin Seitz et al. / Procedia Computer Science 267 (2025) 102—111 111

References

(1]
(2]

(3]

(4]

[5]

(6]

(7]
(8]

(9]

[10]

[11]
[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]

[21]

von Alfthan, S., 2023. Phiprof — parallel hierarchical profiler. https://github.com/fmihpc/phiprof.

Banchelli, F., Garcia-Gasulla, M., Mantovani, F., Vinyals, J., Pocurull, J., Vicente, D., Eguzkitza, B., Galeazzo, F.C.C., Acosta, M.C., Girona,
S., 2025. Introducing MareNostrumS: A European pre-exascale energy-efficient system designed to serve a broad spectrum of scientific
workloads. URL: http://arxiv.org/abs/2503.09917, doi:10.48550/arXiv.2503.09917. arXiv:2503.09917 [cs].

Banchelli, F., Peiro, K., Querol, A., Ramirez-Gargallo, G., Ramirez-Miranda, G., Vinyals, J., Vizcaino, P., Garcia-Gasulla, M., Mantovani, F.,
2020. Performance study of hpc applications on an arm-based cluster using a generic efficiency model, in: 2020 28th Euromicro International
Conference on Parallel, Distributed and Network-Based Processing (PDP), IEEE. pp. 167-174. doi:10.1109/PDP50117.2020.00032.
Battarbee, M., Ganse, U., Pfau-Kempf, Y., Alho, M., Papadakis, K., Palmroth, M., 2025. Coalescing MPI communication in 6D Vlasov
simulations: solving ghost domains in Vlasiator. URL: http://arxiv.org/abs/2504.21450, doi:10.48550/arXiv.2504.21450.
arXiv:2504.21450 [physics].

Battarbee, M., Papadakis, K., Ganse, U., Hokkanen, J., Kotipalo, L., Pfau-Kempf, Y., Alho, M., Palmroth, M., 2024. Porting the grid-based
3D+3V hybrid-Vlasov kinetic plasma simulation Vlasiator to heterogeneous GPU architectures. URL: http://arxiv.org/abs/2406.
02201, doi:10.48550/arXiv.2406.02201. arXiv:2406.02201 [physics].

Coti, C., Pfau-Kempf, Y., Battarbee, M., Ganse, U., Shende, S., Huck, K., Rodriquez, J., Kotipalo, L., Faj, J., Williams, J.J., Peng, I.,
Malony, A.D., Markidis, S., Palmroth, M., 2024. Integration of Modern HPC Performance Tools in Vlasiator for Exascale Analysis and
Optimization, in: 2024 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), pp. 996-1005. URL:
https://ieeexplore.ieee.org/document/10596357, doi:10.1109/IPDPSW63119.2024.00170.

Extrae team, . Extrae | BSC-Tools. URL: http://web.archive.org/web/20240830235900/https://tools.bsc.es/extrae/.
Ganse, U., Koskela, T., Battarbee, M., Pfau-Kempf, Y., Papadakis, K., Alho, M., Bussov, M., Cozzani, G., Dubart, M., George, H., Gordeev,
E., Grandin, M., Horaites, K., Suni, J., Tarvus, V., Kebede, F.T., Turc, L., Zhou, H., Palmroth, M., 2023. Enabling technology for global 3D +
3V hybrid-Vlasov simulations of near-Earth space. Physics of Plasmas 30, 042902. URL: https://pubs.aip.org/pop/article/30/4/
042902/2878614/Enabling-technology-for-global-3D-3V-hybrid-Vlasov, doi:10.1063/5.0134387.

Ganse, U., Pfau-Kempf, Y., Zhou, H., Juusola, L., Workayehu, A., Kebede, F., Papadakis, K., Grandin, M., Alho, M., Battarbee, M., Dubart, M.,
Kotipalo, L., Lalagiie, A., Suni, J., Horaites, K., Palmroth, M., 2025. The Vlasiator 5.2 ionosphere — coupling a magnetospheric hybrid-Vlasov
simulation with a height-integrated ionosphere model. Geoscientific Model Development 18, 511-527. URL: https://gmd.copernicus.
org/articles/18/511/2025/, doi:10.5194/gmd-18-511-2025.

Garcia, M., Labarta, J., Corbalan, J., 2014. Hints to improve automatic load balancing with LeWI for hybrid applications. Journal of Parallel
and Distributed Computing 74, 2781-2794. URL: https://www.sciencedirect.com/science/article/pii/S0743731514000926,
doi:10.1016/j . jpdc.2014.05.004.

Garcia-Gasulla, M., Lopez, V., 2025. Dynamic load balancing library. https://doi.org/10.5281/zenodo.15000657. URL: https:
//pm.bsc.es/dlb, doi:10.5281/ZENODO . 15000657.

Hennessy, J.L., Patterson, D.A., 2011. Computer Architecture: A Quantitative Approach. 5th ed., Morgan Kaufmann. URL: https://d1.
acm.org/doi/book/10.5555/1999263.

Honkonen, 1., Vlasiator Team, . Dccrg — a distributed cartesian cell-refinable grid. URL: https://github.com/fmihpc/dccrg/tree/
vlasiator-version.

Honkonen, 1., Von Alfthan, S., Sandroos, A., Janhunen, P., Palmroth, M., 2013. Parallel grid library for rapid and flexible simula-
tion development. Computer Physics Communications 184, 1297-1309. URL: https://linkinghub.elsevier.com/retrieve/pii/
50010465512004237, doi:10.1016/j.cpc.2012.12.017.

Kotipalo, L., Battarbee, M., Pfau-Kempf, Y., Palmroth, M., 2024. Physics-motivated cell-octree adaptive mesh refinement in the Vlasiator
5.3 global hybrid-Vlasov code. Geoscientific Model Development 17, 6401-6413. URL: https://gmd.copernicus.org/articles/17/
6401/2024/, doi:10.5194/gmd-17-6401-2024.

Lopez, V., Ramirez Miranda, G., Garcia-Gasulla, M., 2021. TALP: A Lightweight Tool to Unveil Parallel Efficiency of Large-scale Executions,
in: Proceedings of the 2021 on Performance EngineeRing, Modelling, Analysis, and VisualizatiOn STrategy, ACM, Virtual Event Sweden. pp.
3-10. URL: https://dl.acm.org/doi/10.1145/3452412.3462753, doi:10.1145/3452412.3462753.

Palmroth, M., Ganse, U., Pfau-Kempf, Y., Battarbee, M., Turc, L., Brito, T., Grandin, M., Hoilijoki, S., Sandroos, A., von Alfthan, S., 2018.
Vlasov methods in space physics and astrophysics. Living Reviews in Computational Astrophysics 4, 1. URL: https://doi.org/10.1007/
s41115-018-0003-2, doi:10.1007/s41115-018-0003-2.

Papadakis, K., Pfau-Kempf, Y., Ganse, U., Battarbee, M., Alho, M., Grandin, M., Dubart, M., Turc, L., Zhou, H., Horaites, K., Zaitsev, I.,
Cozzani, G., Bussov, M., Gordeev, E., Tesema, F., George, H., Suni, J., Tarvus, V., Palmroth, M., 2022. Spatial filtering in a 6D hybrid-
Vlasov scheme to alleviate adaptive mesh refinement artifacts: a case study with Vlasiator (versions 5.0, 5.1, and 5.2.1). Geoscientific Model
Development 15, 7903-7912. URL: https://gmd.copernicus.org/articles/15/7903/2022/, doi:10.5194/gmd-15-7903-2022.
Pillet, V., Labarta, J., Cortes, T., Girona, S., . Paraver: A tool to visualize and analyze parallel code .

Von Alfthan, S., Pokhotelov, D., Kempf, Y., Hoilijoki, S., Honkonen, I., Sandroos, A., Palmroth, M., 2014. Vlasiator: First global hybrid-
Vlasov simulations of Earth’s foreshock and magnetosheath. Journal of Atmospheric and Solar-Terrestrial Physics 120, 24-35. URL: https:
//linkinghub.elsevier.com/retrieve/pii/S1364682614001916, doi:10.1016/j.jastp.2014.08.012.

Wagner, M., Mohr, S., Gimenez, J., Labarta, J., 2018. A Structured Approach to Performance Analysis. doi:10.1007/978-3-030-11987-4_
1.

Available online at www.sciencedirect.com

ScienceDirect Procedia

Computer Science

CrossMark

Procedia Computer Science 267 (2025) 112-123

www.elsevier.com/locate/procedia
Proceedings of the Third EuroHPC user day

Towards Exascale Computing for Astrophysical Simulation
Leveraging the Leonardo EuroHPC System

Nitin Shukla®*, Alessandro Romeo®*, Caterina Caravita®, Michael Redenti?, Radim
Vavrik®, Lubomir Riha®, Andrea Mignone®, Marco Rossazza®, Stefano Truzzi®, Luca
Tornatore’, Antonio Ragagnin?, Tiago Castro?, Geray S. Karademir®, Klaus Dolag®,

Pranab J. Deka’, Fabio Bacchinif, Rostislav-Paul Wilhelm', Daniele Gregori®, Elisabetta
Boella®

“CINECA, Casalecchio di Reno, Italy
b [T4Innovations, VSB-TU Ostrava, Ostrava, Czech Republic
“University of Turin, Turin, Italy
4INAF - Osservatorio Astronomico di Trieste, Trieste, Italy
¢ Universitits-Sternwarte, Fakultdit fiir Physik, Ludwig-Maximilians-Universitit Miinchen, Munich, Germany
TKU Leuven, Leuven, Belgium
8 E4 Computer Engineering SpA, Scandiano, Italy

Abstract

Developing and redesigning astrophysical, cosmological, and space plasma numerical codes for existing and next-generation accel-
erators is critical for enabling large-scale simulations. To address these challenges, the SPACE Center of Excellence (SPACE-CoE)
fosters collaboration between scientists, code developers, and high-performance computing experts to optimize applications for the
exascale era. This paper presents our strategy and initial results on the Leonardo system at CINECA for three flagship codes, namely
gPLUTO, OpenGadget3 and iPIC3D, using profiling tools to analyze performance on single and multiple nodes. Preliminary tests
show all three codes scale efficiently, reaching 80% scalability up to 1,024 GPUs.

© 2025 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY 4.0 license (https://creativecommons.org/licenses/by/4.0)
Peer-review under responsibility of the scientific committee of the Proceedings of the Third EuroHPC user day

Keywords: Exascale; EuroHPC; HPC; astrophysics; space plasma; simulation; performance analysis; CI/CD; GPU scaling; SPACE CoE

1. Introduction

High-performance computing (HPC) has transformed large-scale astrophysical simulations, enabling researchers
to study complex phenomena such as dark matter interactions [1, 2], gravitational lensing [3, 4], magnetic reconnec-
tion [5, 6, 7], X-ray emissions from galaxy clusters [8], and y-ray bursts driven by fireball beam—plasma interactions

* Corresponding author.
E-mail addresses: n.shukla@cineca.it (Nitin Shukla), a.romeo@cineca.it (Alessandro Romeo)

1877-0509 © 2025 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY 4.0 license (https://creativecommons.org/licenses/by/4.0)
Peer-review under responsibility of the scientific committee of the Proceedings of the Third EuroHPC user day
10.1016/j.procs.2025.08.238

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2025.08.238&domain=pdf

Nitin Shukla et al. / Procedia Computer Science 267 (2025) 112—123 113

[9, 10]. Advances in HPC hardware, particularly in GPU architectures and high-speed interconnect technologies,
are driving progress towards exascale computing (10'® calculations per second). These improvements enable signifi-
cantly larger, more detailed, and faster simulations. To fully exploit this capability, scientific codes need to adopt new
programming models. The SPACE-CoE project brings together scientists, developers, and tech experts to redesign
astrophysical software for exascale systems. It focuses on developing efficient, portable, and scalable applications,
encouraging collaboration in the European astrophysics community through shared tools, data standards, and devel-
opment practices.

The SPACE-CoE [11] focuses on adapting seven widely used open-source astrophysics codes, covering magneto-
hydrodynamics, cosmology, general relativity, and space plasma physics, including gPLUTO [12], OpenGadget3 [13],
and iPIC3D [14], for which CINECA co-develops GPU-centric algorithms. While these codes are already optimized
for CPU parallelism, leveraging the full power of modern EuroHPC GPU-based super computers requires further
optimization to enhance performance and scalability. CINECA plays a key role in code redesign, optimization, profil-
ing, and performance analysis, as well as supporting the project on the Leonardo system. This paper is organized as
follows: Section 2 gives an overview of the codes and their POP3 [15] analysis. Section 3 covers GPU-focused devel-
opment and code validation after each change. Section 4 outlines our benchmarking process and software engineering
practices adapted for HPC. We present profiling and performance results for each application.

2. Code development workflows

In this section, we describe our collaborative work with the three European research teams involved in the de-
velopment activity. We also provide a brief overview of the main features of the codes and how they leverage GPU
computational capabilities. The three aforementioned astrophysical codes tackle a diverse range of scientific problems,
involving different algorithmic methodologies and approaches.

2.1. Implementation of gPLUTO

gPLUTO is the GPU-enabled version of PLUTO, a multi-algorithm framework for solving the equations governing
plasma dynamics at high Mach numbers. It supports a range of physical models, including the compressible Navier-
Stokes equations, ideal Magneto Hydro Dynamics (MHD), relativistic MHD (RMHD) and resistive relativistic MHD
(ResRMHD). The new code version is implemented in C++ and employs Godunov-type finite volume solvers for hy-
perbolic and parabolic MHD conservation laws in up to three spatial dimensions, on both static and mapped grids.
Currently, gPLUTO implements approximately 65% of the modules and features available in the original PLUTO code.
Many of the missing features of PLUTO, such as adaptive mesh refinement (AMR) grids, heating and cooling mecha-
nisms, dissipation process, etc., are being ported to the GPU. The code uses MPI to handle multiple tasks, while GPU
acceleration is handled through OpenACC (Rossazza et al., submitted). GPU offloading using OpenMP is currently in
progress and will be included in a future release of the code.

2.2. Implementation of OpenGadget3

OpenGadget3 (Dolag et al., in prep.) is an open-source version of a Gadget?2 [16] code successor. It is a N-Body
C/C++ code and deals with several astrophysical scales. Gravitational force uses Barnes & Hut algorithm [17] for short
range interactions and particle mesh algorithm to treat large scales, performed with the use of FFTW3 libraries [18].
The code employs an advanced smoothed particle hydrodynamics (SPH) solver [19]. As an alternative hydro solver,
the code is also equipped with a meshless finite mass method [13]. Moreover, this code also includes other baryonic
physics processes, such as radiative cooling, star formation, energy feedback, radiative transfer, magnetic fields, and
black holes. The code uses a hybrid MPI + OpenMP parallelization scheme, exploiting Hilbert space filling curve
locality [20], and both inter-node and intra-node parallelism. GPU offloading is currently implemented via OpenACC
[21], while support for OpenMP offloading is under development.

114 Nitin Shukla et al. / Procedia Computer Science 267 (2025) 112—123

2.3. Implementation of 1PIC3D

iPIC3D [14] is a semi-implicit Particle-in-Cell (PIC) C/C++ code developed primarily to study collisionless plasma
dynamics at kinetic scales. Macro-particles, which are used to represent an ensemble of plasma particles, are evolved
in a Lagrangian framework, whereas the moments (such as plasma density, current, pressure, etc...) and the self-
consistent electric and magnetic fields are tracked on an Eulerian grid. The three main kernels of iPIC3D are Particle
Mover, Moment Gatherer, and Field Solver. Due the implicit nature of the underlying algorithms, unlike explicit PIC
methods, insufficiently resolved scales do not result in numerical instabilities. This allows us to choose time step sizes
and spatial grid sizes 10—100 times greater than those used in traditional explicit PIC codes. iPIC3D is an OpenMP +
MPI hybrid code, and two of its modules, the particle mover and moment gatherer, are offloaded to GPU using HIP
(for AMD GPUs) and CUDA (for NVIDIA GPUs).

2.4. Leonardo HPC system and allocation of resources

The initial activities of the SPACE-CoE project was conducted on the EuroHPC Tier-0 supercomputer Leonardo,
hosted and managed by CINECA. Leonardo consists of two main partitions [22]: the DCGP partition with 1,536 dual-
socket nodes, each equipped with 112-core Intel Xeon 8480+ CPUs, 512 GB RAM, and 3.84 TB NVMe SSDs; and
the Booster partition with 3,456 accelerated nodes, each with a 32-core Intel Xeon 8358 CPU and four customized
NVIDIA A100 GPUs, totaling 13,824 GPUs. Each Booster node is equipped with 512 GB of memory and 64 GB of
HBM2e memory per GPU. The GPUs are interconnected via NVLink 3.0 and connected to the host system through
PClIe Gen4. Inter-node communication uses InfiniBand HDR with four 100 Gb/s ports per node. Leonardo Dragon-
fly+ network topology ensures high-bandwidth, low-latency connectivity through a two-level fat tree structure with
spine and leaf switches, supporting scalable performance for large-scale simulations. Leonardo offers a pre-exascale
computing capability of up to 240 Pflop/s.

Each SPACE-CoE code needs specific libraries, managed by the SPACK package manager [23]. These are or-
ganized into modules for different compilers and MPI versions. In addition to GNU compilers, DCGP uses Intel
OneAPI compilers, while Booster uses NVIDIA HPC and CUDA compilers for GPU tasks. Computational resources
on Leonardo are provided through allocations from ISCRA and EuroHPC, enabling jobs of up to 128 nodes on DCGP
and up to 256 nodes on Booster. Additionally, CINECA has allowed larger runs during special pre-exascale days.

2.5. CPU performance assessment with Extrae

This section focuses on evaluating CPU code performance prior to any GPU adaptation. As the first step, we
assessed the current status of the codes using the HPC performance analysis suite based on Extrae [24]. The profiling
results, obtained in collaboration with IT4I, provide insights into code behavior and performance bottlenecks, forming
the basis for optimization and porting to the Leonardo HPC system.

The performance analysis process is similar for most project codes. It begins with carefully selecting and setting
up test cases for measurement. To get the most useful results of the analysis for the following optimization work, it is
important to use a production-level test case that performs all the required computational routines ideally at the target
scale in terms of computational resources, i.e. number of nodes, CPU cores, GPU accelerators, etc. At that scale, the
typical simulation runs with the duration of many hours would generate an enormous amount of performance data.
To decrease the size of the collected data to a manageable level, it is necessary to limit the simulations only to several
units or tens of iterations, e.g. time steps, keeping the target scale.

Among the three CoE codes only OpenGadget3 and iPIC3D exhibited scalability issues with potential for im-
provement. In contrast, the CPU version of gPLUTO (PLUTO) had already undergone some optimization before the
start of the SPACE project. As a result, no further scalability analysis or optimization was required for PLUTO at the
beginning of the SPACE project.

Manual navigation and identification of relevant sections of complex simulation codes through the collected per-
formance data tend to be very time-consuming work and prone to inaccuracies. Both issues might be addressed by
instrumenting the selected regions of interest (Rol), meaning inserting simple non-intrusive probes of the particular
tracing tool into the source code, typically at the beginning and end of the region.

Nitin Shukla et al. / Procedia Computer Science 267 (2025) 112—123 115

Such an instrumented code and configured test case are used to perform the actual tracing. For OpenGadget3 and
iPIC3D analysis the following tool-chains were used on Leonardo DCGP: GCC 12.2.0, OpenMPI 4.1.6, Extrae
4.0.6,HDF5 1.14, FFTW 3.3.10 (OG), OpenBLAS 0.3.24 (OG), GSL 2.7.1 (OG), PETSc 3.21.1 (IP).

2.5.1. OpenGadget3

In the case of OpenGadget3, we simulated a box with a cosmological size of 30 Mpc/h and 256° particles were
used. For this analysis, simulations were performed using from 1 to 16 nodes, where both gravity and hydrodynamics
were enabled. The last 15 time steps were selected as Rol. Figure 1 left panel shows that the speedup of Rol gradually
diverges from the optimum, with the efficiency below 80% on 8 nodes (896 MPI processes and 7 OpenMP threads per
process). The hierarchical multiplicative model of efficiency metrics on Figure | right panel identifies Serialization
efficiencies (SerE) and OpenMP Communication efficiencies (OCE)' as the main limiting factor of the Rol scaling.
The detailed explanation of the model and the metrics can be found at POP3 CoE learning materials [15].

112(16x7)[1] 224(32x7)[2] 448(64x7)[3] 896(128x7)[4] 1792(256x7)[5]
| ' ' | | -100

Global efficiency - 8399 79.87 7165 64.06 52.86
- Parallel efficiency - 8399 77.12 72.19 62.75 51.97 Las
- Load balance - %449 91.07 9133 89.74 87.46 e
16 - - Communication efficiency - 88.88 84.69 79.04 69.92 59.41 60 g
—o— Measured e ¥ 2
" £
——- Ideal - - Computation scalability - 100.00 103.56 99.25 102.09 101.73 w0 5
- IPC scalability &
8 - Instruction scalability - - 20
— Frequency scalability
Qo =0
3 1206x7)(1] 224(32x7)[2] 448(64x7)[3] 896(128x7)[4] 1792(256x7)(5]
4 ! I i , \ i
g -- Hybrid Parallel efficiency - 83.99 77.12 72.19 62.75 51.97
Q - MPI Parallel efficiency - 8964 84.50 82.10 76.99 72.24
n -80
-- MPI Load balance - 98.44 95.60 96.75 96.39 97.03
2 -- MPI Communication efficiency . 91.07 88.39 84.86 79.87 74.45 -60 i
-- Serialization efficiency - 93.27 91.43 89.33 85.39 80.25 B’
£
-- Transfer efficiency - 97.64 96.68 94.99 93.54 92.78 - 40 g
&
1 - OpenMP Parallel efficiency - o369 91.27 87.93 8151 7193
~ OpenMP Load Balance - 96.00 95.26 94.40 93.10 %0.14 20
- OpenMP Communication efficiency- 97.60 95.81 93.15 87.55 79.80
Nodes

Fig. 1: Extrae anlysis of OpenGadget3 on Leonardo DCGP for up to 16 nodes: strong scaling (left panel) and efficiency metrics [%] (right panel).
Note that the computation scalability sub-metrics were unavailable at this time due to incompatible tool suite components.

Each Rol time step consists of the following set of high-level routines that were instrumented and further analyzed:
Domain decomposition intensity decision (DD) subdivided in the decision criteria computation (DD1), and the actual
execution (DD2), which can either perform a full domain decomposition or only transfer particles that moved out of
their domain; Gravitational accelerations (GRAV); Densities (DENS); Hydro-accelerations (HYDRO); Non-standard
physics (PHYS).

The SerE describes any loss of efficiency due to dependencies between processes causing alternating processes to
wait. The lowest SerE (80%) was observed in the DD2 routine; however, due to its relatively short execution time,
this routine is not the primary contributor to performance degradation in this test case. The GRAV routine, although
the most time-consuming, exhibits a high SerE of 92%, making it a low priority for SerE optimization. In contrast,
the DENS routine, being the second longest and having a SerE of 86%, emerges as the most promising candidate
for optimization. A simulation assuming an ideal network with infinite bandwidth and zero latency, where messages
are transferred instantaneously, showed that each process spends approximately 12% of its runtime waiting in the
MPI_Alltoall function for dependent processes.

Regarding the OCE, which captures the synchronization and scheduling overhead induced by the OpenMP
constructs, the lowest values 36% and 24% were observed in DD1 and DD2 respectively, though, being the shortest
routines, they are probably not worth optimizing with the given test case. On the other hand, rather small room for
improvement remains in the longest GRAV routine showing the best OCE 93%. The best candidate for optimization
is again the DENS routine with OCE 80%, followed by HYDRO with 88% and much shorter PHYS with 67%. In

! See https://co-design.pop-coe.eu/metrics/hm/omp_communication_efficiency.html

116 Nitin Shukla et al. / Procedia Computer Science 267 (2025) 112—123

DENS, each process spends a significant part of the total execution time in OpenMP runtime due to very small gran-
ularity of the parallel functions, mostly in find_hsml and compute_unified_gradients functions with 24% and
10% in average, respectively.

2.5.2. 4PIC3D

We consider the test case of a Maxwellian distribution with 952 particles per cell with 2 species on a 2D grid with
a resolution of 2240x1120 cells. The simulations were limited to four cycles and were conducted using between 2
and 64 nodes, with the second cycle selected as Rol. The strong scaling test in Figure 2 left panel reveals a clear
speedup degradation on 64 nodes (7168 processes). The efficiency metrics in the right panel of Figure 2 point to drop
in Transfer efficiency (TE) caused by an extreme growth of time in MPI communication and its latency.

320 3 posred = 22.4 4118 8?6 17?2 35[&4 71I68 oo
o el 7 Global efficiency - 96.32 9675 9257 8598 78.39
16 - Parallel efficiency - 9632 9056 83.95 8209 6825
- Load balance - 97.62 94.90 Gl 94.45 DI Chipsie) [%€
% 8 -- Communication efficiency - 98.67 95.42 87.34 86.91 74.73 =
§ -- Serialization efficiency - 98.93 95.87 94.75 90.21 83.29 78.41 &0 %,
% 4 -- Transfer efficiency - 99.74 99.53 92.18 96.34 89.73 m %
-40 Y
> -- Computation scalability - 100.00 106.84 110.27 104.73 114.86 116.96 &
-- IPC scalability - 100.00 106.49 110.09 10244 111.93 110.63
1 -- Instruction scalability - 100.00 99.99 99.97 99.92 99.84 136.91 <2
2 4 8 16 32 64 -- Frequency scalability - 100.00 100.34 100.20 102.32 102.77 77.22
Nodes -0

Fig. 2: Extrae anlysis of iPIC3D on Leonardo DCGP for up to 64 nodes: strong scaling (left panel) and efficiency metrics [%] (right panel).

Each cycle (Rol) is composed by the three high-level routines: CalculateField, ParticlesMover, and GatherMo-
ments. The strongest TE deterioration at 64 nodes comes from CalculateField with 2%, followed by GatherMoments
with 41%. That 2% TE together with 20% of Instruction scalability and other inefficiencies translates, in practice,
into 0.2x speedup, i.e. 5x slowdown of the routine compared to the base run. This is caused by an excessive use
of MPI_Barriers bounding sequences of very small MPI_Sendrecv_replace messages with no computation in be-
tween, resulting in significant accumulated latency of the MPT calls. Conversely, the ParticlesMover shows very good
efficiencies and almost perfect scaling. In all routines, very high sensitivity for the system preemption is also detected.

3. Specific GPU offloading strategies

To leverage the compute capability of GPUs, all three codes adopt different numerical techniques, as each code
is unique and uses distinct algorithms, each with its own set of challenges, performance bottlenecks, and numerical
requirements. Additionally, these codes consist of numerous interlinked source files and are designed to simulate a
wide range of physical mechanisms. As a result, optimizing or offloading to the GPU is not straightforward without
focusing on a simplified, yet representative, core of the application. Therefore, we decided to extract mini-apps from
the main applications, identify the relevant kernels, and analyze them to improve the overall performance of the full
simulation.

Despite in the diversity numerical techniques, porting code to heterogeneous systems mainly relies on two prin-
ciples: exposing parallelism and minimizing CPU-GPU data transfer. Data locality is key to GPU performance, as
it minimizes memory transfers by running compute-heavy code on the GPU. Best practices include using private
variables for thread independence and coalesced memory access for efficient bandwidth use. However, performance
is still limited by numerical algorithms. For instance, OpenGadget3 is memory-bound and needs new algorithms to
fully utilize GPUs, while gPLUTO and iPIC3D have already offloaded their most compute-intensive tasks.

Nitin Shukla et al. / Procedia Computer Science 267 (2025) 112—123 117

3.1. Profiling activity

We used NVIDIA Nsight tools and POP3 CoE resources to profile and analyze code performance, starting with
CPU-only optimizations informed by POP3 analysis [24, 15]. Our strategy focused on minimizing CPU-GPU data
transfers, optimizing kernel occupancy, and improving work distribution to reduce register spilling. We used profil-
ing tools to identify performance-critical sections, analyzed memory access for coalesced patterns, and reduced data
transfer overhead by overlapping communication with computation using asynchronous streams. Further, we opti-
mized Streaming Multiprocessor (SM) occupancy and workload balance by investigating warp efficiency and control
flow divergence, and reduced synchronization overhead by minimizing global atomics and barriers. This comprehen-
sive approach guided iterative optimizations, enabling us to address bottlenecks and achieve high performance on the
Leonardo Booster system [25].

3.2. Porting of gPLUTO

The core of the gPLUTO algorithm involves five main steps, which are typically repeated as many times as the
number of stages employed by the Runge-Kutta solver. These steps include: boundary exchange/calculation, map-
ping of the conservative vectors to primitive vectors, reconstruction (i.e. interpolation) of the cells interfaces values,
solving Riemann problem to calculate the fluxes at the interfaces, computing the right hand side of the conservation
law. The divergence-free condition is controlled through the choice of one among different (mutually exclusive) al-
gorithms (e.g. constrained transport, divergence cleaning, etc...). The only function that involves CPUs (or GPUs)
intercommunication is the boundary exchange; this one, as well as all the other offloaded functions, was profiled and
optimized for GPU parallelization: functions have been fine-tuned for coalesced memory access using a custom Ar-
ray class (as shown in [12]), ensuring that independent threads access consecutive and unique memory addresses in
both read and write operations. Managed memory is used to simplify memory management between the CPU (host)
and GPU (device). gPLUTO also handles boundary conditions and ghost cells with non-blocking MPT communications
across domains, using asynchronous data movement across multiple GPUs. This setup enables fast communication
with nearby tasks (8 neighbors in 2D, 26 in 3D) and fills ghost zones between processes. Memory is optimized by in-
lining frequently used functions to reduce jumps and load/store costs, while also helping the compiler access memory
efficiently in GPU shared memory. Memory paths for multi-dimensional arrays are also determined at compile time
via C++ templated functions.

3.3. Porting of OpenGadget3

In OpenGadget3, the N-body gravitational problem is solved using the Barnes & Hut algorithm, which employs
a hierarchical oct-tree structure to compute gravitational forces. While the benefit is a relatively low complexity
of O(nlogn) [17], the method is memory-bound and poorly suited for GPU offloading due to irregular tree traversal,
uncoalesced memory accesses, and frequent data transfers triggered by tree reconstruction at each simulation step. The
recursive implementation of the tree build also introduces thread divergence and performance bottlenecks on GPUs,
despite the Peano-Hilbert decomposition improving spatial and memory locality. Further inefficiencies arise because
only a subset of particles is active at each step, requiring reordering and additional condition checks that degrade
memory coalescence and warp efficiency. Previous GPU-friendly adaptations [26] have not fully addressed these
limitations or captured the complexity of OpenGadget3 cosmological simulations. To address this, a new approach
is under development that groups particles by spatial and memory locality (e.g., using a common center of mass),
limits computations to nearby particles within small Hilbert curve segments, and uses direct summation within a fixed
radius (Tornatore et al., in prep.). This reduces conditional branching, minimizes data movement, and improves warp
occupancy. Additionally, non-essential data structure members were removed to reduce register spilling and enhance
GPU thread performance. A more detailed explanation of this method will be provided in a forthcoming publication.

3.4. Porting of 1PIC3D

The scalability of iPIC3D depends significantly on the number of particles employed, which determines the run-
time of the Particle Mover (updating position and velocity of the particles at each cycle). The Moment Gatherer

118 Nitin Shukla et al. / Procedia Computer Science 267 (2025) 112—123

module interpolates particle attributes to the grid (and vice versa) to compute charge and current densities and the
pressure tensor. Both the Particle Mover and Moment Gatherer tend to be compute-bound for most input configu-
rations. This makes them highly suitable for GPUs. The Field Solver, however, uses a generalized minimal residual
algorithm (GMRes) to update the electromagnetic fields. GMRes is based on matrix-free Krylov subspace projections,
which can easily saturate the memory on GPUs, thereby reducing the efficiency of the overall algorithm. GMRes also
requires the computation of inner products of vectors, thereby necessitating multiple internode MPI communications.
As this module is not as compute-bound as the other two, it runs exclusively on CPUs.

Following extensive optimization of the CPU-only version and the implementation of asynchronous non-blocking
communication across the MPI processes, the Particle Mover and Moment Gatherer modules were offloaded to GPUs,
while the field solver continues to run on CPU. This introduces an overhead of data communication between the
GPU and CPU at every time step. However, this is an acceptable trade-off considering the speedups obtained in the
computation of the GPU-offloaded modules.

4. Analysis and discussion of performance and scalability

Here, we describe our benchmarking efforts, tools, and methodology for evaluating the scalability and efficiency of
these three parallel codes. A key principle in our approach is selecting problem sizes that fully utilize a single compu-
tational node, ensuring meaningful measurements of parallel performance. This strategy allows us to systematically
assess how the full applications scale across multiple nodes while maintaining optimal resource utilization.

4.1. Automation of continuous integration and benchmarking tools

Continuous Integration and Continuous Deployment (CI/CD) are modern practices that automate the building,
testing, and deployment of code. They streamline team collaboration, reduce human error, accelerate bug fixes, and
enhance overall software quality. We teamed up with IT4I to set up CI/CD workflows for our three code-bases using
their GitLab Runner system [27]. Regular benchmarking helps us spot performance issues and make sure our programs
fully use modern hardware. It also catches slowdowns when we update code or add features, keeping performance
steady over time [28]. To make benchmarking easier and work across different supercomputing systems, we use
ReFrame [29], a Python tool for creating tests and benchmarks for HPC. ReFrame keeps system details separate
from test designs, letting us write flexible tests that run smoothly on any system, speeding up both code checks and
performance improvements.

4.2. Results for gPLUTO

Numerical benchmarks for gPLUTO have been carried out on both of Leonardo main computing partitions: DCGP
and Booster. Two test cases were selected for this evaluation, the 3D Orszag-Tang vortex and the propagation of a 3D
circularly polarized Alfvén wave. The scientific background and setup details for these tests are thoroughly discussed
in [12]. The Orszag—Tang vortex involves complex shock interactions and the development of small-scale structures,
making it ideal for assessing both numerical stability and performance under high-resolution conditions. On the other
hand the circularly polarized Alfvén wave test provides an exact nonlinear solution to the ideal MHD equations and
requires high accuracy and minimal numerical dissipation to preserve wave characteristics over long integration times,
serving as a rigorous test of computational precision.

Weak scaling tests: The Orszag—Tang test simulations were conducted using a periodic 3D-Cartesian domain in
double-precision arithmetic. The algorithm involved are the WENOZ reconstruction method, the HLLD Riemann
solver, a third-order Runge-Kutta (RK3) time integration. To preserve the divergence-free condition of the magnetic
field (V - B = 0) a constrained transport algorithm ([30], [31]) was used. A per-node resolution of 704 x 704 x 352
was selected to optimize GPU memory usage, achieving a balance between high occupancy and minimal register
spilling. Figure 3 left panel presents the parallel efficiency achieved on Leonardo Booster (up to 512 nodes) and
Leonardo DCGP (up to 128 nodes) for this test, reaching approximately 88% and 90% efficiency, respectively. Table
1 compares absolute walltime values when running on both partitions the same weak scaling setup. Results indicate
that, on average, executions on the DCGP partition are approximately an order of magnitude slower than those on the
Booster partition, highlighting a significant performance gap between the two architectures.

Nitin Shukla et al. / Procedia Computer Science 267 (2025) 112—123 119

Similar to the 3D Orszag-Tang test case, the circularly polarized Alfvén wave is a periodic 3D-Cartesian domain.
The employed resolution is consistent with the previous Orszag-Tang test, and also in this case the computations are
performed using double-precision arithmetic. Used algorithms are the same of the previous 3D Orszag-Tang test. As
illustrated in the left panel of Figure 3, Leonardo Booster achieves an efficiency of 97% for 256 nodes in this case.

GPUs GPUs
4 8 16 32 64 128 256 512 1024 2048 4 8 16 32 64 128 256 512 1024
1.0 LS =g === o= —— - 81 —— CP Alfven wavef
—#— Orszag-Tang Y
0.8
>
2
g ot
206 =]
°
& 3
— 1]
2 &
© 0.4 2
©
a
0.2{ —=— Booster Orszag-Tang
DCGP Orszag-Tang
—&— Booster CP Alfven wave 1
1 2 4 8 16 32 64 128 256 512 1 2 4 8 16 32 64 128 256
Nodes Nodes

Fig. 3: Weak scaling tests for gPLUTO on both Leonardo Booster and DCGP partitions (left panel). Strong scaling tests for gPLUTO on Leonardo
Booster (right panel). The black dashed lines indicate ideal scaling.

Nodes | T sec T sec Speedu
GPUs (se€) cpus (sec) peecup Group Nodes Base Res oT CPA
1 312 2982 9.55 ~
1 1to8 832 x 416 0.93 0.96
2 318 3300 10.38 3
2 2to 16 832 0.92 0.95
4 319 3263 10.23 5
3 41032 1664 x 832 0.86 0.95
8 323 3236 10.02 5
4 8 to 64 1664- x 832 | 0.87 0.96
16 327 3281 10.03 3
0 327 3057 9.96 5 16 to 128 1664~ 0.87 0.94
6 32 to 256 3328x 16642 | 0.88 0.94
64 331 3283 9.92 Mean 1to 256 All res 0.90 0.95
128 335 3336 9.96

Table 2: Strong scaling efficiencies for 3D Orszag-Tang (OT)
and circularly polarized Alfvén (CPA) gPLUTO simulations per-
formed on Leonardo Booster. Each group lists minimum ob-
tained performance relative to its base resolution and node count.

Table 1: CPU-GPU walltime comparison of gPLUTO 3D Orszag-
Tang weak scaling test on Leonardo DCGP and Booster parti-
tions.

Strong scaling tests: Strong scaling tests were performed with the same algorithm configurations of the weak
scaling tests except for the technique to preserve the solenoidal condition of the magnetic field. This time the algorithm
used was the divergence cleaning method ([32], [33]). This allowed for choosing a grid of (832 x 832 x 416), slightly
larger than that used in the weak scaling tests. This is because the divergence cleaning algorithm consumes less device
memory than the constrained transport method. It is important to note that achieving ideal GPU strong scalability
becomes increasingly challenging as the number of nodes grows. This difficulty arises due to overhead associated
with inter-node communication, reduced computational workload per GPU, and increased synchronization costs, all
of which can limit parallel efficiency at higher node counts. To address this, we conducted six distinct strong scaling
campaigns for both Orszag-Tang and circularly polarized Alfén problems, as detailed in Table 2. Within each group,
the computational resolution was held constant while the number of nodes and MPI processes was doubled three times.
This approach ensures that the problem size is sufficiently large to fully utilize GPU memory at the higher number
of nodes within each group, thereby maximizing hardware occupancy and minimizing inefficiencies. Strong scaling
speedup values are presented in the right panel of Figure 3, demonstrating nearly 89% efficiency for the maximum
number of nodes in each group for the Orszag-Tang problem, while an average efficiency of 95% is achieved for the
circularly polarized Alfvén problem.

120 Nitin Shukla et al. / Procedia Computer Science 267 (2025) 112—123

4.3. Results for OpenGadget3

Performance tests for OpenGadget3 were run on the Leonardo Booster and DCGP systems. Although DCGP
was mainly used to test near-full-physics setups and for comparisons with the GPU versions, the main results come
from the Leonardo Booster system. Since GPU support is still in progress, current results reflect only limited physics
setups. Simulations model the evolution of the Universe using particles representing dark matter and gas within a
3D cosmological box. These particles interact through gravity, and gas particles also interact with hydrodynamic
forces using SPH. Gravity and hydrodynamics each account for * 40% of the runtime in a standard production
run. Consequently, this setup is a good representation of the GPU performance of the entire code. High-resolution
simulations require many particles and large volumes, which increase the computational demands of the short-range
Barnes & Hut part. Simulation performance generally depends on redshift (the cosmic time). As matter is more
homogeneously distributed at high redshifts, the calculation of gravitational forces via the gravity tree are faster
(~ 10 x speedup), compared to lower redshifts (~ 2 X speedup at z = 0), when dense structures form, and the
calculation becomes more complex and consequently more costly. So, performance varies with redshift and must be
evaluated accordingly, resulting in an effective speedup of ~ 3x.

GPUs
16 32 64 128 256 512 1024 2048 4096 8192

32 + Gravity only

m Gravity + Hydro
—— Npare = 10243
16 Npare = 20483
—— Npart = 40963

4 8 16 32 64 128 256 512 1024 2048
Nodes

Fig. 4: Strong scaling tests for OpenGadget3 gravity-only and gravity + hydrodynamics on Leonardo Booster. The black dashed lines indicate
ideal scaling.

We ran strong scaling tests at high redshift (z ~ 50), using three cosmological boxes with 10243, 20483, 4096°
particles and box sizes of 120, 240, and 480 Mpc/h, respectively. This ensured the problem size was large enough per
process to avoid communication issues at high node counts, which could affect scaling results. While using the same
code configuration, we run these tests using initial conditions with and without gas particles. We used 4 MPT tasks per
node (1 per GPU) and 8 OpenMP threads per task.

As shown in Figure 4, the 1024> case exhibits a smooth and consistent scaling behaviour, maintaining over 80%
efficiency up to a 32x resource increase. The 2048 case shows an efficiency drop beyond a 16x scaling factor in both
gravity and hydro setups, with domain decomposition issues beyond 512 nodes. While only executed in the gravity-
only setup due to limited computational resources, the 4096° case demonstrates speed-up of up to a 4x scaling. In
addition, a full simulation to z = 0 with 20483 particles in gravity-only mode was performed to compare the run-
times between DCGP and Booster. The right panel of Figure 4 shows speedup versus cosmic expansion factor a
(=1/(1 + z)). Most computational time occurs at a 2 0.2, where efficiency drops due to the Barnes & Hut algorithm
struggling with deeper tree structures from increased clustering at lower redshifts. Smaller time steps are needed early
on due to stronger gravitational accelerations, but performance gains are measured at larger a, yielding a 2-3 X speed-
up. Despite being relatively low, this speedup is significant for simulations requiring 107 or more core-hours. Since
short-range gravitational force calculations cause most performance issues, this supports our approach of optimizing
the tree traversals, as discussed in Section 3.

Nitin Shukla et al. / Procedia Computer Science 267 (2025) 112—123 121

GPUs
4 8 16 32 64 128 256 512 1024
1.0
0.8
>
)
c
()
S 06
=
L
S
C 04
@©
a
0.2
—4— Measured
--- lIdeal
0.0
1 2 4 8 16 32 64 128 256
Nodes

Fig. 5: Weak scaling test of 1PIC3D-GPU on Leonardo Booster. The black dashed line indicates ideal scaling.
4.4. Results for iPIC3D

We show a performance comparison of the CPU and GPU versions of 1PIC3D for the case of a Maxwellian distri-
bution in 2D with 20 X 20 x 20 particles per cell and 4 particle species on Leonardo DCGP and Booster, respectively
(Table 3). We observe that the Moment Gatherer obtains a speedup of 100 whereas the Particle Mover achieves a
speedup of a factor of 40, which determines the overall speedup of the code. As the Field Solver runs exclusively
on CPUs, no speedup is achieved for this module. Furthermore, we illustrate the weak scaling of iPIC3D-GPU on

Module iPIC3D-GPU (Leonardo Booster) iPIC3D-CPU (Leonardo DCGP) Speedup
Particle Mover 0.542 s 21.891s 40.4
Moment Gatherer | 0.123 s 12.271s 99.8
Field Solver 0.185s 0.183 s 0.98
Total 0.870 s 35.007 s 40.2

Table 3: Comparison of the CPU and GPU version of iPIC3D for a 2D Maxwellian distribution test case with 20 X 20 x 20 particles per cell and 4
total species.

Leonardo Booster, the results of which are reported in Fig. 5. We consider the same Maxwellian distribution in 2D,
where the number of grid cells was progressively increased from 128> to 20482, Each simulation modeled 4 particle
species with 180 x 180 particles per cell per species. The code demonstrated an efficiency of 78% up to 1024 GPUs,
corresponding to 256 nodes on the Leonardo Booster.

5. Summary

This paper presents the strategy and early achievements of the EuroHPC SPACE Center of Excellence (SPACE-
CoE) in adapting three flagship astrophysical simulation codes i.e. gPLUTO, OpenGadget3, and iPIC3D, for exascale
computing on the Leonardo supercomputer at CINECA. Through collaborative efforts, key modules were successfully
offloaded to GPUs, enabling a transition from CPU to GPU architectures using profiling and optimization techniques.
Preliminary results on the EuroHPC Leonardo system show notable scalability up to 1,024 GPUs with efficiencies
around 80-97%. The study highlights gPLUTO’s near-ideal weak and strong scaling, OpenGadget3’s bottlenecks with
the Barnes & Hut algorithm mitigated through restructuring, and iPIC3D ’s substantial GPU acceleration, achieving
up to 100x speedups in certain modules and 78% weak scaling efficiency by leveraging selective GPU offloading
and asynchronous CPU-GPU communication. By combining performance profiling, code modularization, continuous
integration, and GPU-specific kernel optimization, the project demonstrates how interdisciplinary collaboration can
modernize complex simulation tools to fully exploit emerging exascale infrastructure.

122 Nitin Shukla et al. / Procedia Computer Science 267 (2025) 112—123

Acknowledgements

This work was supported by the SPACE CoE, funded by the EU and several partner countries under grant No.
101093441. We also thank ISCRA and the EuroHPC Joint Undertaking for access to the computational resources
on Leonardo supercomputer at CINECA (Italy). This work was partially funded by the POP3 project (grant No.
101143931), supported by the EuroHPC Joint Undertaking, its member countries, and additional funding from the
Czech Ministry of Education (ID: MC2401) and e-INFRA CZ (ID: 90254). We also would like to acknowledge the
NVIDIA experts for their invaluable assistance in porting the code to GPUs during and after dedicated hackathon
events, especially Matt Bettencourt and Filippo Spiga.

References

[1] S. Sarkar, Is dark matter self-interacting?, Nat Astron 2 (2018) 856—857. doi:10.1038/s41550-018-0598-6.
[2] K. Schoefiler, et al, Can plasma physics establish a significant bound on long-range dark matter interactions?, Phys. Rev. D 111 (2025)
LO071701. doi:10.1103/PhysRevD.111.L071701.
[3] A. Romeo, et al, Simulations for 21 cm radiation lensing at eor redshifts, Mon. Not. R. Astron. Soc. 474 (2) (2017) 1787-1809. doi:
10.1093/mnras/stx2733.
[4] R. Croft, et al, Weak lensing of the lyman « forest, Mon. Not. R. Astron. Soc. 477 (2) (2018) 1814-1821.
[S] S. Markidis, et al, Collisionless magnetic reconnection in a plasmoid chain, Nonlin. Processes Geophys. 19 (2012) 145-153. doi:10.5194/
npg-19-145-2012.
[6] G. Mattia, et al, Resistive relativistic mhd simulations of astrophysical jets, Astronomy & Astrophysics 679 (2023) A49. doi:10.1051/
0004-6361/202347126.
[7] S. Ferro, et al, Comparative simulations of kelvin—helmholtz induced magnetic reconnection at the earth’s magnetospheric flanks, Phys. Plas-
mas 31 (5) (2024) 052902. doi:10.1063/5.0191674.
[8] S. Borgani, et al, X-ray properties of galaxy clusters and groups from a cosmological hydrodynamical simulation, Mon. Not. R. Astron. Soc.
348 (3) (2004) 1078-1096. doi:10.1111/j.1365-2966.2004.07431.x.
[9] N. Shukla, et al, Conditions for the onset of the current filamentation instability in the laboratory, J. Plasma Phys. 84 (3) (2018) 905840302.
doi:10.1017/50022377818000314.
[10] E. Boella, et al, Interaction between electrostatic collisionless shocks generates strong magnetic fields, New J. Phys. 24 (2022) 063016.
doi:10.1088/1367-2630/ac6ef1.
[11] N. Shukla, et al, Eurohpc space coe: Redesigning scalable parallel astrophysical codes for exascale, in: 22nd ACM Int. Conf. Comput. Front,
ACM, New York, NY, USA, Cagliari, Italy, 2025, p. 7. doi:10.1145/3706594.3728892.
[12] M. Rossaza, Gpu porting of the pluto code for computational plasma physics using openacc, Ph.D. thesis, University of Turin (2025).
URL https://iris.unito.it/handle/2318/2065332
[13] F. Groth, et al, The cosmological simulation code OPENGADGETS3 - implementation of meshless finite mass, Mon. Not. R. Astron. Soc.
526 (1) (2023) 616-644. arXiv:2301.03612, doi:10.1093/mnras/stad2717.
[14] S. Markidis, et al, Multi-scale simulations of plasma with iPIC3D, Math. Comput. Simul. 80 (7) (2010) 1509-1519. doi:10.1016/j.
matcom.2009.08.038.
[15] POP3: Performance Optimization and Productivity Centre of Excellence, https://www.pop-coe.eu/, european Centre of Excellence on
HPC performance optimization, project duration 2024-2027, coordinated by Barcelona Supercomputing Center (2024).
[16] V. Springel, The cosmological simulation code GADGET-2, Monthly Notices of the Royal Astronomical Society 364 (4) (2005) 1105-1134.
arXiv:astro-ph/0505010,doi:10.1111/j.1365-2966.2005.09655.x.
[17] J. Barnes, P. Hut, A hierarchical O(N log N) force-calculation algorithm, Nature 324 (6096) (1986) 446—449. doi:10.1038/324446a0.
[18] M. Frigo, S. G. Johnson, The design and implementation of FFTW3, Proceedings of the IEEE 93 (2) (2005) 216-231, special issue on “Program
Generation, Optimization, and Platform Adaptation”.
[19] A. M. Beck, et al, An improved SPH scheme for cosmological simulations, Mon. Not. R. Astron. Soc. 455 (2) (2016) 2110-2130. arXiv:
1502.07358,doi:10.1093/mnras/stv2443.
[20] A.Ragagnin, N. Tchipev, M. Bader, K. Dolag, N. J. Hammer, Exploiting the Space Filling Curve Ordering of Particles in the Neighbour Search
of Gadget3, in: Advances in Parallel Computing, 2016, pp. 411-420. doi:10.3233/978-1-61499-621-7-411.
[21] A.Ragagnin, K. Dolag, M. Wagner, C. Gheller, C. Roffler, D. Goz, D. Hubber, A. Arth, Gadget3 on GPUs with OpenACC, Parallel Computing:
Technology Trends 27 (2020) 209-218. doi:10.3233/APC200043.
[22] M. Turisini, et al, Leonardo: A pan-european pre-exascale supercomputer for hpc and ai applications, J. Large-Scale Res. Facilities 9 (01 2024).
doi:10.17815/jlsrf-8-186.
[23] T. Gamblin, et al, The spack package manager: Bringing order to hpc software chaos, in: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (SC15), ACM, 2015, pp. 1-12. doi:10.1145/2807591.2807623.
[24] Barcelona Supercomputing Center, Extrae: The Extrae Tracing Tool, Barcelona Supercomputing Center, version 4.0, Available at https:
//www.ebrains.eu/tools/extrae (2025).
[25] L. Tornatore, et al., Code Modules and Kernels, SPACE-COE project document (2024).

[26]
[27]
[28]
[29]
[30]
[31]
[32]

[33]

Nitin Shukla et al. / Procedia Computer Science 267 (2025) 112—123 123

M. Burtscher, K. Pingali, Chapter 6 - an efficient cuda implementation of the tree-based barnes hut n-body algorithm, in: GPU Computing
Gems Emerald Edition, Applications of GPU Computing Series, Morgan Kaufmann, Boston, 2011, pp. 75-92. doi:https://doi.org/10.
1016/B978-0-12-384988-5.00006-1.

B. Commercon, et al., Code release (alpha), SPACE-COE project document (2024).

S. Williams, et al, Roofline: An insightful visual performance model for multicore architectures, Commun. ACM 52 (4) (2009) 65-76. doi:
10.1145/1498765.1498785.

V. Karakasis, et al, Enabling continuous testing of hpc systems using reframe, in: Tools and Techniques for High Performance Computing,
Springer, Cham, 2020, pp. 49-68.

C. Evans, et al, Simulation of Magnetohydrodynamic Flows: A Constrained Transport Model, Astrophys. J. 332 (1988) 659. doi:10.1086/
166684.

P. Londrillo, L. D. Zanna, On the divergence-free condition in godunov-type schemes for ideal magnetohydrodynamics: the upwind constrained
transport method, J. Comput. Phys. 195 (1) (2004) 17-48. doi:10.1016/j.jcp.2003.09.016.

A. Dedner, et al, Hyperbolic Divergence Cleaning for the MHD Equations, J. Comput. Phys. 175 (2002) 645-673. doi:10.1006/jcph.
2001.6961.

A. Mignone, P. Tzeferacos, A second-order unsplit Godunov scheme for cell-centered MHD: The CTU-GLM scheme, J. Comput. Phys. 229
(2010) 2117-2138. arXiv:0911.3410,doi:10.1016/j.jcp.2009.11.026.

Available online at www.sciencedirect.com

c@ ScienceDirect Procedia

Computer Science

Procedia Computer Science 267 (2025) 124-135

www.elsevier.com/locate/procedia

Proceedings of the Third EuroHPC user day

Tailoring Al for Turkish Law: Domain-Specific Fine-Tuning of
Small Language Models for Legal Expertise

New Mind Al Team®*

“New Mind AI, YTU Teknopark, Sariyer, Tiirkiye

Abstract

The development of specialized Artificial Intelligence (Al) for niche legal domains, such as Turkish law, is hampered by the cost
and generality of large language models (LLMs). This study investigates the efficacy and efficiency of fine-tuning a moderately
sized SLM (Small Language Model), Meta-Llama 3.1 8B, to create expert models for ten distinct Turkish legal sub-domains
(Energy, Land, Competition, Tax, Healthcare, Labor, Intellectual Property, Data Protection (KVKK), Capital Markets,
Environmental Law). Leveraging the EuroHPC Karolina supercomputing infrastructure (IT4Innovations), we employed
Parameter-Efficient Fine-Tuning (PEFT) techniques (LoRA/QLoRA) orchestrated via Axolotl and significantly accelerated using
the Unsloth library. Models were trained on curated domain-specific datasets. Performance was rigorously evaluated against the
base 8B model using the LightEval framework, incorporating lexical, semantic, and Al-judge metrics. Results demonstrate that
the fine-tuned models achieve substantial performance improvements in domain-specific understanding and task handling
compared to the base model. This study's evaluation is scoped to comparisons against the 8 billion parameter base model to
demonstrate the effectiveness of domain-specific fine-tuning. A direct performance benchmark against very large proprietary
models like GPT-4 or Claude 3 was not conducted due to data privacy constraints preventing the use of our specialized datasets
with external APIs. Our findings validate that fine-tuning smaller, accessible models like Llama 3.1 8B offers a computationally
efficient, economically viable, and effective pathway for developing specialized legal Al expertise, presenting a practical
alternative to reliance on larger, general-purpose models, particularly for resource-constrained or privacy-sensitive applications.
This work provides both a methodological demonstration on HPC resources and tangible assets for the Turkish legal tech sector.

© 2025 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY 4.0 license (https://creativecommons.org/licenses/by/4.0)
Peer-review under responsibility of the scientific committee of the Proceedings of the Third EuroHPC user day

Keywords: Turkish Legal Domain; Small Language Models; Domain Adaptation; Parameter-Efficient Fine-Tuning (PEFT); Legal Tech; Natural
Language Processing (NLP)

* Corresponding author. Tel.: +90-212-777-8890
E-mail address: aiteam@newmind.ai

1877-0509 © 2025 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY 4.0 license (https://creativecommons.org/licenses/by/4.0)
Peer-review under responsibility of the scientific committee of the Proceedings of the Third EuroHPC user day
10.1016/j.procs.2025.08.239

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2025.08.239&domain=pdf

New Mind AI Team / Procedia Computer Science 267 (2025) 124—135 125

1. Introduction

Large Language Models (LLMs) are increasingly reshaping professional domains, with significant transformative
potential observed in the legal sector [1]. These models offer powerful capabilities for processing and generating
human language, presenting opportunities to automate or augment tasks such as legal research, document review,
contract analysis, and summarization [2]. However, the deployment of state-of-the-art LLMs, particularly the largest
proprietary ones, faces substantial challenges. These include high computational costs for training and inference,
significant energy consumption, and, critically, a frequent lack of the deep, nuanced understanding required for
highly specialized domains [3].

This limitation is particularly pronounced within specific legal jurisdictions like Tiirkiye, whose distinct
regulatory frameworks, terminology, and linguistic characteristics are often inadequately represented in general-
purpose models trained predominantly on global, English-centric data [4]. Consequently, a critical need exists for Al
tools precisely tailored to the intricacies of the Turkish legal system to enhance efficiency, accuracy, and
accessibility for legal professionals [5]. Addressing these challenges, a promising direction involves leveraging
smaller, more focused LLMs [6]. Research indicates that models with fewer parameters (e.g., 10-20 billion), when
expertly fine-tuned on high-quality, domain-specific data, can achieve performance comparable, or even superior, to
vastly larger models on targeted tasks, while being significantly more computationally efficient and economically
viable to deploy [7, 8]. This efficiency makes them particularly well-suited for integration into enterprise agentic
workflows, where multiple specialized Al agents can collaborate cost-effectively on complex legal processes [9].
Given this focus, the scope of our evaluation is centered on quantifying the performance uplift gained through
domain specialization, comparing our fine-tuned models directly against their 8B-parameter base model. While we
acknowledge the capabilities of very large proprietary models such as GPT-4 and Claude 3, direct comparative
benchmarking was intentionally excluded. This decision was driven by data privacy protocols, as our sensitive,
domain-specific Turkish legal datasets cannot be processed via third-party APIs.

Despite the potential of smaller, fine-tuned models, a significant gap exists: the lack of accessible, high-
performance LLMs specifically tailored for the diverse and intricate sub-domains within Turkish law. Legal
professionals currently lack specialized Al tools capable of accurately handling the nuances of areas such as Turkish
Energy Law, Competition Law, or Data Protection Law (KVKK), thereby hindering the effective adoption of
advanced Al technologies within the Turkish legal sector.

The primary objective of this research is to develop and rigorously evaluate specialized LLMs for ten distinct
Turkish legal sub-domains. This is achieved by fine-tuning a readily available, moderately sized base model, Meta-
Llama 3.1 8B Instruct, leveraging the high-performance computing resources of EuroHPC.

Our central hypothesis is that targeted, parameter-efficient fine-tuning (PEFT) of this 8-billion parameter LLM on
synthetically generated, curated, and domain-specific datasets can produce a suite of specialized ’expert” models. We
posit that these fine-tuned models will exhibit significantly enhanced performance on domain-specific tasks
compared to the base model, reaching a practical level of proficiency and representing an efficient, economically
viable alternative to relying solely on larger, general-purpose LLMs for these specialized applications.

The key contributions of this work are:

o The development of ten fine-tuned LLM:s tailored for distinct Turkish legal domains: Energy, Land, Competition,
Tax, Healthcare, Labor, Intellectual Property, KVKK, Capital Markets, and Environmental Law.

e A practical demonstration of efficient fine-tuning methodologies (PEFT using LoORA/QLORA, optimization with
Unsloth, orchestration via Axolotl) executed on EuroHPC’s Karolina supercomputing infrastructure.

e A comprehensive quantitative evaluation comparing the performance of the fine-tuned models against the base
model using a combination of lexical, semantic, and Al-judge metrics facilitated by the LightEval framework.

e Empirical evidence supporting the feasibility and effectiveness of fine-tuning smaller LLMs to create high-
performing, domain-specific expert models suitable for deployment in specialized enterprise settings, particularly
agentic workflows.

The remainder of this paper is organized as follows: Section 2 reviews related work concerning LLMs in law,
domain adaptation techniques, the comparison of small versus large models, and Al for Turkish language

126 New Mind AI Team / Procedia Computer Science 267 (2025) 124—135

processing. Section 3 details the methodology, covering the base model, dataset creation, fine-tuning procedure,
computational environment, and evaluation strategy. Section 4 presents the quantitative results and analysis. Section
5 discusses the interpretation of these findings, challenges encountered, and potential future research directions.
Finally, Section 6 provides concluding remarks summarizing the study’s achievements and impact.

2. Related Work

The research presented in this paper builds upon several intersecting fields within NLP and Al, particularly
concerning language models, domain adaptation, and their application in specialized fields like law. This section
reviews relevant literature in these areas.

Large Language Models in Law. The advent of LLMs such as GPT-4 [10], Claude [11], and PaLM [12] has
significantly impacted various professional domains, including the legal sector. These models have demonstrated
capabilities in tasks like legal research [13], document summarization [14], contract review and analysis [15], legal
question answering [16], and even preliminary legal drafting [17]. Specialized legal Al platforms, often leveraging
these foundational models (e.g., mecellem.com, Harvey AI, CoCounsel by Casetext/Thomson Reuters), aim to
enhance lawyer productivity and streamline workflows [18]. However, the deployment of these large, general-
purpose LLMs in legal practice faces several limitations. Firstly, their substantial computational requirements
necessitate significant resources for both training and inference, leading to high operational costs [19]. Secondly,
while broadly capable, their knowledge might lack the depth and nuance required for highly specialized legal sub-
domains or specific jurisdictions like Turkey [20]. Concerns regarding data privacy, security, and the potential for
generating inaccurate or “hallucinated” information remain significant hurdles for critical legal applications [21].
These limitations motivate the exploration of more targeted and efficient approaches.

Domain Adaptation and Fine-Tuning. Domain adaptation techniques are widely employed to overcome the
generality of large pre-trained models and enhance their performance on specific tasks or domains. Full fine-tuning,
which involves updating all parameters of a pre-trained model on a domain-specific dataset, can yield high
performance but is computationally expensive and requires large datasets to avoid overfitting or catastrophic
forgetting [22]. PEFT methods have emerged as a compelling alternative, aiming to adapt LLMs with significantly
fewer trainable parameters [23]. To adapt the base model efficiently, we employed Parameter-Efficient Fine-Tuning
(PEFT) methods, specifically LoRA [24] and its quantized variant QLoRA [25], which adapt models by training a
small number of additional parameters while keeping the base model frozen. These PEFT methods are particularly
relevant for creating specialized models efficiently, aligning well with the objectives of this study. Another relevant
technique in legal Al is RAG [26]. RAG enhances LLM outputs by first retrieving relevant documents or passages
from a knowledge base (e.g., legal statutes, case law) and then providing this context to the LLM alongside the user
query. While RAG helps ground responses in factual data and mitigate hallucinations, it primarily addresses
knowledge access at inference time, whereas fine-tuning instills domain-specific knowledge and behavior directly
into the model’s parameters [27]. Fine-tuning and RAG can also be used complementarily.

Small vs. Large Language Models. While the trend in recent years has been towards increasingly larger LLMs [10,
12], a growing body of research highlights the effectiveness and efficiency of smaller language models (SLMs),
typically defined as models with fewer than 10-20 billion parameters [28]. Studies have shown that SLMs, when
properly fine-tuned on high-quality, domain-specific data, can achieve performance comparable or sometimes
superior to much larger models on specific tasks [29, 30]. The advantages of SLMs are significant, particularly for
enterprise deployment. They require substantially fewer computational resources for both fine-tuning and inference,
resulting in lower costs and reduced energy consumption [31]. Their smaller size facilitates deployment in resource-
constrained environments, potentially on-premises or even on-edge devices, enhancing data privacy and control.
This makes SLMs a practical choice for building specialized “expert” models tailored for specific business units or
workflows, such as the agentic systems targeted in this work [32]. Our research investigates whether an 8-billion
parameter model (Meta-Llama 3.1 8B) can be effectively specialized for complex Turkish legal domains.

Al for Turkish Language Processing. Turkish presents unique challenges for NLP due to its agglutinative
morphology and complex syntactic structures [33]. While significant progress has been made in Turkish NLP,
including the development of Turkish BERT models [34] and some general-purpose Turkish LLMs [35], resources

New Mind AI Team / Procedia Computer Science 267 (2025) 124—135 127

and research specifically targeting the Turkish legal domain remain relatively scarce compared to English. Existing
work might focus on text classification for legal documents or basic information extraction [36, 37]. However, the
development and public availability of high-performing generative LLMs specifically trained or fine-tuned for
diverse Turkish legal sub-domains are limited. The lack of large, publicly available, high-quality annotated datasets
for specialized Turkish legal tasks further compounds this challenge [38]. This research aims to contribute to closing
this gap by creating and evaluating specialized models for ten distinct Turkish legal areas, leveraging recent
advances in LLMs and PEFT techniques.

3. Methodology

Base Model. The foundation for our specialized models is Meta-Llama 3.1 8B Instruct [39]. This model was
selected for its strong baseline performance as a state-of-the-art open-weight model, its manageable 8-billion
parameter size offering a balance between capability and computational tractability suitable for efficient fine-tuning
and economical deployment (qualifying it as an SLM), its permissive license allowing research and development,
and its instruction-tuned nature which makes it readily adaptable to specific downstream tasks via structured
prompting.

Datasets and Domains. To develop specialized expertise, we targeted ten distinct sub-domains within Turkish law:
Energy & Natural Resources, Land & Zoning, Competition, Tax, Healthcare, Labor, Intellectual Property (IP), Data
Protection (KVKK), Capital Markets, and Environmental Law. Constructing effective training datasets for each do-
main necessitated a hybrid approach. We began by curating publicly available legal texts, regulations, and
jurisprudence, forming a foundational corpus. However, to ensure sufficient high-quality examples for instruction-
following, we significantly supplemented this core data with synthetically generated content.

This synthetic data generation relied on a highly efficient, multi-layered LLM pipeline architected for scalability
and quality control (specific models detailed in Table 1), a visual overview of which is provided in Figure 1. The
process commenced with a Generator stage where multiple LLMs (e.g., Llama 3.1 70B, Qwen2.5-72B) operated in
parallel on domain documents to produce diverse initial question candidates. These candidates were then rigorously
evaluated in a Critic stage, employing another LLM augmented with Retrieval-Augmented Generation (RAG)
drawing from relevant legal sources. This stage systematically assessed questions against criteria like relevance,
clarity, and legal grounding. Finally, a deterministic Fuser model processed the critique, synthesizing the positive
aspects of candidate questions while eliminating or rephrasing problematic elements to yield highly refined,
optimized final questions.

-Subdomam

R Subdomain

Subdomain —
docker w
Subdomain

‘ Business Logic ‘ Synthetic Data Generation ‘

¢

8

Generator

Generator

Critic —» Fuser

Fig. 1. High-level overview of the synthetic data generation pipeline, from domain processing to the Generator-Critic-Fuser architecture for
producing high-quality question-answer pairs.

Table 1. Synthetic data generation pipeline models configuration.

Type Model Top_k Temperature Max Tokens Samples
generator meta-1lama/Llama-3.3-70B-Instruct 1 0.3 3000 1
generator Qwen/Qwen2.5-72B-Instruct 1 0.3 5000 1
critic Qwen/Qwen2.5-72B-Instruct 1 0.3 16384 1

fuser Qwen/Qwen2.5-72B-Instruct 1 0.0 4096 1

128 New Mind AI Team / Procedia Computer Science 267 (2025) 124—135

Following the question generation and refinement, the same RAG-enhanced architectural framework was
leveraged to generate high-quality answers corresponding to the finalized questions. This sequential process ensured
consistency and contextual grounding. The entire pipeline was designed for parallel execution across domains
(supporting up to 100 concurrent workflows), enabling the efficient production of approximately 10,000 high-
quality question-answer pairs per domain.

To ensure the integrity of the training data, we embedded several quality control (QC) mechanisms throughout
this pipeline. The QC process included multiple automated and manual steps. Initially, all generated questions
underwent automated filtering based on a set of heuristic rules, such as character length constraints (15-250
characters), removal of duplicates, and syntactic checks to ensure proper question formatting. The ’Critic’ stage
served as the next layer of automated QC, where an LLM systematically discarded questions flagged for irrelevance,
lack of clarity, or poor legal grounding. Following automated filtering, a random subset (approximately 5%) of the
synthetically generated data from each domain was subjected to manual spot-checks by our team to validate its
coherence and domain accuracy. This iterative human-in-the-loop validation provided a crucial final quality gate
before the data was accepted into the training set.

The total combined training dataset size across all domains comprised 149,571 text examples. Detailed statistics
regarding average token length, minimum/maximum lengths, and data size per domain category can be found in
Table 2. To structure the data for fine-tuning, we employed two widely used instruction formats: the Alpaca format
[40] and the ChatML template [41]. This allowed us to train two variants for each domain and compare the impact of
the input structure.

Table 2. Summary statistics by category.

Category Avg. Token Min Max Data Size
Capital 364.66 197 831 10,495
Environmental 365.76 200 1623 15,070
Fund 41543 219 2935 9,155
Intellectual 389.97 200 3407 11,503
Land 382.21 199 1230 13,348
Competition Law 292.76 72 1967 18,000
Healthcare Law 295.63 72 4424 18,000
Tax Law 284.34 78 918 18,000
Data Protection Law 295.6 85 2778 18,000
Energy 305.32 90 2751 18,000

The selection of ten distinct legal sub-domains was based on established areas of legal specialization within the
Turkish professional landscape. Although we acknowledge that overlaps exist, for example, between healthcare and
labor law or environmental and energy law, each domain possesses a unique corpus of legislation, specific
terminology, and distinct regulatory frameworks. Our hypothesis is that creating highly specialized “expert” models
requires this level of granularity. By training each model on a focused dataset, we aim to instill deep, nuanced
knowledge that might be diluted in a more generalized model. This approach allows for a direct evaluation of
specialization, with the potential for future work to explore knowledge transfer and domain fusion.

Fine-tuning Procedure. The fine-tuning process was orchestrated using the Axolotl framework [42], selected for its
flexibility in managing diverse models, PEFT methods, and convenient YAML-based configuration system.
Significant acceleration and resource optimization were achieved through integration with the Unsloth library [43],
which provides highly optimized kernels, efficient memory management strategies, and leverages formats like BF16,
drastically reducing training times compared to standard Hugging Face implementations.

New Mind AI Team / Procedia Computer Science 267 (2025) 124—135 129

Our primary PEFT method was Low-Rank Adaptation (LoRA). The specific LoRA configuration included a rank
(r) of 16 and a LoRA alpha (alpha) of 32, effectively controlling the dimensionality and scaling of the adaptation
matrices. A dropout probability of 0.05 (lora_dropout) was applied to the LoRA layers to mitigate overfitting. We
targeted a comprehensive set of modules for LoRA adaptation, including the query, key, value, and output
projections in the attention layers (q_proj, k_proj, v_proj, o_proj), as well as the gate, up, and down projections in the
feed-forward layers (gate proj, up_proj, down_proj). LORA biases were configured to be trainable (bias: all), and the
eva method was used for initializing LoRA weights. Residual Scaled LoRA (use rslora) was not employed in this
configuration (use rslora: false).

The training hyperparameters were set as follows: we used a learning rate of 3e with a cosine learning rate
scheduler (Ir_scheduler type: cosine) and applied weight decay of 0.01. Training was conducted for 3 epochs
(num_train_epochs: 3) for each domain. We utilized a per-device batch size of 4 (batch size: 4) and gradient
accumulation steps of 4 (gradient accumulation_steps: 4), resulting in an effective batch size of 16. Gradient norms
were clipped to a maximum value of 1.0 (max_grad norm: 1). Data packing (packing: false) was disabled. To further
conserve memory, especially given the model size and comprehensive LoRA target modules, gradient checkpointing
(use_gradient_checkpointing: true) was enabled. While we experimented with quantized methods like QLoRA (e.g.,
using 4-bit NormalFloat quantization) during development, the results reported here correspond to the specified
LoRA configuration trained using BF16 precision facilitated by Unsloth. The overall training duration varied per
domain based on dataset size but was substantially reduced by these optimizations.

Computational Environment. All fine-tuning experiments were executed on the Karolina supercomputer at
IT4Innovations National Supercomputing Center, accessed via a EuroHPC Joint Undertaking Benchmark Access
grant. We utilized Karolina’s GPU nodes, each equipped with 8x NVIDIA A100 GPUs. Our software stack was built
on PyTorch (2.4.1+cul21) and CUDA (12.1), employing Hugging Face Transformers (4.48.0) for model handling,
Axolotl for orchestration, and Unsloth (2025.1.6) along with libraries like Flash Attention and xFormers for
optimized training kernels and memory management. Job submission and resource management were handled via
Slurm, with Python (3.11.2) as the primary programming language and OpenMPI (4.1.6) available. Training
monitoring and visualization were performed using Weights & Biases (0.19.4), which confirmed high resource
efficiency with typical GPU and memory utilization between 85-90%.

Evaluation Strategy. Model performance was evaluated using the LightEval framework (version 0.7.0) [44], a
lightweight library for LLM evaluation. Our evaluation strategy was designed to provide a multi-faceted assessment,
comparing each fine-tuned model (both Alpaca and ChatML variants) against the original Meta-Llama 3.1 8B
Instruct base model. We employed three categories of metrics:

e [Lexical Metrics: Assessing surface-level similarity and overlap between generated text and reference answers
using standard NLP metrics: BLEU (Bilingual Evaluation Understudy) [45], ROUGE (Recall-Oriented
Understudy for Gisting Evaluation), specifically ROUGE-L [46], F1-Score (calculated based on token overlap).
These were averaged to provide a Lexical Avg. score as in Table 3.

e Semantic Metrics: Measuring the similarity in meaning between generated outputs and reference answers using
sentence embeddings. We utilized pre-trained Sentence Transformers models, specifically all-MiniLM-L6-v2
[47] for general English/multilingual capability and emrecan/bert-base-turkish-cased-mean-nli-stsb-tr [48]
potentially for Turkish-specific nuances. Cosine similarity between embeddings was calculated and averaged as
shown in Table 3.

o Al Judge Metrics: Employing a capable LLM (gpt-40-mini) as an evaluator to assess the quality of model outputs
based on criteria crucial for legal applications: Relevancy: Is the answer pertinent to the legal question asked?
Coherence: Is the answer logically structured and easy to understand? Accuracy: Does the answer reflect correct
legal information or reasoning (within the scope of the provided context or the model’s trained knowledge)?
Scores for these aspects were averaged to produce an OpenAl Judge Avg. as given in Table 3.

The evaluation process involved processing a substantial number of tokens across various tasks, exceeding 242
million tokens in total for the LightEval benchmarks considered as shown in Appendix A, Table A.5, ensuring a
robust assessment.

130 New Mind AI Team / Procedia Computer Science 267 (2025) 124—135

4. Results

This section presents a detailed analysis of the model performance, focusing on quantitative metrics, training
efficiency, and qualitative observations.

4.1. Quantitative Performance

The core performance evaluation compared the twenty fine-tuned models (ten legal domains, each in Alpaca and
Chat-template formats) against the baseline Meta-Llama 3.1 8B Instruct model. We utilized the LightEval
framework and aggregated results across lexical, semantic, and Al-judge metrics as described in Methodology.

Table 3 summarizes the key evaluation results. It presents the average scores for each model across the three
metric categories: Lexical Average, Semantic Average, and OpenAl Judge Average. Detailed performance scores
for each fine-tuned model variant and the base model across the individual benchmark tasks (Arc, Hellaswag,
Truthful QA, Winogrande) evaluated using LightEval are provided in Appendix A, Table A.4. Furthermore, while a
full benchmark against open-weight 70B models was beyond the current project’s scope, we provide their scores on
the same general evaluation benchmarks for context.

Table 3. Comprehensive evaluation results for fine-tuned models vs. base model.

Model Name Lexical Avg. Semantic Avg. OpenAl Judge Avg.
Base Model (Meta-Llama 3.1 8B Instruct) 0.379 0.842 0.594
Alpaca-capital 0411 0.928 0.368
Chat-template-capital 0.443 0.942 0.545
Alpaca-competition 0.430 0.937 0.495
Chat-template-competition 0.344 0.920 0.367
Alpaca-energy 0.425 0.940 0.502
Chat-template-energy 0.335 0918 0.368
Alpaca-environmental 0.412 0.917 0.428
Chat-template-environmental 0.426 0.895 0.490
Alpaca-fund 0.441 0.920 0.354
Chat-template-fund 0.462 0.935 0.487
Alpaca-health 0.395 0.924 0.425
Chat-template-health 0.337 0.921 0.399
Alpaca-intellectual 0.398 0.894 0313
Chat-template-intellectual 0.464 0.943 0.593
Alpaca-kvkk 0.414 0.938 0.477
Chat-template-kvkk 0.334 0.919 0.389
Alpaca-land 0.391 0.902 0.325
Chat-template-land 0.436 0.934 0.532
Alpaca-tax 0.400 0.928 0.456
Chat-template-tax 0.332 0.919 0.373

Semantic Performance Analysis. A primary indicator of successful domain adaptation is the model’s ability to
understand the meaning and context of specialized text. Our results show a clear and significant improvement in
semantic understanding across all fine-tuned models. The base model achieved a Semantic Average score of 0.842.
In contrast, every fine-tuned model surpassed this, with scores consistently ranging from 0.894 to 0.943. This

New Mind AI Team / Procedia Computer Science 267 (2025) 124—135 131

uniform uplift indicates that the models successfully assimilated the nuanced terminology and complex concepts of
their respective legal domains. High semantic similarity is crucial in the legal field, where understanding the intent
and meaning of a query is more important than generating lexically identical text to a reference answer. This result
strongly supports our hypothesis that targeted fine-tuning instills deep domain-specific knowledge.

Lexical Performance Analysis. Lexical metrics (e.g., BLEU, ROUGE-L) measure the surface-level overlap between
the model’s output and the reference answers. While the base model scored 0.379, the fine-tuned models showed
varied but generally positive results, with scores ranging from 0.332 to 0.464. For instance, the Chat-template-
intellectual model achieved the highest lexical score (0.464). These metrics suggest an improved ability to replicate
the structure and phrasing of the training data. However, lexical similarity is a secondary objective in this context, as
legally valid answers can be formulated in many different ways. The moderate gains, combined with the strong
semantic results, suggest the models learned to articulate concepts from the training data without merely memorizing
them.

Al-Judge Performance Analysis. The Al-Judge metrics (evaluating relevancy, coherence, and accuracy) provide the
most practical assessment of the models’ utility. Here, the results are more nuanced and reveal key insights into the
specialization process. The base model, a generalist, scored a high 0.594. While none of our specialized models
surpassed this general score, several came remarkably close within their specific domain of expertise.

The Chat-template-intellectual model, for example, achieved a score of 0.593, demonstrating near-human-level
performance on specialized Intellectual Property law tasks. Similarly, the models for Chat-template-capital (0.545)
and Chat-template-land (0.532) showed strong performance, indicating high practical utility. This demonstrates that
a much smaller, 8B parameter model can be specialized to perform at a very high level on specific, complex tasks.
Conversely, some models like Alpaca-intellectual (0.313) scored lower, indicating that while semantic understanding
was achieved (Semantic Avg. 0.894), generating outputs that were simultaneously relevant, coherent, and accurate
was a greater challenge for that specific combination of domain and format. This variability underscores that
performance is a function of not just the data, but also the interaction between the data and the instruction format.
Impact of Instruction Format. The choice of instruction format (Alpaca vs. Chat-template) had a significant and
domain-dependent impact on performance, particularly in the Al-Judge evaluation. No single format was universally
superior. In the Intellectual Property domain, the Chat-template model (0.593) vastly outperformed the Alpaca
version (0.313). In contrast, for Competition Law, the Alpaca model (0.495) was clearly superior to its Chat-
template counterpart (0.367).

This suggests that the conversational, structured nature of the Chat-template format may be better suited for
domains requiring more nuanced, explanatory answers (like Intellectual Property), while the more direct question-
answer style of the Alpaca format may be more effective for domains that are more fact-driven (like Competition
Law). This finding highlights the importance of format selection as a key hyperparameter in the fine-tuning process.

4.2. Training Efficiency

The fine-tuning process demonstrated significant efficiency gains, with Unsloth accelerating training by up to
8.8x compared to standard Hugging Face procedures, allowing all 20 fine-tuning runs (10 domains x 2 formats) to
be completed within the allocated compute time. Resource utilization on the Karolina GPU nodes was efficient, with
typical GPU and memory utilization rates between 85-90% during training runs. Overall, the project utilized
approximately 600 GPU hours for fine-tuning, evaluation, development, and testing. Based on the Karolina A100
GPU power consumption and utilization, the estimated CO2 footprint for the GPU usage during the project is
calculated to be between 56.84 kg and 64.8 kg CO2.

4.3. Qualitative Analysis

We conducted a domain-specific fine-tuning of the LLaMA 3.1-8B-Instruct model for legal applications, utilizing
synthetic data derived from our proprietary corpus. The fine-tuning process led to a marked improvement in the
model’s alignment with domain-specific content. When deployed within our existing RAG pipeline, the fine-tuned
models exhibited enhanced performance in terms of citation precision, logical coherence, and legal knowledge
representation.

132 New Mind AI Team / Procedia Computer Science 267 (2025) 124—135

5. Discussion

Interpretation of Findings. Our results confirm that PEFT effectively specialized the Meta-Llama 3.1 8B model into
capable experts for ten distinct Turkish legal sub-domains, validating our central hypothesis. Significant
improvements over the base model were observed across semantic similarity and, notably, Al-judge metrics
reflecting practical utility, demonstrating successful assimilation of domain-specific knowledge as in Table 3.
Challenges and Limitations. Several limitations should be acknowledged. Firstly, while extensive, our datasets
relied partly on synthetic generation; potential biases or limitations in scope and quality may exist, requiring ongoing
curation. Secondly, our evaluation, though multi-faceted, relied on automated metrics and Al judges (gpt-4o0-mini),
which have inherent limitations compared to systematic human expert evaluation. Thirdly, this study focused on
specializing the 8B model, and our evaluation was consequently scoped to measure the improvement gained over its
base version. We did not perform direct comparative benchmarking against proprietary very large models like GPT-
4 and Claude 3. This was a deliberate choice rooted in data governance; our privacy policies prohibit the sharing of
our specialized and sensitive legal datasets with external, third-party APIs. While this limits a direct comparison
with the largest closed-source models, it reflects a realistic constraint for many legal tech applications dealing with
confidential data. Finally, generalizability beyond the ten targeted Turkish legal domains requires further
investigation.

Regarding cross-lingual and cross-system applicability, it is important to distinguish between our methodology

and our models. The data generation pipeline we developed is highly adaptable and could be applied to other
languages and legal systems by substituting the foundational legal corpora. However, the fine-tuned models
produced in this study are inherently specific to Turkish law. Due to the unique jurisprudential principles, statutes,
and terminology of each legal system, these models would not be directly applicable to another country’s legal
framework (e.g., German or French law) without undergoing a similar, rigorous fine-tuning process with relevant
local data. This specialization is a feature, not a bug, underscoring our thesis that high performance in niche domains
requires tailored, domain-specific training.
Future Work. Building on this foundation, our future work will proceed in several key directions, with a particular
focus on exploring domain interaction and model capabilities. A key next step is developing a single, comprehensive
legal model trained on the aggregated dataset from all ten domains. The goal of this “generalist expert” is to
determine whether a larger, multi-domain training set can produce a model that matches or exceeds the performance
of the individual specialists across their respective tasks. This will help answer a crucial question: is it more
effective to deploy a suite of specialized agents or a single, more powerful generalist? Further research will also
involve leveraging EuroHPC resources to train a larger Turkish reasoning model, experimenting with diverse base
SLMs, and enhancing datasets through continuous expert validation. We also plan to develop advanced, domain-
specific RAG integrations and strengthen our evaluation protocols with systematic human expert assessment.
Finally, real-world pilot studies integrating these models into legal professional workflows are planned to assess
practical utility and gather user feedback, bridging the gap between research and practice.

6. Conclusion

This paper presented the successful development and evaluation of specialized language models for ten distinct
Turkish legal sub-domains through the fine-tuning of a relatively small base model, Meta-Llama 3.1 8B. Leveraging
the computational power of the EuroHPC Karolina supercomputer and employing efficient methodologies, including
PEFT with LoRA/QLoRA, orchestrated by Axolotl, and significantly accelerated by the Unsloth framework, we
demonstrated the ability to create domain-specific expert models.

Our key finding underscores the viability and effectiveness of this approach: fine-tuning smaller language models
presents a practical, computationally efficient, and economically advantageous strategy for achieving high
performance on specialized tasks within complex domains like law. The resulting models exhibited significant
improvements over the general-purpose base model in handling domain-specific nuances, as evidenced by our
comprehensive evaluation using lexical, semantic, and Al-judge metrics.

The successful specialization of the 8B model into ten distinct legal expert models offers a compelling alternative
to relying exclusively on larger, more resource-intensive general-purpose LLMs. This work contributes valuable

New Mind AI Team / Procedia Computer Science 267 (2025) 124—135 133

resources to the Turkish legal tech ecosystem and provides strong empirical support for the use of specialized SLMs
in building modular, cost-effective agentic workflows. Ultimately, this research highlights the potential of targeted
domain adaptation on high-performance computing infrastructure to advance the development and democratization
of specialized Al solutions across various knowledge-intensive fields.

Data and Model Availability

The synthetic datasets generated and used for fine-tuning in this study are proprietary and are not publicly
available due to their direct connection to our core business logic and proprietary data sources. However, in the
spirit of contributing to the research community, we plan to open-source two of our best-performing fine-tuned
models for the Turkish legal domain. The selected models will be released on the Hugging Face Hub under an
Apache 2.0 license. The models will be accessible at the following URL wupon release:
https://huggingface.co/newmindai.

Acknowledgements

This research was supported by the EuroHPC Joint Undertaking (EuroHPC JU) under the Benchmark Access
grant agreement No EHPC-BEN-2024B11-003. The authors gratefully acknowledge the computational resources
provided by the IT4Innovations National Supercomputing Center (Czech Republic) on the Karolina supercomputer,
made available through the EuroHPC JU.

Appendix A. Detailed Benchmark Results

Table A.4: Detailed evaluation results on lightEval benchmarks (Arc, Hellaswag, TruthfulQA, Winogrande). Fine-tuned model names are
shortened for brevity; all start with *Llama-3.1-8B-Instruct-’ followed by the domain and format shown (e.g., ’energy-chat-template’). Best
‘Overall’ score per domain pair is bolded, the second best is underlined.

Domain Model Suffix Arc Hellaswag Truthful QA Winogrande Overall
(BASE) meta-llama/Llama-3.1-8B-Instruct 0.5358 0.3805 0.4631 0.4834 0.4657
Instruct meta-llama/LLlama-3.1-70B-Instruct 0.4445 0.2584 0.4444 0.5039 0.4128
Instruct meta-llama/Llama-3.3-70B-Instruct 0.2980 0.2470 0.4480 0.5060 0.3748
Energy energy-chat-template 0.5179 0.3708 0.4175 0.4992 0.4514
Energy energy-alpaca 0.5256 0.3715 0.4250 0.4961 0.4545
Tax tax-chat-template 0.5171 0.3707 0.4228 0.5055 0.4540
Tax tax-alpaca 0.5188 0.3693 0.4338 0.5000 0.4555
Competition competition-chat-template 0.5239 0.3750 0.4269 0.4976 0.4559
Competition competition-alpaca 0.5222 0.3745 0.4353 0.5008 0.4582
KVKK kvkk-chat-template 0.5188 0.3710 0.4267 0.5000 0.4541
KVKK kvkk-alpaca 0.5102 0.3693 0.4375 0.4882 04513
Health health-chat-template 0.5162 0.3719 0.4093 0.4968 0.4485
Health health-alpaca 0.5188 0.3712 0.4017 0.4981 0.4475
Capital capital-chat-template 0.5179 0.3724 0.4368 0.4889 0.4540
Capital capital-alpaca 0.5085 0.3734 0.4495 0.4866 0.4545
Environmental environmental-chat-template 0.5119 0.3746 0.4409 0.4858 0.4533
Environmental environmental-alpaca 0.5026 0.3745 0.4566 0.4834 0.4543
Fund fund-chat-template 0.5119 0.3718 0.4452 0.4834 0.4531

Fund fund-alpaca 0.5009 0.3716 0.4582 0.4834 0.4535

134 New Mind AI Team / Procedia Computer Science 267 (2025) 124—135

Intellectual intellectual-chat-template 0.5077 0.3726 0.4326 0.4882 0.4503
Intellectual intellectual-alpaca 0.5034 0.3719 0.4472 0.4905 0.4532
Land land-chat-template 0.5111 0.5939 0.5232 0.7103 0.5846
Land land-alpaca 0.5094 0.5951 0.5395 0.7056 0.5874

Table A.5: Light eval tasks token analysis.

Dataset Input Tokens Output Tokens Total All Models

Max Min Mean Total Max Min Mean Total Tokens Total (x20)

hellaswag 328 2 133 5337376 454 27 166 6658344 11995720 239914400
arc 297 42 100 11789 2 2 2 2344 14133 282660
truthful-qa 82 5 18 14976 43 2 15 12703 27679 553580
winograde 72 17 33 85137 2 2 2 5110 90247 1804940

Total: 12127779 242,555,580.00
References

[1] Qin, W., & Sun, Z. (2024). Exploring the Nexus of Large Language Models and Legal Systems: A Short Survey. arXiv preprint
arXiv:2404.00990.

[2] Mayer, T. (2023). Al and LLMs in Legal Technology: Revolutionizing Research and Document Analysis. Advances in Computer Sciences,
6(1).

[3] Hadi, M. U., Qureshi, R., Shah, A., Irfan, M., Zafar, A., Shaikh, M. B., ... & Mirjalili, S. (2023). A survey on large language models: Applica-
tions, challenges, limitations, and practical usage. Authorea Preprints, 3.

[4] Kaoutar, M. R., Chaima, B. J., Omar, B., & Outmane, B. (2024, October). Unlocking the Potential of Large Language Models in Legal
Discourse: Challenges, Solutions, and Future Directions. In 2024 Sixth International Conference on Intelligent Computing in Data Sciences
(ICDS) (pp. 1-7). IEEE.

[5] Mercan, G., & Selcuk, Z. V. (2024). Artificial intelligence (Al) activities in legal practices. International Journal of Eurasian Education and
Culture, 9(25), 131-144.

[6] Bhatnagar, M., & Huchhanavar, S. (2025). Enhancing legal assistance with Al: a comprehensive approach to intent classification and domain
specific model tuning. Artificial Intelligence and Law, 1-29.

[7] Gajulamandyam, D. K., Veerla, S., Emami, Y., Lee, K., Li, Y., Mamillapalli, J. S., & Shim, S. (2025, January). Domain Specific Finetuning
of LLMs Using PEFT Techniques. In 2025 IEEE 15th Annual Computing and Communication Workshop and Conference (CCWC) (pp.
00484- 00490). IEEE.

[8] Han, Z., Gao, C., Liu, J., Zhang, J., & Zhang, S. Q. (2024). Parameter-efficient fine-tuning for large models: A comprehensive survey. arXiv
preprint arXiv:2403.14608.

[9] Li, X., Wang, S., Zeng, S., Wu, Y., & Yang, Y. (2024). A survey on LLM-based multi-agent systems: workflow, infrastructure, and
challenges. Vicinagearth, 1(1), 9.

[10] Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, 1., Aleman, F. L., ... & McGrew, B. (2023). Gpt-4 technical report. arXiv preprint
arXiv:2303.08774.

[11] Introducing Claude. (n.d.). https://www.anthropic.com/news/introducing-claude

[12] Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra, G., Roberts, A., ... & Fiedel, N. (2023). Palm: Scaling language modeling with
pathways. Journal of Machine Learning Research, 24(240), 1-113.

[13] Zhong, H., Xiao, C., Tu, C., Zhang, T., Liu, Z., & Sun, M. (2020). How does NLP benefit legal system: A summary of legal artificial
intelligence. arXiv preprint arXiv:2004.12158.

[14] Bommarito II, M., & Katz, D. M. (2022). GPT takes the bar exam. arXiv preprint arXiv:2212.14402.

[15] Chalkidis, ., Fergadiotis, M., Malakasiotis, P., Aletras, N., & Androutsopoulos, 1. (2020). LEGAL-BERT: The muppets straight out of law
school. arXiv preprint arXiv:2010.02559.

[16] Elwany, E., Moore, D., & Oberoi, G. (2019). Bert goes to law school: Quantifying the competitive advantage of access to large legal corpora
in contract understanding. arXiv preprint arXiv:1911.00473.

[17] de Oliveira Fornasier, M. (2021). Legal education in the 21st century and the artificial intelligence. Revista Opinido Juridica, 19(31), 1-32.
[18] Lai, J., Gan, W., Wu, J., Qi, Z., & Yu, P. S. (2024). Large language models in law: A survey. 4/ Open.

New Mind AI Team / Procedia Computer Science 267 (2025) 124—135 135

[19] Patterson, D., Gonzalez, J., Le, Q., Liang, C., Munguia, L. M., Rothchild, D., ... & Dean, J. (2021). Carbon emissions and large neural
network training. arXiv preprint arXiv:2104.10350.

[20] Hendrycks, D., Burns, C., Basart, S., Zou, A., Mazeika, M., Song, D., & Steinhardt, J. (2020). Measuring massive multitask language under-
standing. arXiv preprint arXiv:2009.03300.

[21] Ji, Z., Lee, N., Frieske, R., Yu, T., Su, D., Xu, Y., ... & Fung, P. (2023). Survey of hallucination in natural language generation. ACM
computing surveys, 55(12), 1-38.

[22] Howard, J., & Ruder, S. (2018). Universal language model fine-tuning for text classification. arXiv preprint arXiv:1801.06146.

[23] Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B., De Laroussilhe, Q., Gesmundo, A., ... & Gelly, S. (2019, May). Parameter-efficient
transfer learning for NLP. In International conference on machine learning (pp. 2790-2799). PMLR.

[24] Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., ... & Chen, W. (2022). Lora: Low-rank adaptation of large language models.
ICLR, 1(2), 3.

[25] Dettmers, T., Pagnoni, A., Holtzman, A., & Zettlemoyer, L. (2023). Qlora: Efficient finetuning of quantized llms. Advances in neural
information processing systems, 36, 10088-10115.

[26] Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., ... & Kiela, D. (2020). Retrieval -augmented generation for knowledge-
intensive nlp tasks. Advances in neural information processing systems, 33, 9459-9474.

[27] Guu, K., Lee, K., Tung, Z., Pasupat, P., & Chang, M. (2020, November). Retrieval augmented language model pre-training. In International
conference on machine learning (pp. 3929-3938). PMLR.

[28] Wei, J., Tay, Y., Bommasani, R., Raffel, C., Zoph, B., Borgeaud, S., ... & Fedus, W. (2022). Emergent abilities of large language models.
arXiv preprint arXiv:2206.07682.

[29] Schick, T., & Schiitze, H. (2020). Exploiting cloze questions for few shot text classification and natural language inference. arXiv preprint
arXiv:2001.07676.

[30] Tay, Y., Dehghani, M., Rao, J., Fedus, W., Abnar, S., Chung, H. W., ... & Metzler, D. (2021). Scale efficiently: Insights from pre-training
and fine-tuning transformers. arXiv preprint arXiv:2109.10686.

[31] Ma, S., Wang, H., Ma, L., Wang, L., Wang, W., Huang, S., ... & Wei, F. (2024). The era of 1-bit llms: All large language models are in 1.58
bits. arXiv preprint arXiv:2402.17764, 1.

[32] Wang, L., Ma, C., Feng, X., Zhang, Z., Yang, H., Zhang, J., ... & Wen, J. (2024). A survey on large language model based autonomous
agents. Frontiers of Computer Science, 18(6), 186345.

[33] Oflazer, K. (1994). Two-level description of Turkish morphology. Literary and linguistic computing, 9(2), 137-148.

[34] Stefan-It. (n.d.). GitHub - stefan-it/turkish-bert: Turkish BERT/DistilBERT, ELECTRA, ConvBERT and T5 models. GitHub.
https://github.com/stefan-it/turkish-bert

[35] Turker, M., Ari, M. E., & Han, A. (2024). Vbart: The turkish llm. arXiv preprint arXiv:2403.01308.

[36] Turan, T., & Kiigiiksille, E. U. (2024). Legal text classification in Turkey: A machine learning approach to divorce and zoning decisions.
Uluslararast Miihendislik Tasarim Ve Teknoloji Dergisi, 6(2), 53-63. https://doi.org/10.70669/ijedt.1491511.

[37] Cetindag, C., Yazicioglu, B., & Kog, A. (2023). Named-entity recognition in Turkish legal texts. Natural Language Engineering, 29(3), 615-
642.

[38] Cetinoglu, O., & Coltekin, C. (2023). Two languages, one treebank: building a Turkish—German code-switching treebank and its challenges.
Language Resources and Evaluation, 57(2), 545-579.

[39] Grattafiori, A., Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle, A., ... & Vasic, P. (2024). The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

[40] Tatsu-Lab. (n.d.). Tatsu-Lab/STANFORD ALPACA: Code and documentation to train Stanford’s alpaca models, and generate the data.
GitHub. https://github.com/tatsu-lab/stanford alpaca

[41] Openai. (n.d.). openai-python/chatml.md at release-v0.28.0 - openai/openai-python. GitHub. https:/github.com/openai/openai-
python/blob/release-v0.28.0/chatml.md.

[42] Axolotl-Ai-Cloud. (n.d.). GitHub - axolotl-ai-cloud/axolotl: Go ahead and axolotl questions. GitHub. https://github.com/axolotl-ai-
cloud/axolotl.

[43] Unslothai. (n.d.). GitHub - unslothai/unsloth: Finetune Qwen3, Llama 4, TTS, DeepSeek-R1 & Gemma 3 LLMs 2x faster with 70% less
memory!. GitHub. https://github.com/unslothai/unsloth.

[44] Huggingface. (n.d.). GitHub - huggingface/lighteval: Lighteval is your all-in-one toolkit for evaluating LLMs across multiple backends.
GitHub. https://github.com/huggingface/lighteval.

[45] Papineni, K., Roukos, S., Ward, T., & Zhu, W. J. (2002, July). Bleu: a method for automatic evaluation of machine translation. In
Proceedings of the 40th annual meeting of the Association for Computational Linguistics (pp. 311-318).

[46] Lin, C. Y. (2004, July). Rouge: A package for automatic evaluation of summaries. In Text summarization branches out (pp. 74-81).

[47] Reimers, N., & Gurevych, L. (2019). Sentence-bert: Sentence embeddings using siamese bert-networks. arXiv preprint arXiv:1908.10084.

[48] emrecan/bert-base-turkish-cased-mean-nli-stsb-tr - Hugging Face. (2024, June 16). https://huggingtace.co/emrecan/bert-base-turkish-cased-

mean-nli-stsb-tr.

Available online at www.sciencedirect.com

ScienceDirect Procedia

Computer Science

CrossMark

Procedia Computer Science 267 (2025) 136-145

www.elsevier.com/locate/procedia

Proceedings of the Third EuroHPC user day
Porting Epistasis Detection Methods to EuroHPC Supercomputers

Ricardo Nobre®?* Aleksandar Ilic*?, Leonel Sousa®P?

YINESC-ID, Rua Alves Redol 9, 1000-029 Lisboa, Portugal
b Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal

Abstract

Epistasis detection searches have been accelerated throughout the years resorting to different types of parallel processors. GPU-
accelerated approaches that we have proposed achieve the highest per-device and per-node performance reported in the literature for
exhaustive search methods. This paper reports our efforts to port our GPU-based solutions to large-scale GPU-accelerated systems.
In particular, it documents key developments for retargeting our epistasis detection codes to the GPU-accelerated partitions of the
LUMI and MeluXina EuroHPC supercomputers. This paper touches on the different parallelization approaches taken, providing
explanations on their implementation, and documents the efforts undertaken to make codes that have originally been developed in
CUDA compatible with the state-of-the-art AMD GPUs available on the LUMI supercomputer. Overall, high-scalability has been
achieved, resulting in the new improved codes reaching unprecedented levels of epistasis detection performance on the targeted
systems. In particular, one of the codes achieved a parallel efficiency of 96% on 1024 nodes in comparison to single-node execution.

© 2025 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY 4.0 license (https://creativecommons.org/licenses/by/4.0)
Peer-review under responsibility of the scientific committee of the Proceedings of the Third EuroHPC user day

Keywords: epistasis detection; supercomputers; parallel processing; GPU programming; hardware interoperability

1. Introduction

Genome Wide Association Studies (GWAS) have successfully found several associations between genotype and a
number of human conditions [9]. However, many more associations are likely to be discovered. Such discoveries can
have deep implications on society through improving personalized treatment [1, 5, 18], mitigating the spreading of
viruses [4], and several other genetics-enhanced high impact use cases, such as forensics investigations [17].

The massive parallel processing potential of modern supercomputers is often achieved through the use of GPU
accelerators. As a matter of fact, the most recent TOP500 list (November, 2024) [19] ranks nine supercomputers with
GPUs as the ten most powerful computer systems. The use of GPUs enables packing a much higher performance
capability per rack and per unit of energy than if relying only on CPUs, while also benefiting from a more mature
ecosystem than other comparatively powerful types of accelerator devices. Also contributing to their deployment in
large numbers in supercomputers is the fact that there is a significant overlap between the applications that can be

* Corresponding author. Tel.: (+351) 21 310 0294 ; fax: (+351) 21 314 5843.
E-mail address: ricardo.nobre @inesc-id.pt

1877-0509 © 2025 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY 4.0 license (https://creativecommons.org/licenses/by/4.0)
Peer-review under responsibility of the scientific committee of the Proceedings of the Third EuroHPC user day
10.1016/j.procs.2025.08.240

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2025.08.240&domain=pdf

Ricardo Nobre et al. / Procedia Computer Science 267 (2025) 136—145 137

accelerated with GPUs — applications with a high degree of parallelism — and those that can benefit from the massive
peak processing capability achieved through horizontal large-scale replication of modern computer nodes.

The European High-Performance Computing Joint Undertaking (EuroHPC JU) has procured ten state-of-the-art
supercomputers [2], all of which have GPU-accelerated partitions. While most have NVIDIA GPUs, LUMI [7], which
coincidentally is the most powerful one currently running and available to end-users — LUMI reaches 386 PFLOP/s
of sustained performance, JUPITER [3] is expected to reach 1 EFLOP/s of sustained performance but is not yet
operational — relies on AMD GPUs. Thus, in order to make software able to exploit the LUMI GPU partition (LUMI-
G), which is a requirement to leverage the potential of this supercomputer, one must develop software in such a way
that enables compilation targeting AMD GPUs and that is able to make efficient use of their hardware capabilities.

In this paper, we document the efforts undertaken, including the main challenges faced and how they were ad-
dressed, to port a number of our key exhaustive epistasis detection bioinformatics codes to modern supercomputing
platforms. These programs were mostly developed in CUDA and outperform other solutions across various interaction
orders when run on the same or comparable GPU hardware. Specifically, our codes achieve throughput that matches
or exceeds that of other solutions utilizing CUDA cores or tensor cores, thereby representing the state-of-the-art in
high-throughput epistasis detection methods. The aforementioned efforts entailed porting codes from CUDA to HIP,
as well as adding a layer of parallelization to add support for multiple nodes in a way that is suited/specialized at/to
the different codes. Thus, making them primed to achieve high utilization of the targeted systems: LUMI [7] — which
presents an opportunity to expand our solutions to AMD GPUs and enables performing runs at a very large scale —
and MeluXina [8] — which featured the most powerful NVIDIA GPUs when we started the reported developments.

The developments reported in this paper can be of interest to both bioinformaticians and supercomputer
users/programmers with some interest in the topic. In particular, the source code used to perform the experiments
reported in this paper ! can potentially be of use to other developers of high-throughput bioinformatics solutions.

Section 2 presents the tackled bioinformatics application in a level of detail that is sufficient to understand the un-
dertaken porting and parallelization. Section 3 introduces the state-of-the-art codes adapted for execution on the Eu-
roHPC supercomputers. The porting / parallelization efforts are detailed in Section 4. Section 5 analyses the achieved
performance and scalability for a comprehensive battery of tests. Finally, Section 6 presents concluding remarks.

2. Epistasis detection in a high-performance computing context

Searching for statistical associations between genotype and phenotype considering genetic markers individually
is often not enough [20]. Epistasis detection is focused on finding non-additive genetic interactions, i.e. epistatic
interactions, with influence on a given trait under study. These searches are accomplished through the processing of
datasets representing the genetic configurations for a set of cases and controls, i.e. case-control datasets. The markers
represented in these datasets are typically single nucleotide polymorphisms (SNPs), each representing variation at
a single nucleotide in the DNA of at least 1% of a population under study. SNPs are identified through processing
multiple DNA sequences (from different individuals of a given population), which are compared with the genetic data
of a reference sequence as part of another foundational computational bioinformatics process called variant calling.

Epistasis detection represents a combinatorial search problem that is very computationally intensive due to the large
evaluation space to cover. This is especially the case if one relies on exhaustive methods, designed to be as precise
as possible, and considering high-order SNP combinations (involving three or more SNPs), which opens up more
possibilities for finding genotype-phenotype correlations. Notice that while the expected processing time increases
linearly with the number of samples to process, it increases extremely fast with the number of SNPs in the input
dataset, and even faster with the interaction order. For example, for 100,000 SNPs, a pairwise search results in 5.0
Giga (10°) combinations of SNPs to evaluate. However, a third-order / fourth-order search entails evaluating 166.7
Tera (10'%) / 4166.4 Peta (10') SNP combinations. This is due to the amount of combinations increasing by ~ 4x,
~ 8% and ~ 16X in second-order, third-order and fourth-order, when doubling the amount of SNPs to process.

In exhaustive epistasis detection searches, for each of the SNP combinations to evaluate, a score is calculated on
top of the counts of the different possible genotypes that are seen in cases and controls. This score expresses the

! Source code and datasets available at: https://github.com/hiperbio/epistasis-supercomputers

138 Ricardo Nobre et al. / Procedia Computer Science 267 (2025) 136—145

controls cases
POPC
X0 0 1 0o 1 ¥ ' X0 0 0 0o 1
X1 1 0 1 0 AND ‘ ‘ ‘ " ‘ ‘ ‘ ‘ ‘ X1 0 1 0 0
X2 0 0 0 0 00 01 02 10 1 12 20 21 22 X2 1 0 1.0
Yo 1 0 0 0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ " ‘ Yo 0 1 0 0
Y. 0 0 11 AND Y. 1 0 1 0
Y2 0 1 0 o0] Y2 0 0 0o 1

\———— POPC

Fig. 1: Construction of contingency table for a pair of SNPs relying on one-hot encoding representation and bitwise processing.

Table 1: Epistasis detection solutions subjected to porting efforts targeting EuroHPC supercomputers that are tackled in this paper.

Approach Public code repository Order(s) Prog. model(s) Targeted hardware

CUDA-Episdet [14] hiperbio/cuda-episdet 2nd, 3rd OpenMP, CUDA Any NVIDIA GPU (Maxwell to Ampere)
Tensor-Episdet [10, 13] hiperbio/tensor-episdet 2nd, 3rd CUDA Turing GPUs (also supports Ampere)
Epid4Tensor [12] hiperbio/Epi4Tensor 4th OpenMP, CUDA Ampere GPUs (also supports Turing)

Crossarch-Episdet [11] ~ hiperbio/crossarch-episdet 2nd, 3rd OpenMP, SYCL ~ CPU/GPU with SYCL support via oneAPI

association strength between the SNP combination being evaluated at a given time and the phenotype under study,
i.e. the impact of that genetic configuration in determining the existence of a given trait or condition. For challenging
datasets in regard to samples, it is the genotype counting, and not the scoring calculation, that determines the achieved
performance [13]. Hence, it is often the focus of optimization on high-throughput approaches. Fig. 1 exemplifies this
process, considering a kind of representation often used in high-throughput approaches in the literature that one-hot
encodes genotype information and stores data pertaining to cases and controls in separate memory regions.

There are three base genotypes resulting from combining one allele from each of the parents. These are the homozy-
gous major, heterozygous, homozygous minor genotypes. Using this type of representation, each SNP is represented
by six bitvectors, three for cases and three for controls, each with as many bits as the amount of samples it represents.
Counting the occurrences of the different genotypes on cases and controls entails filling a table with 2 x 3% cells, where
k is the interaction order. Notice that in third and fourth order searches there are 27 (= 3%) and 81 (= 3*) genotypes that
result from combining the three base genotypes. Combining and counting genotypes using such representation can be
done using bitwise AND and POPC (population count, i.e. count set bits), which are fast on most modern devices.

Epistasis detection is highly data-parallel, since it relies on applying the same operations to different combinations
of SNPs: genotype counting, scoring calculations, reduction and identification of the set (or sets) of SNPs most as-
sociated with phenotype. Some of the state-of-the-art approaches, including those developed by us, already target the
type of GPU hardware that is available on supercomputers. However, several of the implementations of those methods
only support NVIDIA GPUs (e.g. [10, 12, 13, 14]). This is particularly the case with the approaches that make use
of the matrix processing units in modern microarchitectures — all have been developed around the use of NVIDIA
GPUs [6, 10, 12, 13]. Furthermore, most of the existing approaches are not implemented in a way that exploits the
true potential of supercomputers. As a matter of fact, with the exception of CoMet [6], used for epistasis searches on
the Summit supercomputer, no other tensor-core approach in the literature supports multi-node GPU-based execution.

3. High-throughput codes extended to EuroHPC supercomputers

Table 1 introduces the epistasis detection solutions that have been extended to efficiently use EuroHPC super-
computers. All listed solutions have in common the fact that they rely on exhaustive methods, i.e. the complete SNP
combination space is evaluated. However, these approaches differ in regard to key aspects that can be ground for
significant specialization, such as the interaction order, the programming models used and/or the targeted hardware.

When introduced, CUDA-Episdet [14] was the fastest approach out of those compatible with a broad range
of consumer GPU hardware — although still NVIDIA-only — achieving on average 3Xx higher performance than
MPI3SNP [16], a state-of-the-art approach similar in the hardware features used, on the same GPUs from four mi-
croarchitectures (Maxwell 2.0, Pascal, Volta, Turing). CoMet [6], another approach from the literature that had been

Ricardo Nobre et al. / Procedia Computer Science 267 (2025) 136—145 139

recently introduced as well, was able to achieve higher performance, but only when targeting GPUs with the Volta
microarchitecture, which were exclusive to the data-center (Tesla V100) and high-end prosumer market (Titan V).

Around the same time, we also introduced an epistasis detection solution [10] that later evolved and became
known as Tensor-Episdet [13]. In its earliest reported development stage, it already achieved 6x to 8x higher per-
formance at second-order and third-order searches on a mid-range Turing GPU (GeForce 2070S) in comparison to
a supercomputer-grade GPU (V100) using the state-of-the-art CoMet approach [6]. It achieved that feat through the
use of the second generation matrix units available in the Turing microarchitecture, which was made possible with a
carefully designed algorithm that allowed translating the output of tensorized XOR+POPC (newly introduced oper-
ation) to that one would obtain using tensorized AND+POPC (not supported in Turing). Another interesting feature
of that approach is that it is able to construct a complete contingency table, making it compatible in principle with
any objective scoring function other than the one used (K2 Bayasian scoring), deriving a significant part of its values
from that of other counts, which speeds up computations quite significantly. Around the time it was publicly released
as Tensor-Episdet [13], it included key improvements such as the use of an internal dataset representation that is
more suited at efficient use of the GPU compute and memory subsystems. As a result, it achieved in its later form
7x (second-order) and 11X (third-order) higher performance on the GeForce 2070S — 10x and 18x on a Titan RTX
— when compared to CoMet on a single V100. Experiments including an additional objective scoring function (mu-
tual information) showed empirically that the method of constructing contingency tables could be used with different
statistics calculations and that, at least for challenging datasets, it was the determinant for achieving high performance.

Epid4Tensor [12] extended upon Tensor-Episdet in two fronts. These are the exploitation of new features available
in a newer microarchitecture (Ampere), in particular the newly introduced tensorized AND+POPC support on the
GPU matrix engines, and the generalization of the method to fourth-order searches. From its inception, this software
has been subject to optimization on systems with A100 GPUs. While the use of XOR+POPC is still supported as a
means to provide backwards compatibility with Turing GPUs, Epi4Tensor primarily uses AND+POPC (introduced in
the Ampere microarchitecture). Thus, not requiring the translation between these two types of operations. To achieve
efficient use of the matrix processing units, a scheme specialized to fourth-order searches has been devised to count
the occurrences of genotypes. In particular, the developed method precombines two sets of two blocks of SNPs on
the general purpose cores of the GPU and then combines the result of each operation on its matrix cores. Epi4Tensor
supports multiple GPUs, but only on the same node, achieving the comparatively high performance of 835.4 tera sets
processed per second scaled to sample size on an HGX-A100 8-GPU system [15]. As is the case of Tensor-Episdet,
Epi4Tensor has been implemented in CUDA and relies on the CUTLASS library for accessing the GPU matrix cores.

Crossarch-Episdet [11] is a port of CUDA-Episdet that uses the DPC++/SYCL abstraction layer for programming
heterogeneous hardware. The use of SYCL provides an open alternative to single-architecture proprietary languages,
with support for different vendors, as well as different types of devices, through the same source code. In addition to
targeting CPUs, it is capable of targeting GPUs from different vendors (AMD, Intel, NVIDIA) through the OneAPI
toolchain. Support for Intel is incorporated into the oneAPI Base Toolkit, with support for AMD and NVIDIA GPUs
granted through Codeplay oneAPI plugins. This code represents one of our first efforts to achieve performance porta-
bility in the context of epistasis detection methods through open standards programming languages and tools.

4. Porting the codes to EuroHPC supercomputers

This section focuses on describing the main steps undertaken to introduce compatibility with AMD GPUs and to
use multiple nodes, both important to make use of the hardware resources available through the EuroHPC JU initiative.

4.1. Adding support to AMD GPUs through the HIP programming model

All codes that have been programmed in CUDA (CUDA-Episdet, Tensor-Episdet, and Epi4Tensor) were ported
to AMD’s HIP C++ programming model, thus enabling compatibility with the AMD GPUs on the LUMI GPU-
accelerated partition through the ROCm software stack. Porting the different codes involved a varying degree of
effort. In addition to porting from CUDA to HIP, which was to a significant extent helped with the use of the hipify
code translation tool, additional code modifications had to be applied to take into account the different GPU microar-
chitecture. For example, in NVIDIA a warp has 32 threads, while a wavefront (AMD’s equivalent to NVIDIA’s warp)

140 Ricardo Nobre et al. / Procedia Computer Science 267 (2025) 136—145

has 64 threads in the microarchitecture of the MI250X GPU (CDNAZ2). Moreover, some functions used did not have an
equivalent in HIP. In particular, the epistasis detection codes relying on tensor cores — Tensor-Episdet and Epi4Tensor
— rely from their inception on the CUTLASS collection of CUDA C++ template abstractions for high-performance
matrix-matrix multiplication and related computations, which has no direct equivalent on the ROCm software stack.

The use of CUTLASS, in relation to cuBLAS — which is arguably the de facto library for matrix-multiplication
on NVIDIA hardware — enables a lot of additional opportunities for customization and fine-grained tuning. Not only
does it provide a fine-grained control over how the matrix multiplication operations are mapped to the multiprocessors
in the GPU - called compute units (CUs) in AMD GPUs and streaming multiprocessors (SMs) in NVIDIA GPUs
— through the specification of the operation tile sizes at various levels, but it also provides support for additional
operation precisions. The CUTLASS library provides access to the 4-bit and 1-bit operations natively supported on
the tensor cores of modern NVIDIA GPU microarchitectures, which are not supported under cuBLAS. In particular, 1-
bit operations are useful for epistasis detection searches, since the representation of case-control datasets in a one-hot
encoding scheme enables the use of bitwise operations as part of matrix operations performed to derive the genotype
counts composing the contingency tables required to calculate genotype-phenotype association strength scores.

Having the capability to natively processes genetic data represented in a one-hot encoding scheme on matrix
processing hardware is of very high value. This has been extensively exploited using XOR+POPC (Tensor-Episdet
and Epi4Tensor) and AND+POPC (Epi4Tensor) in Turing and Ampere microarchitectures. However, those operations
are not supported on the matrix processing hardware of the MI250X GPU. Thus, we decided to use hipBLAS — an
interoperability layer that supports rocBLAS and cuBLAS as backends — on the ports targeting the AMD hardware.
As is the case of cuBLAS, hipBLAS/rocBLAS supports operation with integer and floating-point datatypes.

For the correct construction of contingency tables, as long as 32-bits are used for accumulation — either INT32 or
FP32 — in order to enable the processing of large datasets in regard to samples, it is indifferent which data type is used
for representing the matrix inputs. This is the case because one is representing 1-bit data as a result of the dataset
format used. It still leaves the question about which differences in performance are to be expected using the datatypes
supported on the AMD MI250X GPUs through the rocBLAS library. The two numerical precisions supported that
have the highest peak theoretical throughput are INT8 and FP16, which have the particularity of being equally rated
at 383 TFLOP/s. In the scalabiliy results herein presented, we are using FP16 inputs and FP32 for accumulation.

4.2. Adding support for multiple nodes with multiple GPUs through MPI

While some of our epistasis detection codes originally had support for multiple GPUs on the same system, e.g.
Epid4Tensor targeted the HGX A100 8-GPU platform [15] using OpenMP threads to orchestrate different GPUs, none
of those codes originally supported multiple nodes. Naturally, this had to be addressed in order to enable exploiting the
massive performance potential accessible through efficient utilization of modern GPU-accelerated supercomputers. In
all cases, i.e. for all codes considered, we have adopted a parallelization scheme where different Message Passing
Interface (MPI) processes were assigned a different GPU (one per process). For some codes, we deemed sufficient to
utilize a static partitioning / scheduling scheme. However, for other codes we have used dynamic scheduling.

All codes under study rely on a set of nested loops to evaluate combinations of SNPs. Partitioning of work between
different GPUs is done at the level of the outermost loop (1 work unit equals 1 outerloop iteration). In both CUDA-
Episdet and Crossarch-Episdet, a SYCL port of the former, the host assigns the same number of combinations to
process as part of each iteration of the outerloop. This makes static assignment of work to the different MPI processes
viable in what pertains work distribution and scheduling. However, in the two codes using tensor cores (Tensor-Episdet
and Epi4Tensor), due to the way combinations between SNPs are expressed — in blocks of SNPs, where each block
with a given index is to be combined with itself and with all blocks with higher index — different loop iterations entail
performing different amounts of work per outerloop iteration. Thus, we rely on a dynamic scheduling approach for
Tensor-Episdet and Epid4Tensor to achieve a balanced load distribution, which is a requirement for high scalability.
MPI process 0 (i.e. rank 0) distributes work to other MPI processes (as many as the number of targeted GPUs), which
evaluate SNP combinations as a result of executing the assigned loop iterations. Thus, if using 8 GPUs (2 MeluXina
GPU nodes), there are 9 MPI processes in total. Whenever the MPI process associated with a GPU (i.e. a worker
process) terminates executing the loop iteration assigned to it at a given time, it asks MPI rank O (i.e. the coordinator
process) for an additional loop iteration. The application terminates when all loop iterations have been processed.

Ricardo Nobre et al. / Procedia Computer Science 267 (2025) 136—145 141

In order to make efficient use of the resources used, i.e. the requested nodes, the aforementioned parallel processing
scheme has been implemented relying on having one of the nodes with an extra MPI process. That node, in addition
to MPI worker processes also hosts the MPI coordinator process. Notice that the CPUs experience minimal load,
serving mostly to orchestrate computations rather than crunching data. This is especially the case for the codes using
matrix/tensor cores (Tensor-Episdet and Epi4Tensor), where virtually all the computational burden falls on the GPUs.

Parallelization between nodes has been implemented in a way that contention on internode communication links is
also not a problem. The amount of information transferred between nodes, as well as MPI processes in the same node,
is very minimal in relation to computation. Communication only includes messages from the worker processes to the
coordinator process asking for more SNP evaluation rounds to execute, indices of loop iterations transferred from the
coordinator to worker processes representing the work to do, and sending the best found scores and corresponding
sets of SNPs from the worker processes to the coordinator at the end of a given epistasis detection run. In addition to
the message sizes being quite small, the frequency of communication is also very low. However, if required, commu-
nication can be further minimized through adjusting the SNP block size parameter, which represents the granularity
with which operations are performed on each evaluation round accelerated with GPU matrix/tensor cores.

In addition to a high computation to communication ratio, to achieve high scalability it is important for work dis-
tribution to be performed in a fine-grained enough manner. However, very fine grained distribution of work through
using a smaller SNP block size results in a drop in throughput using the matrix/tensor cores. Epi4Tensor was particu-
larly challenging in this regard in the initial versions extended with MPI, with datasets other than those with extremely
large amounts of SNPs not resulting in evenly divided workload between the targeted GPUs. The load balancing is-
sues were mitigated by fusing the two outermost loops. This allows to achieve a more fine-grained work distribution
without requiring increasing the SNP blocks size, the main determiner of throughput on the matrix/tensor cores.

Load balancing at runtime through an extra MPI process is attained specifying to the SLURM workload manager
the total number of processes (as many as the GPUs used plus 1), the number of GPUs per node (4 for MeluXina, 8
for LUMI), and the GPU binding strategy used. Notice that while one of the GPUs on one of the nodes gets assigned
two processes, as one more process is used than the amount of GPUs, being one the coordinator process and the other
the worker processes, only the latter actually uses the GPU. As an alternative to carefully setting the SLURM settings,
in systems where achieving the desired behavior through the previously referred approach poses challenges, the codes
that use dynamic scheduling could be modified to make the process with rank 0 also perform work in addition to the
coordination of other processes. Thus, requiring only the use of as many MPI processes as the number of GPUs used.

5. Performance and scalability study

This section introduces the experimental setup and the results achieved on the two targeted supercomputers: LUMI
and MeluXina. The results are discussed in the context of the different codes addressed and the applied modifications.

5.1. Software stack used

Most of the experiments on MeluXina rely on CUDA Toolkit 12.2 and GPU driver 535.161.08. Only the re-
ported experiments for Tensor-Episdet, which have been performed earlier, relied on CUDA 11.7 and GPU driver
515.105.01 (the systems’ default when performing the experiments). The DPC++/C++ Compiler (icpx) from oneAPI
2025.01, after installation of the corresponding Codeplay plugins for AMD and NVIDIA GPUs, was used to compile
Crossarch-Episdet on LUMI and MeluXina. On LUMI, the HIP compiler driver (hipcc), which is used as a wrap-
per to the Clang/LLVM toolchain from ROCm, replaces nvcc in the compilation of Tensor-Episdet and Epi4Tensor.
The experiments reported on this paper for this supercomputer have been performed relying on ROCm 6.0.3. The
CUTLASS matrix processing library is used by Tensor-Episdet (v1.33) and Epi4Tensor (v3.4.1) to access the tensor
cores of the NVIDIA GPUs on MeluXina. Different versions of this library have been used due to changes in the
API. As a replacement to the CUTLASS library (NVIDIA-only), when targeting AMD GPUs with Tensor-Episdet
and Epi4Tensor, the hipBLAS marshaling library has been used (serving as a wrapper to the rocBLAS library).

142 Ricardo Nobre et al. / Procedia Computer Science 267 (2025) 136—145

10.00

8.00

7.96 7.79 7.89 7.89
6.00
3.98 4.01 4.01 4.00
4.00
o
0.00

CUDA-Episdet Crossarch-Episdet Tensor-Episdet Epi4Tensor HIP-Episdet Crossarch-Episdet Tensor-Episdet Epi4Tensor
MeluXina GPU LUMI-G

Speedup vs. 1 GPU

Fig. 2: Speedups for single-node runs. CUDA-Episdet (8192 SNPs), Crossarch-Episdet (8192 SNPs), Tensor-Episdet (16384 SNPs) and Epi4Tensor
(2048 SNPs). Tensor-Episdet and Epi4Tensor have been executed with 524288 samples on MeluXina, all other runs process 32768 samples.

5.2. Datasets used

The scalability study reported in this paper shows data for runs with synthetic datasets of different dimensions with
respect to SNPs and samples (half cases/controls). The use of synthetic datasets is sufficient to evaluate the considered
codes. Since those perform searches in such a way that the particular genotypic information does not have an impact
on the type and number of operations performed. The reported experiments are the result of processing datasets that
have overall enough samples to achieve performance saturation for the tackled codes on the targeted GPUs.

The scalability experiments reported for CUDA-Episdet and Crossarch-Episdet — both performing third-order
searches — rely on datasets with 32768 samples, on LUMI and MeluXina. The experiments for the approaches using
tensor/matrix cores (Tensor-Episdet and Epi4Tensor) were performed with 32768 (LUMI) and 524288 (MeluXina)
samples. While Tensor-Episdet and Epi4Tensor make extensive use of matrix units on the NVIDIA and AMD GPUs,
only the NVIDIA GPUs have native support for tensorized 1-bit operations. Thus, making GPUs on LUMI achieve
performance saturation with comparatively less samples. Notice that for a given amount of SNPs a dataset (or dataset
portion, i.e. a block of SNPs) with 32768 samples represented with a 16-bit datatype entails the processing of as many
bits of information as a dataset with 524288 samples using individual bits to represent one-hot encoded data.

We present two distinct sets of experiments: one that evaluates intra-node scalability, and another that, using
datasets with more SNPs, evaluates inter-node scalability. Intra-node experiments rely on 8192 SNPs for CUDA/HIP-
Episdet and Crossarch-Episdet, and on 16384 SNPs and 2048 SNPs for Tensor-Episdet and Epi4Tensor, respectively.
Inter-node experiments with Tensor-Episdet and Epi4Tensor use 32768 and 4096 SNPs, while those with CUDA/HIP-
Episdet and Crossarch-Episdet use 16384 SNPs on MeluXina and 32768 SNPs on LUMI. The use of datasets with
more SNPs allows one to assess the scalability in a scenario closer to what would happen for large-scale runs.

In the matrix-accelerated codes, genotypic data is combined in blocks of bitvectors representing data for SNPs.
Runs with Epi4Tensor and Tensor-Episdet relied on block sizes of 32 and 256 SNPs (the codes’ default setting),
respectively. Runs with CUDA-Episdet and Crossarch-Episdet both relied on the processing of 131072 SNP combi-
nations per evaluation round. CUDA-Episdet runs on Meluxina and LUMI relied on a work-group size of 32 and 128,
respectively. In the case of LUMLI, slightly higher performance has been achieved using a work-group size with double
the amount of threads in the wavefronts on the CDNA2 microarchitecture. Crossarch-Episdet has been executed with
64 threads per work-group on both systems. For this code, work-groups of 128 threads resulted in worse performance
compared to 64 threads. Moreover, using the same work-group size in both systems when running a code designed to
be compatible with hardware from different vendors, allows to assess cross-device portability to the highest extent.

5.3. Scalability Results

The set expectations regarding performance using multiple GPUs and nodes have been achieved. To demonstrate
the quality of the parallelization approaches used, we report the performance improvements achieved using the GPUs
in a single node (intra-node parallelization), as well as those of using multiple nodes (inter-node parallelization).
Fig. 2 depicts the speedups achieved using all available GPUs on a single MeluXina-GPU node (4 GPUs) and on a
single LUMI-G node (8 GPUs). Fig. 3, Fig. 4, Fig. 5 and Fig. 6 depict the speedups achieved on multiple nodes (vs.
single-node), for runs with CUDA/HIP-Episdet, Crossarch-Episdet, Tensor-Episdet, and Epi4Tensor, respectively.

As can be seen from the intra-node scalability experiments here reported, performance increased close to linearly
with the number of devices present in a node. The MeluXina GPU-accelerated nodes have 4 NVIDIA A100’s, while
LUMI-G nodes have 4 AMD MI250X’s. We count the 4 MI250X as 8 GPUs, as each is seen as two devices by

Ricardo Nobre et al. / Procedia Computer Science 267 (2025) 136—145 143

31.10 1200.00

35.00
B 30.00 g 1000.00 S
2 2500 S 800.00
— 20.00 — 600.00 486,34
é 1500 ¢ 40000 12 o824
g 1000 S 2000 100 198 398 7.95 15.5930.946231 | |
3 5.00 =1
$ 0.00 $ 1(8) 2(16) 4(32) 8(64) 16 32 64 128 256 512 1024
S 1(4) 2(8) 4 (16) 8(32) 16 (64) 32(128) a (128) (256) (512) (1024) (2048) (4096) (8192)
x Number of Nodes (GPUs) o Number of Nodes (GPUs)

mmmm Achieved speedup Ideal speedup mmmm Achieved speedup Ideal speedup
(a) MeluXina. (b) LUMIL

Fig. 3: Speedups with CUDA/HIP-Episdet on multiple nodes (MeluXina: 16384 SNPs x 32768 samples, LUMI: 32768 SNPs x 32768 samples).
o 35.00 31.81 ® 1200.00 981.48
S 30.00 2 1000.00 .

2 2500 S 800.00
—20.00 — 600.00 499.45
¢ 15.00 ¢ 400.00 125685130]
o 10.00 o 200.00 15.8031.5863.03* 4~
3 5.00 E o0y 100 200 3.96 7.92 1586303 22251
& 0.0 g 1(8) 2(16) 4(32) 8(64) 16 32 64 128 256 512 1024
Q 1(4) 2(8) 4 (16) 8(32) 16 (64) 32(128) <3 (128) (256) (512) (1024) (2048) (4096) (8192)
w Number of Nodes (GPUs) wv Number of Nodes (GPUs)

mmmmm Achieved speedup Ideal speedup mmmm Achieved speedup Ideal speedup

(a) MeluXina. (b) LUML.

Fig. 4: Speedups with Crossarch-Episdet on multiple nodes (MeluXina: 16384 SNPs x 32768 samples, LUMI: 32768 SNPs x 32768 samples).

20.00 20.00
[[}
el e}
9 15.00 S 15.00
= = 10.73
4 10.00 s 10.00 7.1%
a o 3.88
S 500 2 500 .
32 _g 1.00 1.98 -
$ o000 9 000 -
2 1(4) 2(8) 4(16) 8(32) 16 (64) & 1(8) 2(16) 4(32) 8(64) 16 (128)
Number of Nodes (GPUs) Number of Nodes (GPUs)
s Achieved speedup Ideal speedup mmmm Achieved speedup Ideal speedup
(a) MeluXina. (b) LUML
Fig. 5: Speedups with Tensor-Episdet on multiple nodes (MeluXina: 32768 SNPs x 524288 samples, LUMI: 32768 SNPs x 32768 samples).
o 3500 31.72 300.00
Y 250.00
-§ 30.00 B 20000 177.60
25.00 c :
2000 — 150.00 121.77
¢ | ¢ 100.00 3212 83 41
2 15.00 2 5000 100 201 403 806 16.11
2 10.00 S 0.00 = |
o 5.00 b5 1(8) 2(16) 4(32) 8(64) 16 32 4 128 256
2 g (128) (256) (512) (1024) (2048)
o 1(4) 2(8) 4(16) 8(32) 16(64) 32(128) iz Number of Nodes (GPUs)
mmmm Achieved speedup e |deal speedup mmmm Achieved speedup Ideal speedup
(a) MeluXina. (b) LUML

Fig. 6: Speedups with Epi4Tensor on multiple nodes (MeluXina: 4096 SNPs x 524288 samples, LUMI: 4096 SNPs x 32768 samples).

the programming and execution environment, as well as by the SLURM workload manager. On a MeluXina GPU-
accelerated node, the MPI-aware CUDA-Episdet achieved a speedup of 3.98x when using all available A100 devices
to process a dataset with 8192 SNPs and 32768 samples. Execution on a LUMI-G node reveals that linear speedups
(7.96x) are also achieved on the CUDA-to-HIP ported HIP-Episdet code in relation to the amount of resources used.
The processing of the same dataset through Crossarch-Episdet on MeluXina and LUMI also achieves close to linear
speedups (4.01x on MeluXina and 7.79x on LUMI). When executing Tensor-Episdet relying on all GPUs available
on a single GPU-accelerated node, the performance at processing datasets with 16384 SNPs increased by a factor of
4.01x on MeluXina and 7.89x on LUMI. Using multiple GPUs with Epi4Tensor resulted in a linear speedup (4.00x
on MeluXina and 7.89x on LUMI) for processing datasets with 2048 SNPs, in comparison to using a single GPU.

144 Ricardo Nobre et al. / Procedia Computer Science 267 (2025) 136—145

As a result of the way processing of SNP sets is organized, both CUDA-Episdet and Crossarch-Episdet achieved
very high scalability, even using static work distribution and scheduling. CUDA-Episdet achieved speedups of up
to 31.10x using 32 MeluXina nodes (i.e. 128 GPUs) in relation to single-node execution (i.e. 4 GPUs), at process-
ing 16384 SNPs and 32768 samples. The user account policies on LUMI allowed targeting a much higher amount
of nodes, resulting in a 927.71% performance improvement processing 32768 SNPs on 1024 nodes (8192 GPUs).
Crossarch-Episdet showcases even higher scalability, with 31.81x and 981.48x speedups on MeluXina and LUMI.

Processing a dataset with 32768 SNPs through Tensor-Episdet on MeluXina (LUMI) resulted in speedups of 1.99x
(1.98x%), 3.94x (3.88x%), 7.72x (7.11x) and 14.18x (10.73X) on 2, 4, 8 and 16 nodes, respectively. Inter-node scalabil-
ity is lower in LUMI due to the fact each GPU chip in an MI250X accelerator is controlled by an MPI worker process,
and as a result there is — in relation to MeluXina — double the amount of MPI workers for the same amount of nodes.

Processing 4096 SNPs through Epi4Tensor resulted in close to linear speedups being achieved on 32 MeluXina
nodes (31.72%) and 128 LUMI nodes (121.77x). We could not test with 64 GPU-accelerated Meluxina nodes due
to the limitations imposed upon the user accounts, but all points to this code being able to efficiently utilize more
nodes. The achieved scalability was in part the result of performing loop fusion to the two outerloops in the original
implementation. For example, without it close to linear speedups were only observed up to 8 nodes on MeluXina.

The extended CUDA-Episdet and its HIP port achieved a performance of 342.61 and 15951.32 tera sets per second
scaled to sample size on MeluXina and LUMI. Crossarch-Episdet achieved a scaled performance of 317.56 and
11182.24 on LUMI, 92.7% and 70.1% of the performance of CUDA/HIP-Episdet. Tensor-Episdet achieved a scaled
performance of 5212.88 and 226.36 on MeluXina and LUMI. Epi4Tensor obtained a scaled performance of 14346.33
and 2456.96 on MeluXina and LUMI. The codes using tensor cores achieved significantly higher performance on
MeluXina due to the 1-bit capabilities on the A100 GPUs. There is however still potential to improve performance on
LUMLI. For example, a Tensor-Episdet run using 8-bit integers instead of 16-bit floating point on 16 LUMI-G nodes
resulted in 1.62x higher performance, despite the MI250X having the same peak throughput in both precisions. This
code achieved a scaled performance of 8.79 tera SNP triplets processed per second on a single MI250X (two GPU
chips). This represents a performance that is significantly higher than previously reported in literature for AMD GPUs.

Notice that case-control datasets with real genotypic data often have hundreds of thousands of SNPs and that
scalability — and as a result, performance — is expected to further increase if processing datasets with more SNPs than
those considered in this paper. Therefore, the presented scalability results should be seen as a lower-bound of what the
codes extended to leverage the high parallel processing capabilities of the EuroHPC systems are capable of achieving.

6. Conclusions

This paper reported on the adaptation of four state-of-the-art bioinformatics codes focused on performing high-
throughput high-order epistasis detection searches — three originally developed in CUDA and one in DPC++ / SYCL
—in such a way that enables the efficient use of the massive computational resources of modern large-scale systems.
As part of that endeavor, we have ported the CUDA codes to HIP in order to enable the use of AMD GPUs through
the ROCm software stack, and introduced intra-node and inter-node parallelization on all codes through MPI. We also
reported on the used GPU work scheduling schemes, which have been specialized for the different codes. Scalability
tests performed on two EuroHPC supercomputers — LUMI and MeluXina — resulted in extremely high performance
being attained, as a result of high scalability being achieved when targeting large amounts of GPU-accelerated nodes.

While exceptional performance can be achieved leveraging systems with high node counts, the implementations
targeting AMD GPUs are at a significant disadvantage compared to their NVIDIA counterparts, which are the only
ones that support 1-bit processing on specialized matrix units via fused AND+POPC or XOR+POPC operations. It
is part of our current efforts to reduce the existing performance gap through better tailoring the solution to AMD
microarchitectures, such as CDNA2, which is that of the MI250X GPUs on LUMI. This is highly relevant, as energy
efficiency, which is particularly important when performing large-scale searches, is expected to be significantly better
on the A100 GPUs for the codes utilizing tensor cores. Notice that most of our epistasis detection codes have originally
been developed targeting NVIDIA GPUs, thus there is likely room for improvements on systems with AMD GPUs.

Ongoing and future work also includes adapting our solutions to newer GPU microarchitectures, such as AMD
CDNA3 (e.g. MI300X) and NVIDIA Hoppper (e.g. H100). We expect improvements in the order of 3x through
targeting the larger amount of resources on these devices and possibly even greater improvements through exploring

Ricardo Nobre et al. / Procedia Computer Science 267 (2025) 136—145 145

novel hardware features. Finally, it is also part of our plans to continue exploring the use of DPC++/SYCL through
the oneAPI programming interface. In particular, the Joint Matrix Extension, which gives access to the matrix units in
GPUs through a cross-compatible layer, might enable us to use SYCL as the primary programming model even when
developing our first implementations of novel epistasis detection solutions, for which performance is a crucial aspect.

Acknowledgements

This work was supported by FCT (Fundacdo para a Ciéncia e a Tecnologia, Portugal) through the projects
UIDB/50021/2020 and LISBOA2030-FEDER-00869000 (2023.18110.ICDT, VERSACOMP), and by the European
EuroHPC project POP3 under the grant agreement No 101143931. We acknowledge EuroHPC Joint Undertaking
for awarding us access to LUMI at CSC, Finland, and MeluXina at LuxProvide, Luxembourg, through the advanced
computing projects with references EHPC-BEN-2023B01-002 and EHPC-DEV-2024D03-052.

References

[1] Cullell, N., et al., 2018. Pharmacogenetic studies with oral anticoagulants. Genome-wide association studies in vitamin K antagonist and direct
oral anticoagulants. Oncotarget 9, 29238-29258. https://doi.org/10.18632/oncotarget.25579.

[2] EuroHPC Joint Undertaking, . Our supercomputers. https://eurohpc-ju.europa.eu/supercomputers/our-supercomputers_en.

[3] Forschungszentrum Jiilich, . JUPITER - Exascale for Europe. https://www.fz-juelich.de/en/ias/jsc/jupiter.

[4] Hartwig, F.P., Entiauspe, L.G., Nunes, E.M., Rodrigues, FM., Collares, T., Seixas, FK., da Silveira, M.E,, 2014. Evidence for an epistatic
effect between TP53 R72P and MDM2 T309G SNPs in HIV infection: A cross-sectional study in women from south brazil. PLOS ONE 9,
1-11. https://doi.org/10.1371/journal.pone.0089489.

[5] Im, C., Ness, K.K., Kaste, S.C., Chemaitilly, W., Moon, W., Sapkota, Y., Brooke, R.J., Hudson, M.M., Robison, L.L., Yasui, Y., Wilson, C.L.,
2018. Genome-wide search for higher order epistasis as modifiers of treatment effects on bone mineral density in childhood cancer survivors.
European Journal of Human Genetics 26, 275-286. https://doi.org/10.1038/s41431-017-0050-x.

[6] Joubert, W., Weighill, D., Kainer, D., Climer, S., Justice, A., Fagnan, K., Jacobson, D., 2018. Attacking the opioid epidemic: Determining the
epistatic and pleiotropic genetic architectures for chronic pain and opioid addiction, in: Proceedings of the International Conference for High
Performance Computing, Networking, Storage, and Analysis, IEEE Press, Piscataway, NJ, USA. pp. 57:1-57:14. https://doi.org/10.
1109/SC.2018.00060.

[7] LUMLI, . LUMI supercomputer. https://www.lumi-supercomputer.eu/lumi_supercomputer/.

[8] LuxProvide, . MeluXina. https://www.luxprovide.lu/meluxina.

[9] Niel, C., etal., 2015. A survey about methods dedicated to epistasis detection. Frontiers in genetics 6, Article 285, 1-19. https://doi.org/
10.3389/fgene.2015.00285.

[10] Nobre, R., Ilic, A., Santander-Jiménez, S., Sousa, L., 2020a. Exploring the binary precision capabilities of tensor cores for epistasis detection,
in: 2020 International Parallel and Distributed Processing Symposium (IPDPS 2020). https://doi.org/10.1109/IPDPS47924.2020.

00043.
[11] Nobre, R., Ilic, A., Santander-Jiménez, S., Sousa, L., 2021. Cross-architecture high-order ex-
haustive epistasis detection on CPU and GPU devices. https://devmesh.intel.com/projects/

cross—-architecture-high-order-exhaustive-epistasis-detection-on-cpu-and-gpu-devices.

[12] Nobre, R., Ilic, A., Santander-Jiménez, S., Sousa, L., 2023. Tensor-accelerated fourth-order epistasis detection on GPUs, in: Proceedings of
the 51st International Conference on Parallel Processing, Association for Computing Machinery, New York, NY, USA. https://doi.org/
10.1145/3545008.3545066.

[13] Nobre, R., Ilic, A., Santander-Jiménez, S., Sousa, L., 2021. Retargeting tensor accelerators for epistasis detection. IEEE Transactions on
Parallel and Distributed Systems 32, 2160-2174. https://doi.org/10.1109/TPDS.2021.3060322.

[14] Nobre, R., Santander-Jiménez, S., Sousa, L., Ilic, A., 2020b. Accelerating 3-way epistasis detection with CPU+GPU processing, in: 23rd
Workshop on Job Scheduling Strategies for Parallel Processing (JSSPP 2020). https://doi.org/10.1007/978-3-030-63171-0_6.

[15] NVIDIA Corporation, . NVIDIA HGX platform. URL: https://www.nvidia.com/en-us/data-center/hgx.

[16] Ponte-Ferndndez, C., Gonzdlez-Dominguez, J., Martin, M.J., 2020. Fast search of third-order epistatic interactions on CPU and GPU clusters.
The International Journal of High Performance Computing Applications 34, 20-29. https://doi.org/10.1177/1094342019852128.

[17] Pospiech, E., et al., 2018. Towards broadening forensic DNA phenotyping beyond pigmentation: Improving the prediction of head hair shape
from DNA. Forensic Science International: Genetics 37, 241-251. https://doi.org/10.1016/j.fsigen.2018.08.017.

[18] Quan, Y., et al., 2018. Facilitating anti-cancer combinatorial drug discovery by targeting epistatic disease genes. Molecules 23. https:
//doi.org/10.3390/molecules23040736.

[19] TOP500.o0rg, . The List — November 2024. https://top500.o0rg/lists/top500/2024/11/.

[20] Zuk, O., Hechter, E., Sunyaev, S.R., Lander, E.S., 2012. The mystery of missing heritability: Genetic interactions create phantom heritability.
Proc Natl Acad Sci U S A 109, 1193-1198. https://doi.org/10.1073/pnas.1119675109.

Available online at www.sciencedirect.com

ScienceDirect Procedia

Computer Science

CrossMark

Procedia Computer Science 267 (2025) 146—156

www.elsevier.com/locate/procedia
Proceedings of the Third EuroHPC user day

Pleias 1.0: the First Ever Family of Language Models Trained on
Fully Open Data

Pierre-Carl Langlais®*, Pavel Chizhov*P, Mattia Nee?, Carlos Rosas Hinostroza?,
Matthieu Delsart?, Iréne Girard?®, Anastasia Stasenko?, Ivan P. Yamshchikov®P

“PlelAs, Paris, France
bTHWS, Wiirzburg, Germany

Abstract

Linguistic diversity and strong generalization in foundation language models are typically achieved by training on trillions of data
tokens with very large model parameter counts. However, most such training datasets include substantial amounts of copyright-
protected or private data that is not explicitly published under the licence that is permissive for LLM training, raising legal and
ethical concerns. We introduce Pleias 1.0, a family of comparatively small foundation language models (with at most 3 billion
parameters) trained exclusively on public domain or permissively licensed data. We release the model weights and training code so
that our results are fully auditable and reproducible. Furthermore, we fine-tune our models for the Retrieval-Augmented Generation
(RAG) task and demonstrate that these models — despite their smaller size — can outperform competitors that have orders of
magnitude more parameters on RAG evaluations. All models, data, and code are released under open licenses, offering a new
standard for transparency and compliance.

© 2025 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY 4.0 license (https://creativecommons.org/licenses/by/4.0)
Peer-review under responsibility of the scientific committee of the Proceedings of the Third EuroHPC user day

Keywords: fully open source language models; multilingual small language models;

1. Introduction

Large language models (LLMs) are typically trained on massive web-scraped corpora comprising hundreds of
billions to trillions of tokens [8]. Prominent datasets such as C4, RefinedWeb, and Dolma consist largely of general
web text, which often contains significant portions of copyrighted content and personal information [14, 15]. This
practice raises legal and ethical issues, especially under emerging regulations (e.g., the EU Al Act) that demand
transparency in data provenance and respect for privacy. Studies have also highlighted quality problems in web-derived
data, including the presence of noise and toxic content [7], as well as inconsistencies and lower quality in non-English

* Corresponding author: Pierre-Carl Langlais.
E-mail address: pierre-carl @pleias.fr

1877-0509 © 2025 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY 4.0 license (https://creativecommons.org/licenses/by/4.0)
Peer-review under responsibility of the scientific committee of the Proceedings of the Third EuroHPC user day
10.1016/j.procs.2025.08.241

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2025.08.241&domain=pdf

Pierre-Carl Langlais et al. / Procedia Computer Science 267 (2025) 146—156 147

text [16, 21]. Moreover, the availability of web data for training is diminishing as major platforms containing potential
training data restrict scraping and reuse.

These challenges have spurred interest in developing LLMs using only legally unencumbered data. Early efforts like
the Pile dataset assembled a large collection of public text sources for training LLMs (825 GiB, 22 datasets) [8]. More
recently, the AI community has launched projects to build models on transparent and open data (e.g., the Semantic
Scholar Open Research Corpus [14] and the RedPajama training corpus [26]. However, to date, no language model of
competitive performance has been trained using only data that is entirely in the public domain or under a permissive
license. This work fills this gap.

We present Pleias 1.0, the first family of language models trained exclusively on open data at scale. Pleias 1.0
models set a new standard for legal compliance and transparency: all training data comes from the public domain
or permissively licensed sources, making these models compliant by design with data provenance requirements and
mitigating copyright concerns. Our models are relatively small in size (350M, 1.2B, and 3B parameters) yet are multi-
lingual, adhering to instruction in eight European languages, and high-performing on specialized tasks. In particular,
we target applications in retrieval-augmented generation (RAG), where a language model must accurately incorporate
retrieved evidence into its outputs. We fine-tuned two of the Pleias models for RAG and found that they outperform
other open models with up to 10X more parameters on our evaluation benchmarks.

Pleias 1.0 models are trained on the second core contribution presented in this work — Common Corpusl , A NEW
open multilingual dataset totaling approximately 2 trillion tokens. This corpus draws on diverse domains such as
literature and historical text, government and legal documents, scientific publications, software code, and more. We
developed a suite of data processing tools to maximize quality, including specialized models to correct OCR artifacts
and filters to remove toxic or low-quality content. The resulting dataset provides broad linguistic coverage and high-
quality text suitable for training state-of-the-art LLMs without relying on any proprietary web crawl data.

We train Pleias models from scratch on Common Corpus using an efficient distributed training pipeline built en-
tirely with open-source tools. Despite their modest size, the Pleias models demonstrate strong capabilities. Notably,
they exhibit best-in-class language coverage and adherence among models in the sub-1B scale: for example, our 350M
model (Pleias Pico) fluently supports at least eight languages (English, French, Spanish, German, Italian, Dutch, Latin,
Portuguese) and is less prone to unintended language switching, thanks to the balance of multiple languages in the
data and a custom tokenizer design [5]. We also report that our training process was energy-efficient, yielding a sig-
nificantly lower carbon footprint compared to other models of similar scale.

In summary, our contributions include:

o the creation of Common Corpus, a 2-trillion-token open multilingual dataset for LLM pretraining;

o the development of the Pleias 1.0 family of LLMs (350M, 1.2B, 3B parameters) trained entirely on this open
corpus;

e novel training techniques and data processing pipelines to ensure data quality and efficient training;

o fine-tuning and evaluation showing that small, specialized models can match or beat much larger models on
RAG tasks;

o the open release of all models, data, and code under permissive licenses to foster transparent research and
practical adoption.

We hope this work paves the way for more ethical and accessible large language models. In the next section, we
describe Pleias 1.0 pre-training dataset — Common Corpus — that we have collected, documented, and published for
further use by the community. Section 3 describes the architecture of Pleias 1.0 and provides details on the training,
including the carbon footprint of the models. Section 4 provides evaluations of the models. Section 5 is dedicated to
the discussion of the difficulties we encounter and possible directions for further work.

! https://huggingface.co/datasets/PleIAs/common_corpus

148

2. Common Corpus: An Open Multilingual Dataset

2.1. Data Sources and Composition

Pierre-Carl Langlais et al. / Procedia Computer Science 267 (2025) 146—156

Common Corpus is a new large-scale dataset composed entirely of text from sources that are either in the public
domain or released under an open license. The corpus spans a wide range of domains and languages, reflecting our goal
of broad coverage for a European multilingual foundation model. Major components of Common Corpus include:

Cultural Heritage Texts: A collection of literature and historical texts that are out of copyright, including
books, newspapers, and manuscripts from digital libraries and archives. For example, we incorporate texts
from Project Gutenberg and national libraries (where copyright has expired) to represent classic literature and
historical documents.

Legal and Government Documents: A large body of legal texts and administrative documents released as open
data. This includes legislative texts, court decisions, and government publications from jurisdictions that offer
these under permissive licenses. For instance, we include portions of the EU’s EuroParl and EurLex corpora
(transcriptions of parliamentary sessions and legal directives) [17], and other public domain legal resources.
Scientific Publications: Research papers and academic content available under open access terms. We draw on
sources such as arXiv and the Semantic Scholar Open Research Corpus [14] for scientific and scholarly text
in multiple languages. This component ensures the corpus contains high-quality formal writing and technical
content.

Open Web Content: Web text that is explicitly under open licenses. Unlike many LLM training sets that
scrape random web pages, we restrict this category to permissively licensed sites and contributions. The largest
portion here is Wikipedia (all languages), which is available under the CC BY-SA license. We also include other
wiki-style or collaboratively created resources, and a filtered subset of Common Crawl data focusing only on
documents with clear open licenses (e.g., certain government or news websites with open terms).

Code and Software Documentation: Source code and software documentation released under open-source
licenses. For this, we incorporated datasets like CodeSearchNet [11] (which collects code from GitHub under
permissive licenses) and a filtered dump of Stack Exchange (which is CC BY-SA licensed Q&A content, in-
cluding many programming discussions). This component introduces multilingual programming languages and
technical problem-solving texts.

Other Niche Domains: We also included various smaller open datasets to increase diversity, such as public
domain subtitles, transcriptions of public speeches, ancient language texts (e.g., Latin corpora), and so on. All
data sources were vetted to ensure compliance with our open license criteria.

Table 1 summarizes the language distribution of Common Corpus. The dataset is predominantly English (due to
the abundance of English open content), but about 35-40% of the tokens are in languages other than English, making
it one of the most multilingual open corpora of this scale. Notably, major European languages like French and German
each contribute substantial portions, and the corpus includes content in dozens of languages overall. We prioritized
including as many high-quality non-English sources as possible to improve the model’s multilingual capabilities.

Table 1. Top 10 languages in Common Corpus by proportion of tokens.

Language Percent of Tokens Language Percent of Tokens
English 64.4% Dutch 1.45%
French 14.8% Italian 1.26%
German 6.68% Polish 0.67%
Spanish 2.62% Greek 0.64%
Latin 2.03% Portuguese 0.53%

Pierre-Carl Langlais et al. / Procedia Computer Science 267 (2025) 146—156 149

Since Common Corpus is not the core focus of this paper, we refer the reader to the corresponding technical report
for more details”.

2.2. Data Processing and Quality Filtering

All data in Common Corpus undergoes an extensive processing pipeline to maximize quality and cleanliness. We
develop several custom tools as part of this pipeline:

e OCR Correction: A significant portion of our cultural heritage data and some government documents come
from scanned books or PDFs, which contain OCR (Optical Character Recognition) errors (e.g., incorrect char-
acters, broken text segments). We trained a specialized language model called OCRonos® to automatically cor-
rect such digitization artifacts. OCRonos can identify common OCR issues like character substitutions, word
splits/merges, and formatting errors, and output a cleaned text that remains faithful to the original. By applying
OCRonos to all texts that were derived from image scans, we dramatically improved the readability and accu-
racy of these portions of the corpus. An important aspect is that OCRonos is multilingual and was itself trained
on a mix of diverse OCR-ed texts, so it generalizes well across languages.

o Text Segmentation: For certain document collections (particularly historical archives), raw text extractions
can be poorly segmented (e.g., multiple articles concatenated, or text order scrambled). We utilized another
internal tool, Segmentext*, a specialized model for text segmentation. Segmentext is designed to handle broken
or unstructured text and determine proper segment boundaries even in the presence of noise. This helped in
splitting long concatenated texts into coherent segments (e.g., separating individual articles in a newspaper scan
batch).

¢ Quality Filtering: We applied systematic filtering to remove low-quality content. This included rule-based and
model-based filters to eliminate gibberish or extremely repetitive texts, as well as to down-sample overly similar
or duplicated content. We also filtered out content that was too short or too long, since extremely short texts are
not very useful for language modeling, and extremely long texts (exceeding our context length significantly)
might pose difficulties in training.

o Toxicity and Bias Mitigation: Although our data sources are generally cleaner than an uncurated web crawl,
there still exists the possibility of toxic language, hate speech, or other undesirable content in a corpus of this
size (for example, historical texts can contain archaic prejudiced language). To address this, we integrated a
toxicity classifier in the pipeline to identify and remove highly toxic or hateful segments. This classifier was
developed with a combination of keyword heuristics and a pre-trained model for toxicity detection. By filtering
out flagged content, we aimed to reduce the incidence of harmful outputs from the trained model. We report
further details about toxicity classification and filtering in a separate work [3].

o Synthetic Data Augmentation: In addition to real-world text, we augmented Common Corpus with a relatively
small portion of synthetic text (approximately 30 billion tokens, ~1.5% of the total). This synthetic data was
generated to provide examples of tasks or domains underrepresented in the corpus (such as conversational
QA format, which can help with downstream fine-tuning). However, we were cautious to limit the amount
of synthetic data. Recent studies have observed that excessive use of synthetic data can lead to performance
plateaus or degradation in LLM training. In fact, Dohmatob et al. [6] show that mixing even a modest percentage
of real data with predominantly synthetic data is crucial to maintain the benefits predicted by scaling laws.
Guided by these findings, we only supplement with a small synthetic set to avoid dominating the training
distribution.

After processing and filtering, the final Common Corpus is stored in a tokenized binary format for efficient reading
during model training (see Section 3.2). Overall, our data pipeline significantly improves the signal-to-noise ratio of
the corpus. We emphasize that while using only public data addresses legal transparency, it does not automatically

2 https://huggingface.co/datasets/PleIAs/common_corpus
3 nttps://huggingface.co/PleIAs/0CRonos
4 https://huggingface.co/PleIAs/Segmentext

150 Pierre-Carl Langlais et al. / Procedia Computer Science 267 (2025) 146—156

guarantee ethical perfection of the data (e.g., public domain texts can still contain biases or outdated viewpoints).
Nonetheless, by carefully curating sources and filtering, we aim to produce a dataset that is not only legally clean but
also of high quality for modeling.

3. Model Architecture and Training
3.1. Model Design

We train three model variants as parts of the Pleias 1.0 family, corresponding to parameter counts of roughly 350
million, 1.2 billion, and 3 billion. All are decoder-only Transformer language models with architectures inspired by
recent open LLMs like LLaMA [24] and GPT-NeoX [4]. Table 2 summarizes the key architecture hyperparameters
for each model size.

Table 2. Pleias 1.0 model architecture configurations. All models use decoder-only Transformer layers with SwiGLU activation and rotary positional
embeddings.

Model #Layers Model Dim FFN Dim #Heads KV Heads Context Length
Pleias 1.0 350M 26 1024 2560 16 8 2048
Pleias 1.0 1.2B 22 2048 6144 32 8 2048
Pleias 1.0 3B 22 3072 12288 32 8 4096

All Pleias models use pre-normalization (LayerNorm at the start of each block) and employ the SwiGLU gated
activation unit in feed-forward layers, following Shazeer [20]. We use Rotary Positional Embeddings (RoPE) [22]
for encoding position within the self-attention mechanism, with a base period of 10,000. RoPE allows extrapolation
to longer contexts, which we leverage by training the 3B model with a 4096 token context window (doubling the
standard 2048 of the smaller models).

3.2. Tokenizer

We build a custom Byte-Pair Encoding (BPE) tokenizer for the Pleias models to accommodate the multilingual
nature of Common Corpus. We train a tokenizer with 65,536 unique tokens on a representative sample of the corpus.
We also use special tokens for padding, unknown words, and text beginnings and endings. Unlike some standard
tokenizer configurations (e.g., the original LLaMA tokenizer), we remove certain English-centric preprocessing rules,
such as those that split on specific Unicode punctuation or contract apostrophes, to treat all languages more uniformly.
The resulting tokenizer provides more equitable subword segmentations across languages, ensuring that, for example,
French or German text is not tokenized into disproportionately longer sequences than English.

We find that using a fresh tokenizer was preferable to reusing an existing one from a model like GPT-2 or LLaMA,
because recycling tokenizers can introduce hidden biases or inefficiencies for languages not well-represented in the
original tokenizer’s training data [2]. By training on our corpus, the Pleias tokenizer achieves an average compression
ratio (bytes to tokens) that is similar across our top languages.

For the RAG fine-tuned versions of Pleias (described in Section 3.5), we extend the tokenizer with a handful of
special tokens used to delimit parts of the RAG prompt/response format. Specifically, tokens marking the start and
end of a user query, the start and end of each retrieved source text, the beginning of the model’s answer, etc., were
added. These tokens enable the model to be aware of the structure in a RAG setting (e.g., keeping track of which text
is a source and which is the answer) without ambiguity.

3.3. Training Setup and Hyperparameters

We train each model from scratch on the Common Corpus using an end-to-end open-source toolchain. Training was
executed with the HuggingFace Nanotron library®. We first convert the entire corpus into packed tokenized sequences

5 https://github.com/huggingface/nanotron

Pierre-Carl Langlais et al. / Procedia Computer Science 267 (2025) 146—156 151

using the Nanoset data preparation tool®. This allows us to stream pre-tokenized batches during training, avoiding
on-the-fly tokenization overhead.

For optimization, we use AdamW, and each training run used a linear warmup followed by a cosine decay learning
rate schedule. The warmup phase lasts for 5-8% of total training steps (we used a slightly longer warmup for the
larger models, based on early experiments). Table 3 details the training hyperparameters and parallelism setup for
each model.

Table 3. Training configuration for Pleias 1.0 models.

Model DP TP PP Micro-batch Gradient Accumulation Total Batch Size Peak LR — End LR
Pleias Pico (350M) 64 1 1 8 2 ~2M 3x1073 - 3%x107°
Pleias Nano (1.2B) 192 1 1 8 2 ~6M 1%x1073 - 1x107°
Pleias-3B Base 48 4 1 8 8 ~12M 5%107% = 5x107°

We perform training on two computing infrastructures. The 350M and 3B models are trained on the Jean Zay
supercomputer in France (using H100 GPUs, under a Grand Challenge compute grant), while the 1.2B model was
trained using TractoAI’s cloud platform’. In the latter case, we adapt our pipeline to TractoAl’s serverless infrastruc-
ture backed by YTsaurus. This involved converting the pre-tokenized data into TractoAl table format and modifying
Nanotron to read from this distributed storage, as well as custom handling of checkpoint saves. These engineering
adaptations enable fault-tolerant, large-scale training on the cloud without proprietary software.

Each model is trained for a number of epochs on Common Corpus, with a curriculum between a “base” portion and
a further “clean” portion of data. Specifically, for the 3B model, we trained for 2 epochs on the full Common Corpus
(approximately 2 trillion tokens total) and then 1 additional epoch on a more aggressively filtered subset of the corpus
(about 1 trillion tokens of the highest quality segments). This two-stage training (which we term an annealing corpus)
is intended to first expose the model to very diverse data, then fine-tune it on cleaner data for the final phase. For the
1.2B model, we perform 1 epoch on the full corpus and 2 epochs on the clean subset. For the smallest 350M model,
we find it sufficient to train on just the clean subset for 1 epoch (given computational constraints and the model’s
capacity). In total tokens seen, the 1.2B and 3B models each process on the order of 3—4 trillion tokens when counting
multiple epochs, which is a substantial training budget for models of this size.

3.4. Carbon Footprint and Efficiency

One motivation for developing smaller, targeted models is to reduce the environmental impact of training and
deploying LLMs. We calculate the carbon emissions from training our models using an online emissions calculator
[12] that accounts for the energy draw of the GPU hardware and the carbon intensity of the power grid. Table 4 reports
the training compute used and estimated emissions for each Pleias model, and compares them to other open models
of similar scale.

Table 4. Training compute and estimated carbon emissions for Pleias 1.0 models, compared to other models. OpenELM refers to a model baseline of
comparable size, and LLaMA refers to the hypothetical LLaMA training emissions scaled to a similar parameter count (based on publicly reported
values). Emissions are in tonnes of CO, equivalent (tCO,eq).

Model Size #GPUs (type) Time (days) Pleias Similar OpenELM Similar LLaMA
~350M 64 (H100) 1.92 0.5 tCO, 1.5 tCO, -

~1.2B 192 (H100) 5.0 4.0tCO, 5.5tCO, 107 tCO,
~3B 192 (H100) 20.0 16 tCO, 7.0 tCOy 133 tCO;,

We observe that Pleias 1.0 models required an order of magnitude less CO, emissions to train compared to larger
models like Meta’s LLaMA (which in 7B-13B scale has been estimated at tens to hundreds of tons). Even against
contemporaries in the small-model regime, Pleias models are very efficient. For instance, our 1.2B model consumed

6 https://github.com/huggingface/nanotron/blob/main/docs/nanoset.md
7 https://tracto.ai/

152 Pierre-Carl Langlais et al. / Procedia Computer Science 267 (2025) 146—156

70
Qwen2.5-7B
S
S 601 Pleias-RAG-1.2B Llama-3.1-8B
£ []
o Gemma-3-4B
jc: Pleias-RAG-350M Qwen2.5-38
© 501 Qwen2.5-1.58
@
(3]
g Llama-3.2-3B
°
| =
@ 40
i
(8]
[}
E
%5 307 Qwen2.5-500M
[0}
2
(]
)
204 Lla.ma-3A2-1 B
SmolLM2-360M

Model size, in billion of parameters

Fig. 1. Loss of RAG-fine-tuned Pleias 1.0 on non-English on HotPotQA [27]. Pleias 1.0 is in the Pareto-optimal part of the plot. For further details
on the RAG-fine-tuned Pleias 1.0 see technical report [13].

about 4 tCO,, which is about 30% lower than a comparable 1B-scale open model reported by Mehta et al. [18]. The
efficiency is achieved through a combination of factors: smaller model size, a well-optimized training pipeline (high
GPU utilization, large batch sizes), and the use of the hardware of the latest generation (NVIDIA H100), which offers
better performance per watt.

The relatively low carbon footprint means that reproducing or fine-tuning these models is within reach of aca-
demic labs or smaller organizations that might have sustainability constraints. By releasing our training pipeline and
configurations, we encourage others to build on this work in an energy-conscious way.

4. Evaluation

We evaluate the Pleias 1.0 models on both general language tasks and specialized retrieval-augmented generation
tasks. Our focus is on demonstrating the capabilities of the RAG-tuned models relative to other open models of similar
or larger scale. In addition, we provide some qualitative observations on eight European languages.

4.1. Fine-Tuning for Retrieval-Augmented Generation and RAG Evaluations

After pretraining the base models, we fine-tune two of them (350M and 1.2B) for retrieval-augmented generation,
creating Pleias 350M RAG and Pleias 1.2B RAG, respectively. This fine-tuning is effectively an additional phase
of language modeling training on a specialized corpus, rather than a typical small-sample supervised fine-tune. We
construct a synthetic RAG training corpus of about 10 billion tokens comprising queries, retrieved passages, and
annotated answers in separate regimes for trivial questions and questions that required structured reasoning. The
content for this is derived from our Common Corpus knowledge sources (so as to remain in the realm of open data).
The fine-tuning procedure continues training from the final checkpoint of the base model, using the same optimizer
settings but at a lower learning rate (we reused the last learning rate from pretraining as the constant rate during RAG
tuning). We detail the work on the RAG-fine-tuned models in the corresponding technical report [13].

The evaluations are performed on three question answering benchmarks: HotpotQA [27], 2WikiMultiHopQA [10],
and MuSiQue [25], and compared them to the instruction-tuned models from LLaMA 3.1 [9], Qwen 2.5 [19], SmolLM
2 [1], and Gemma 3 [23] model families. To summarize the results, our models performed best compared to the

Pierre-Carl Langlais et al. / Procedia Computer Science 267 (2025) 146—156 153

models of their size, and sometimes outperformed way larger ones. For example, PleIAs-RAG-350M outperformed
all the tested counterparts, including the Qwen 2.5 7B, a model 20 times larger.

To highlight the multilingual capabilities of our models, we also translate the benchmarks to the main European
languages. When evaluating the same set of models on the translated questions, we found that the performance of
Pleias-RAG models remains high, with less than 5% of drop for the 1.2B model, while for the competitors, the general
drop in performance ranges from 10% for Qwen 2.5 7B to more than 30% for SmolLM2 360M. This suggests that
our models are more reliable in a multilingual setting, especially for their size range. This advantage can be largely
attributed to the rich multilingual pre-training.

4.2. Multilingual Capabilities

Beyond English, the Pleias models demonstrate strong multilingual capabilities for the size of the models. Thanks
to Common Corpus, which contains a rich variety of languages, our models can understand and generate several
languages with high competency. As noted earlier, Pleias 1.0 350M is the first model of its size to “fully support” a
range of major languages (at least eight). In practical terms, this means it can answer questions or hold a conversation
in those languages without defaulting back to English or producing incoherent text.

We perform some supplementary tests to verify language adherence. For example, we asked each model a question
in French and observed whether the answer stayed in French or switched to English. Pleias 350M and Pleias 1.2B
reliably answered in French, whereas some baseline models like LLaMA-2 7B (chat) often responded in English to
a French query, indicating a bias toward English. This adherence is important for a user experience perspective: a
multilingual model should ideally reply in the language of the query unless instructed otherwise.

The custom tokenizer and balanced training data likely contribute to this behavior. Since our tokenizer does not
over-fragment non-English text, the models do not see non-English inputs as overly rare or token-intensive. Combined
with the fact that 35% of training tokens were non-English (with some languages like French making up nearly
15%), the models had sufficient exposure to learn those languages well. We also note that including Latin in the top
languages is unusual for LLMs, which, however, is the case for Common Corpus because many public domain books
and documents from history are in Latin; Pleias models gained some ability to read and write basic Latin, which might
be beneficial for niche scholarly applications.

5. Encountered Problems

During the training of Pleias models, we encounter several problems that require changes and adaptations. In this
section, we enumerate several of the most typical ones, which might help model developers in the future.

Cluster-framework compatibility. There are several open frameworks for distributed training of large models avail-
able, and their documentation usually does not include all the possible errors that can occur. The main sources of
such errors are deep dependency libraries that are getting constantly updated and cluster setup difficulties that were
not accounted for in the base documentation. To solve these problems, we consulted with the communities for the
frameworks that were previously used in similar conditions and ran several tests with the main ones. In addition, for
the smaller error, we used the search through StackOverflow® and LLM chatbots, mainly Claude®.

Learning rate scheduling bug. When we run our training, Nanotron was a framework in the early stages of active
development, so many new features were appearing, and together with them came the bugs. One of the bugs that
affected our process was learning rate scheduling initialization, which was set up incorrectly when restarting from
a checkpoint. Since we were doing regular audits of the training process, we were able to identify this issue early
and submit it to the developers'’. Since the framework was being rapidly developed and popular in the community,
the issue was quickly identified, and we could integrate a solution to our local version of Nanotron before the actual
integration of this fix into the framework.

8 https://stackoverflow.com/questions
9 https://claude.ai/
10 nttps://github. com/huggingface/nanotron/issues/233

154 Pierre-Carl Langlais et al. / Procedia Computer Science 267 (2025) 146—156

Cluster availability. We train the models on the Jean Zay supercomputer'', which is used by plenty of other research
groups, and, though having a considerable amount of allocated resources, might be overloaded. To overcome this
difficulty, we started our training in advance and always chose the proper job timeout so that we do not clutter the
Slurm'? queue and do not get demoted by the scheduler. There are also two factors that allow us to predict higher
cluster availability in the foreseeable future: right before and after the cluster maintenance, which happens quite
regularly, and during the holiday periods.

Job timeout limit. To avoid long resource outages due to stagnating jobs, the Jean Zay cluster has an upper limit of
20 hours set for every job, so we cannot expect our jobs to run longer than this. To overcome this issue, we leveraged
Slurm’s arrayed jobs, which enabled us to set up a sequence of jobs running for the maximum allowed time. Close to
the end of each job, we expected a checkpoint to be saved, so that the next job could start from this checkpoint. We
also added a command to our Slurm scripts that would change the parameters of the current training run configuration,
accounting for the job that is being started.

6. Conclusion

We introduce Pleias 1.0, a suite of small-scale language models trained entirely on open data, and demonstrate that
these models can achieve outstanding results on specialized tasks like retrieval-augmented generation. By leveraging
the Common Corpus — a massive, multilingual, public domain dataset — and carefully designing our training pipeline,
we addressed key legal and ethical concerns (data transparency and licensing) without sacrificing performance. In
fact, Pleias models match or surpass much larger models in our evaluations, all while being more efficient to train and
run.

Our work underscores the importance of data quality and domain-specific optimization. Instead of blindly scal-
ing model size or using indiscriminate web crawls, we focused on curating a training set that is legally clean and
rich in the kinds of information our models need for high-value applications (like answering factual questions with
evidence). The success of Pleias 1.2B and 350M in RAG tasks suggests that targeted smaller models can be viable
alternatives to giant general-purpose models, especially for use cases where computational resources or latency are
constraints.

We believe Pleias 1.0 sets a precedent for fully open LLM development: every component of our project — the
data, the training code, the model weights, and even the evaluation data — is released openly. This enables anyone to
reproduce or build upon our results, and provides a foundation for future research into compliant and transparent Al.
Moreover, our approach is directly aligned with forthcoming regulatory requirements (such as the EU Al Act) that
will likely necessitate knowing and disclosing exactly what data an Al model was trained on. Pleias 1.0 proves that
such compliance is achievable today.

In future work, we plan to extend this paradigm in several directions. One is scaling up the model size while
remaining within the open-data regime, to see if a 7B or 13B model trained on Common Corpus can further close the
gap with the largest proprietary models. Another direction is expanding the multilingual coverage beyond mostly Indo-
European languages, by incorporating more open data from diverse languages (e.g., expanding into Asian and African
languages, where obtaining public domain text might require new collection efforts). We also aim to explore other
task-specific fine-tunes of the base Pleias models, such as instruction tuning for general helpfulness or specialized
domains like legal reasoning, again using only permissively licensed instruction data.

To the community, we release Pleias 1.0 models under the Apache 2.0 license, and the Common Corpus dataset
under a CC BY license (with components in the public domain). We hope these resources will be useful for both
researchers and practitioners. The 350M Pleias model, in particular, is light enough to run on consumer hardware,
opening the door for truly local and private deployment of assistive LLMs that users can trust and verify. We pub-
licly release the models and training data and invite the open science community to further contribute to creative
applications of our models, as well as collaborate on the next iterations of open-data language models.

" http://www.idris.fr/eng/jean-zay/jean-zay-presentation-eng.html
12 https://slurm.schedmd. com/documentation.html

Pierre-Carl Langlais et al. / Procedia Computer Science 267 (2025) 146—156 155

Acknowledgements

The authors of this work acknowledge the HPC resource allocation by the European High Performance Computing

Joint Undertaking (EuroHPC JU) on the Jean Zay cluster (compute grant #GC011015451).

References

(1]

[2]
[3]

[4]
(5]

(6]
(71
(8]

[91

[10]

[11]
[12]

[13]
[14]
[15]
[16]
[17]

[18]

[19]

[20]
[21]

[22]

Allal, L.B., Lozhkov, A., Bakouch, E., Blizquez, G.M., Penedo, G., Tunstall, L., Marafioti, A., Kydli¢ek, H., Lajarin, A.P., Srivastav, V.,
Lochner, J., Fahlgren, C., Nguyen, X.S., Fourrier, C., Burtenshaw, B., Larcher, H., Zhao, H., Zakka, C., Morlon, M., Raffel, C., von Werra, L.,
Wolf, T., 2025. Smollm2: When smol goes big — data-centric training of a small language model. URL: https://arxiv.org/abs/2502.
02737, arXiv:2502.02737.

Arnett, C., 2023. Dangers of tokenizer recycling. Hugging Face Blog. https://huggingface.co/blog/catherinearnett/
dangers-of-tokenizer-recycling.

Arnett, C., Jones, E., Yamshchikov, L.P., Langlais, P.C., 2024. Toxicity of the commons: Curating open-source pre-training data. URL:
https://arxiv.org/abs/2410.22587, arXiv:2410.22587.

Black, S., et al., 2022. Gpt-neox-20b: An open-source autoregressive language model. arXiv preprint arXiv:2204.06745 .

Chizhov, P., Arnett, C., Korotkova, E., Yamshchikov, I.P., 2024. BPE gets picky: Efficient vocabulary refinement during tokenizer training,
in: Al-Onaizan, Y., Bansal, M., Chen, Y.N. (Eds.), Proceedings of the 2024 Conference on Empirical Methods in Natural Language Pro-
cessing, Association for Computational Linguistics, Miami, Florida, USA. pp. 16587-16604. URL: https://aclanthology.org/2024.
emnlp-main.925/, doi:10.18653/v1/2024.emnlp-main.925.

Dohmatob, E., Feng, Y., Kempe, J., 2024. Combating mode collapse in rlhf: On the connection between synthetic data and grokking in llms.
arXiv preprint arXiv:2402.00159 .

Elazar, Y., Bhagia, A., Magnusson, 1., Ravichander, A., et al., 2023. What’s in my big data? annotating and analyzing large web-crawled
datasets. arXiv preprint arXiv:2308.00086 .

Gao, L., Biderman, S., et al., 2021. The Pile: An 800gb dataset of diverse text for language modeling, in: Proceedings of NeurIPS Datasets and
Benchmarks.

Grattafiori, A., Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle, A., Letman, A., Mathur, A., Schelten, A., Vaughan, A., Yang, A.,
Fan, A., Goyal, A., Hartshorn, A., Yang, A., Mitra, A., Sravankumar, A., Korenev, A., Hinsvark, A., Rao, A., Zhang, A., Rodriguez, A.,
Gregerson, A., Spataru, A., Roziere, B., Biron, B., Tang, B., Chern, B., Caucheteux, C., Nayak, C., Bi, C., Marra, C., McConnell, C., Keller,
C., Touret, C., Wu, C., Wong, C., Ferrer, C.C., Nikolaidis, C., Allonsius, D., Song, D., Pintz, D., Livshits, D., Wyatt, D., Esiobu, D., Choudhary,
D., Mahajan, D., Garcia-Olano, D., Perino, D., Hupkes, D., Lakomkin, E., AlBadawy, E., et al., 2024. The 1lama 3 herd of models. URL:
https://arxiv.org/abs/2407.21783, arXiv:2407.21783.

Ho, X., Duong Nguyen, A.K., Sugawara, S., Aizawa, A., 2020. Constructing a multi-hop QA dataset for comprehensive evaluation of rea-
soning steps, in: Scott, D., Bel, N., Zong, C. (Eds.), Proceedings of the 28th International Conference on Computational Linguistics, Inter-
national Committee on Computational Linguistics, Barcelona, Spain (Online). pp. 6609—-6625. URL: https://aclanthology.org/2020.
coling-main.580/, doi:10.18653/v1/2020.coling-main.580.

Husain, K., et al., 2019. Codesearchnet challenge: Evaluating the state of semantic code search. arXiv preprint arXiv:1909.09436 .

Lacoste, A., Luccioni, S., Schmidt, T., Dandres, T., 2019. Quantifying the carbon emissions of machine learning. arXiv preprint
arXiv:1910.09700 .

Langlais, P.C., Chizhov, P., Nee, M., Hinostroza, C.R., Delsart, M., Girard, 1., Hicheur, O., Stasenko, A., Yamshchikov, L.P., 2025. Even
small reasoners should quote their sources: Introducing the pleias-rag model family. URL: https://arxiv.org/abs/2504.18225,
arXiv:2504.18225.

Lo, K., Wang, L.L., et al., 2020. S20RC: The semantic scholar open research corpus, in: Proceedings of ACL.

Longpre, S., Mahari, R., Muennighoff, N., Kabbara, J., Khazatsky, A., et al., 2023. The data provenance initiative: A large scale audit of dataset
licensing & attribution in Al. arXiv preprint arXiv:2310.16787 .

Luccioni, S., Viviano, J., 2021. What’s in the box? an analysis of undesirable content in the common crawl corpus. arXiv preprint
arXiv:2105.02732 .

Martins, P.H., Fernandes, P., Alves, J., et al., 2024. EuroLLM: Multilingual language models for europe. arXiv preprint arXiv:2409.16235 .
Mehta, S., Sekhavat, M., Cao, Q., Horton, M., Jin, Y., Sun, F., Mirzadeh, 1., Najibikohnehshahri, M., Belenko, D., Zatloukal, P., Rastegari,
M., 2024. Openelm: An efficient language model family with open training and inference framework, in: ICML Workshop. URL: https:
//arxiv.org/abs/2404.14619.

Qwen, :, Yang, A., Yang, B., Zhang, B., Hui, B., Zheng, B., Yu, B., Li, C., Liu, D., Huang, F., Wei, H., Lin, H., Yang, J., Tu, J., Zhang, J., Yang,
J., Yang, J., Zhou, J., Lin, J., Dang, K., Lu, K., Bao, K., Yang, K., Yu, L., Li, M., Xue, M., Zhang, P., Zhu, Q., Men, R., Lin, R., Li, T., Tang,
T., Xia, T., Ren, X., Ren, X., Fan, Y., Su, Y., Zhang, Y., Wan, Y., Liu, Y., Cui, Z., Zhang, Z., Qiu, Z., 2025. Qwen2.5 technical report. URL:
https://arxiv.org/abs/2412.15115, arXiv:2412.15115.

Shazeer, N., 2020. Glu variants improve transformer. arXiv preprint arXiv:2002.05202 .

Sikasote, C., Machovac, D., Kliegr, T., 2021. Quality at a glance: An audit of web-crawled multilingual datasets. arXiv preprint
arXiv:2103.12028 .

Su, J., Shen, T., Zhu, Z., et al., 2021. Roformer: Enhanced transformer with rotary position embedding, in: Advances in Neural Information
Processing Systems (NeurIPS).

156 Pierre-Carl Langlais et al. / Procedia Computer Science 267 (2025) 146—156

[23] Team, G., Kamath, A., Ferret, J., Pathak, S., Vieillard, N., Merhej, R., Perrin, S., Matejovicova, T., Ramé, A., Riviere, M., Rouillard, L.,

[24]
[25]

[26]

[27]

Mesnard, T., Cideron, G., bastien Grill, J., Ramos, S., Yvinec, E., Casbon, M., Pot, E., Penchev, L., Liu, G., Visin, F,, Kenealy, K., Beyer, L.,
Zhai, X., Tsitsulin, A., Busa-Fekete, R., Feng, A., Sachdeva, N., Coleman, B., Gao, Y., Mustafa, B., Barr, 1., Parisotto, E., Tian, D., Eyal, M.,
Cherry, C., Peter, J.T., Sinopalnikov, D., Bhupatiraju, S., Agarwal, R., Kazemi, M., Malkin, D., Kumar, R., Vilar, D., Brusilovsky, 1., Luo,
J., Steiner, A., Friesen, A., Sharma, A., Sharma, A., Gilady, A.M., Goedeckemeyer, A., Saade, A., Feng, A., Kolesnikov, A., Bendebury, A.,
Abdagic, A., Vadi, A., Gyorgy, A., Pinto, A.S., Das, A., Bapna, A, et al., 2025. Gemma 3 technical report. URL: https://arxiv.org/
abs/2503.19786, arXiv:2503.19786.

Touvron, H., et al., 2023. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 .

Trivedi, H., Balasubramanian, N., Khot, T., Sabharwal, A., 2022. MuSiQue: Multihop questions via single-hop question composition.
Transactions of the Association for Computational Linguistics 10, 539-554. URL: https://aclanthology.org/2022.tacl-1.31/,
doi:10.1162/tacl_a_00475.

Weber, M., Fu, D.Y., Anthony, Q., Oren, Y., Adams, S., Alexandrov, A., Lyu, X., Nguyen, H., Yao, X., Adams, V., Athiwaratkun, B., Chalamala,
R., Chen, K., Ryabinin, M., Dao, T., Liang, P.,, Ré, C., Rish, 1., Zhang, C., 2024. Redpajama: an open dataset for training large language models.
NeurIPS Datasets and Benchmarks Track .

Yang, Z., Qi, P, Zhang, S., Bengio, Y., Cohen, W.W., Salakhutdinov, R., Manning, C.D., 2018. Hotpotqa: A dataset for diverse, explainable
multi-hop question answering. URL: https://arxiv.org/abs/1809.09600, arXiv:1809.09600.

Available online at www.sciencedirect.com

ScienceDirect Procedia

Computer Science

CrossMark

Procedia Computer Science 267 (2025) 157-164

www.elsevier.com/locate/procedia

Proceedings of the Third EuroHPC user day

Automatic detection of agricultural field boundaries and seeded acres using super-
resolution Satellite Earth Observation data and deep learning

Nils Helset?, Konstantin Varik® and Alex Melnitchouck®”

a DigiFarm AS, Holsetgata 22, 2317 Hamar, Norway
b DigiFarm AS, Holsetgata 22, 2317 Hamar, Norway

¢ DigiFarm AS, Holsetgata 22, 2317 Hamar, Norway

Abstract:

DigiFarm is a Norwegian agricultural technology startup, established in 2019, focused on developing deep neural network (AT)
models based on super-resolved Satellite Earth Observation (SatEO) data. The objective is to automatically detect agricultural
field boundaries and planted areas from in-season vegetation. This paper presents the conceptual and technical overview of our
work conducted under a GPU allocation grant on the LUMI supercomputer (Proposal ID: EHPC-AI-2024A01-080), awarded
through the EuroHPC “Al and Data-Intensive Applications Access call”. We detail the development of a novel deep neural
network that intersects deep learning and computer vision to delineate agricultural fields. The model, which includes 12 land
cover classification outputs, achieves an Intersection over Union (IoU) of over 0.94. This automated, low-cost, and scalable
approach provides a significant improvement over existing manual digitization methods, which are time-consuming, resource-
intensive, and costly. Our solution reduces the time-to-result from months to hours and increases the accuracy of detected field
boundaries by 12-15% compared to existing Cadastral data. This represents a breakthrough for the agricultural industry, which
has historically struggled with fragmentation and a lack of digital adoption.

Nils Helset*, Konstantin Varik and Alex Melnitchouck, DigiFarm AS, Norway
(*Corresponding author: nils@digifarm.io)

© 2025 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY 4.0 license (https://creativecommons.org/licenses/by/4.0)
Peer-review under responsibility of the scientific committee of the Proceedings of the Third EuroHPC user day

Keywords: Super-resolution, Sentinel-2, Deep Learning, Field Boundary Detection, Al in Agriculture, LUMI, EuroHPC, IoU Accuracy

1877-0509 © 2025 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY 4.0 license (https://creativecommons.org/licenses/by/4.0)
Peer-review under responsibility of the scientific committee of the Proceedings of the Third EuroHPC user day
10.1016/.procs.2025.08.242

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2025.08.242&domain=pdf

158 Nils Helset et al. / Procedia Computer Science 267 (2025) 157—164

1. Introduction:

Agriculture and food production are vital parts of the global economy. By some estimates, the world population is
expected to grow from 7.2 billion today to 10 billion by 2050, which may require a 70% growth in global food
supplies from current levels [1]. In parallel, crop production is predicted to drop by 2% for every degree of global
warming, presenting a widely recognized need for farmers to increase food production efficiency and protect
farmlands [2].

Currently, 40% of the world's agricultural fields are over-fertilized. Simultaneously, farmers are losing 15-20% in
yield potential through inadequate input application [3]. This sub-optimal approach often involves applying a
uniform amount of seed, fertilizer, and crop protection across an entire field. As in-field yield variability can be as
high as 300%, farmers are not effectively leveraging management zones to optimize inputs, a practice commonly
referred to as Variable Rate Technology (VRT). These input costs represent over 50% of a farm's total costs,
highlighting the potential for technological innovation to increase efficiency and sustainability for both large
industrial farms and smallholder farms (which represent 83% of the global agricultural fields).

A wide range of precision farming solutions have been proposed to address these challenges. These methods rely on
digital imaging data from Earth Observation (EO) satellites to analyze crop conditions and support optimal
operational decisions. The success of these methods depends on precise, georeferenced boundaries of individual
fields to enable accurate analysis of satellite imagery and other data, such as soil information and yield monitor data.

In addition to analysis, farm management and operations require precise information about the farmed area. This
information is crucial for calculating crop inputs, taxation, crop insurance, farming subsidies, and logistics. For
instance, creating a VRT map for seed or fertilizer requires an accurate field boundary to be programmed into the
machinery. Similarly, farming subsidies are calculated based on seeded acres, meaning the specific area where crops
are growing, which is distinct from the legal field boundary. This distinction is also critical for crop insurance
adjusters assessing potential damage.

However, the precise and up-to-date field boundaries needed for these applications are often unavailable. Existing
large-scale field boundary data is frequently outdated and inaccurate. This data is typically managed by national
agencies, such as the Norwegian Institute of Bioeconomy Research (NIBIO), whose data dates to the 1990s, or the
EU's Land Parcel Identification System (LPIS). In the United States, the Common Land Units (CLUs) database was
created in 2008 and has not been significantly updated since. For example, there are approximately 34.6 million
field boundaries in the EU regions and 32 million in the US; manually redrawing these boundaries is prohibitively
expensive and time-consuming. This reliance on outdated data creates a significant bottleneck for the entire
agricultural value chain.

2. The Challenge of Scalable and Accurate Field Delineation

The core of our project, funded by EuroHPC, was to overcome the limitations of existing field boundary data and
manual delineation processes. DigiFarm has spent the last four years developing a baseline model that achieves 8-
10% higher accuracy than existing solutions. The project on LUMI was designed to advance this work by addressing
two primary challenges: the high cost of commercial GPU resources and the long training times required for
complex models.

e Unsustainable R&D Costs: Commercial cloud GPUs have been too expensive for heavy R&D workloads.
The average price for an NVIDIA A100 single card unit across major cloud providers was $2.72 per hour
(Table 1). As our models grow in complexity, requiring more data and hyperparameter tuning, these costs
become prohibitive for an SME. Access to subsidized, cutting-edge infrastructure like LUMI is critical for

Nils Helset et al. / Procedia Computer Science 267 (2025) 157—164 159

developing a competitive advantage.

e Long Training and Commercialization Cycles: Training advanced deep neural network models is a time-
intensive process. Using conventional cloud infrastructure, this could take over six months, creating a
challenging investment justification and delaying commercialization. Furthermore, the availability of high-
performance GPUs in commercial clouds is a constant challenge. The ability to leverage the LUMI
infrastructure significantly reduces model training time from weeks to days, accelerating our R&D cycle.

Table 1. Cost comparison across major cloud providers and GPU prices for DigiFarm in 2024

Cloud Provider GPU Cost Per Hour
Lambda Labs NVIDIA A100 $1.29
Microsoft Azure NVIDIA V100 $3.06
Google Cloud NVIDIA V100 $2.48
Google Cloud NVIDIA A100 $2.61
Amazon Web Services NVIDIA A100 $3.50
Microsoft Azure NVIDIA V100 $3.06
Oracle Cloud Infrastructure NVIDIA A100 $3.05
Average $2.72

The project's goal was to build a more complex and "universal" geographical model capable of reaching an IoU of
0.94-0.96+. Since 2019, our team of 28 full-time GIS engineers has generated over 5 million hectares of manual
training data from 31 countries. This continuous effort is essential for improving model accuracy and expanding its
applicability to new use-cases, such as autonomous robotics, drone spraying, and in-field object detection.

3. Methodology

Our approach is based on a computer-based system for delineating agricultural fields from satellite images, as
detailed in our filed patent [6]. The system architecture can be broken down into three primary subsystems.

First, a pre-processing subsystem ingests multitemporal, multispectral satellite image sequences (primarily Sentinel-
2). This subsystem performs essential radiometric calibration, atmospheric correction (converting pixel values to
Bottom-of-Atmosphere reflectance), data assimilation, and geo-referencing to create a consistent, analysis-ready
data stream. When data from multiple satellite systems is used, a fusion artificial neural network consolidates the
various inputs into a single, harmonized sequence.

Second, a super-resolution subsystem increases the spatial resolution of the pre-processed data. This is not simple up
sampling; it employs a resolution-enhancing Convolutional Neural Network (CNN) to generate high-resolution
information from the multitemporal and multispectral data. This process increases the effective resolution of
Sentinel-2 imagery from 10 meters to 1 meter per pixel, which is critical for accurately detecting boundaries of
small fields.

Third, a delineation subsystem uses a delineating artificial neural network (ANN) to classify pixels in the high-
resolution images. Our model is based on a deep convolutional network with an encoder-decoder (U-Net)
architecture [10]. A key innovation in our method is the generation of two distinct output masks: a "field extent"
mask that classifies pixels as being part of a field or background, and a "field boundary" mask that explicitly
identifies the edges between fields. By combining these masks (e.g., subtracting the boundary mask from the extent
mask), we produce a highly accurate and clean final delineation.

160 Nils Helset et al. / Procedia Computer Science 267 (2025) 157—164

The model is trained and validated using our extensive dataset of manually annotated images. We use Intersection
over Union (IoU) as the primary metric to measure accuracy by comparing the model's predicted polygons with the
ground-truth labels.

4. Results and Illustrations

The model training conducted on LUMI GPUs during the project period validated the significant increase in speed
and performance compared to our previous training on conventional HPC systems with NVIDIA A100s. The key
metrics below are visualized in Figure 1.

Figure 1. Comparison of model training performance on LUMI (green) vs. a conventional cloud HPC setup using NVIDIA A100s (red). (a) The
val_iou_seg shows that the LUMI model achieves higher segmentation accuracy more quickly. (b) The val_iou bound demonstrates superior
boundary detection accuracy on LUMI. (¢) The val_iou_field, our primary metric, stabilizes at ~0.94 on LUMI, a significant improvement over
the A100 baseline.

val_iou_seg

= Saga_4xA100 = Lumi_8x4xMI25

Time (hours)

140

1. Validation IoU for Segmentation (val_iou_seg): This metric measures how well the model performs at
segmenting the image into agricultural fields versus non-fields. A higher value indicates a better overlap between
the predicted and ground-truth regions. The LUMI-trained model (green line) reaches a higher IoU much faster (~20
hours) and shows superior performance, while the A100-based model (red line) improves more slowly and plateaus
at a lower accuracy.

2. Validation IoU for Boundaries (val_iou_bound): This metric evaluates how accurately the model predicts the
edges or borders of the segmented fields. The model trained on LUMI shows rapid performance improvement,
achieving an IoU of ~0.64 early in training, whereas the A100-based model struggles around ~0.54.

3. Validation IoU for Field-level Predictions (val_iou_field): This is the most critical metric, measuring how well
entire agricultural fields are predicted against ground-truth labels. The LUMI-trained model shows a significantly

Nils Helset et al. / Procedia Computer Science 267 (2025) 157—164

161

faster learning rate, stabilizing at an impressive IoU of ~0.94, compared to the A100-based model which stabilizes at

~0.85 at a much slower pace.

Table 2. DigiFarm’s current processes and run-times on deep neural network models on GPU infrastructure and HPC.

Process

Geographical Area Size

Type of GPU,
Size & Quantity

Average time
for process
(in hours)

Deep-Resolution of Sentinel-2
from 10m to Im per pixel
resolution across all 12 spectral
bands

Field boundary delineation
model (2, 4 and 12 classes)

Field boundary delineation
model and inference of results
(2, 4 and 12 classes)

1,000,000 hectares of land area also
referred to as one Sentinel-2 tile
(MGRS grid) which is 10,000 sq.km

1,000,000 hectares of land area also
referred to as one Sentinel-2 tile
(MGRS grid) which is 10,000 sq.km
1,000,000 hectares of land area also
referred to as one Sentinel-2 tile
(MGRS grid) which is 10,000 sq.km

NVIDIA A100,
24GB, process run
on 1 GPU

NVIDIA A100,
24GB, process run
on 1 GPU
NVIDIA A100,
24GB, process run
on 1 GPU

~7

~8-11

The metrics above are further supported by the performance results of the final model trained on the LUMI

infrastructure, detailed in Table 3.

Table 3. DigiFarm’s current model training output and results, i.e. in terms of accuracy and performance measured in loU (Intersection over
Union), the most important being “val_iou_field” showing the accuracy of the automatic field boundary delineation achieving 0.94 IoU.

Metric Best Performing Peak Value Speed to Converge
Model

val_iou_seg LUMI ~0.80 ~20 hrs

val_iou bound LUMI ~0.64 ~10 hours

val_iou field LUMI

~0.94 -

162 Nils Helset et al. / Procedia Computer Science 267 (2025) 157—164

Figure 2 illustrates the technical architecture and data flow of the system. It shows the end-to-end process from ingesting raw Sentinel-2 data to
delivering final, delineated field boundaries via an API.

AWS 53 Sentinel-2 | Copemicus Hub

Sentinel-2 data LIC

ESA Processing

Sentinel-2 L2A Data

52 Deeply Resolved at m/px

v

Select areas for
manual delineation

Perform manual
delineation

(Re] Train Field (
Delineation (FO) Model

Inference FD Mode|

Field Boundaries and Seeded Acres

Postares o8

|

Figure 3 provides a visual example of the segmentation and inference output. It displays the progression from the
original low-resolution image to the final, accurately delineated field mask based on a false-color vegetation index.

Figure 3. Example of the model's segmentation output. From left to right: (a) Original Sentinel-2 image (10m resolution); (b) Super-resolved
Sentinel-2 image (1m resolution); (¢) Ground truth label from manual annotation; (d) Model prediction output mask; (e) False color composite
(using Enhanced Vegetation Index) to visually confirm vegetation state.

File: patch_areal0010_0001.npz, Months: [5 3 SI, Long,lat: 79.88122477142173,15.878673751745701

ch_areal0010_0002.npz, Months: [5 3 5],

Finally, Figure 4 shows a practical application of the model in Alberta, Canada, where it automatically delineates
seeded and unseeded areas within a crop field, a crucial capability for subsidy verification and farm management.

Nils Helset et al. / Procedia Computer Science 267 (2025) 157—164 163

Figure 4. Example from Alberta, Canada, of the model automatically delineating seeded acres (within yellow boundaries) and unseeded acres
based on in-season vegetation data. This demonstrates the model's ability to detect "internal" boundaries within a field.

5. Conclusion and Future Work

This work demonstrates the transformative potential of combining satellite earth observation data, deep neural
networks, and large-scale GPU infrastructure for agricultural intelligence. Through the EuroHPC allocation and
training on the LUMI supercomputer, DigiFarm significantly improved the performance and scalability of its field
boundary delineation model — achieving an average IoU above 0.94 across 12 land cover classes and realizing a
4.2% performance gain over previous baselines.

The results highlight the benefits of optimized HPC environments for model convergence speed, inference
efficiency, and spatial generalization. With over 5 million hectares of manually annotated training data and country-
wide deployments across several EU regions, this research paves the way for large-scale, low-cost, and accurate
field-level analytics crucial to agricultural subsidies, crop monitoring, and sustainable land management.

Future work includes expanding the work and modeling in terms of: (a) geographical reach, i.e. 83% of the world’s
agricultural field boundaries are smaller than 2 hectares, which are located in smallholder farming regions, which is
significantly less digitised than the more advanced agricultural markets coupled with a lower ag-technology
adoption rate and lack of publicly available data, DigiFarm intends to use the results and output of this project to
further develop solutions for both the Africa and the APAC region. Additionally (b) further work includes
leveraging the conceptual technology to develop object detection models for non-agricultural settings, including
primary use-cases such as urban planning, maritime awareness and monitoring as well as defense and military.

Acknowledgements

DigiFarm gratefully acknowledges the funding and support received from Innovation Norway, Research Council of
Norway, and the Norwegian Space Agency. The authors also wish to thank the EuroHPC Joint Undertaking (JU) for
awarding this project access to the LUMI supercomputer, hosted by CSC in Finland, under the 'Al and Data-
Intensive Applications' call (Proposal ID: EHPC-AI-2024A01-080). We thank the LUMI support team,
Sigma2/Uninett, and our R&D collaborators. Dissemination activities included major presentations at
Innovasjonstalen (Innovation Norway), EuroHPC Summit, ICE Rome, and SUREDOS24 among others.

164

Nils Helset et al. / Procedia Computer Science 267 (2025) 157—164

Ethical Considerations and Reproducibility

This research was conducted in full compliance with ethical and data protection standards. DigiFarm does not
collect or process any personal or farm-owner-level data. All training datasets are derived from open-access
Sentinel-2 satellite imagery provided by the European Space Agency, and internal manual annotations conducted by
trained GIS engineers. To mitigate biases and ensure high-quality labels, a 3-stage annotation and review protocol
was applied across all training data. Final model evaluation was performed on unseen regions with diverse
geographical characteristics. All models were trained using containerized workflows with documented
dependencies, enabling full reproducibility on compatible HPC environments. While certain components of the
system remain proprietary due to commercial deployment, key elements including our pre-processing pipeline and
evaluation metrics are available for academic collaboration upon request. This project supports the principles of
FAIR data, responsible Al, and open scientific collaboration.

References

1] United Nations, Department of Economic and Social Affairs, Population Division (2019). World Population Prospects 2019: Highlights.
2] Intergovernmental Panel on Climate Change (IPCC). (2019). Climate Change and Land.

3] FAO. (2017). The future of food and agriculture — Trends and challenges.

4] Helset, N., Varik, K., Melnitchouck, A. (2024). Deep Super-Resolution of Sentinel-2 Imagery for Agricultural Applications. In Review.
5] European Space Agency, Copernicus Programme. Sentinel-2 User Guide.

6] Melnitchouck, A. et al. (2022). Method and system for delineating agricultural fields in satellite images. Patent Application
WO02023043317A1.

[7] RuB, G., et al. (2018). “Multi-temporal detection of field boundaries in satellite images.” Computers and Electronics in Agriculture, 151,
374-384.

[8] Qiu, Y., et al. (2019). "Deep learning for image-based large-scale crop classification.” Remote Sensing of Environment, 221, 430-443.
[9] Waldner, F., & Di Gregorio, A. (2021). “From pixels to parcels: A review of approaches to land cover mapping.” Remote Sensing of
Environment, 252, 112102.

[10] Zhou, Z., Siddiquee, M.M.R., Tajbakhsh, N., & Liang, J. (2018). “UNet++: A nested U-Net architecture for medical image
segmentation.” Deep Learning in Medical Image Analysis.

[11] Baier, G., et al. (2021). “Mapping field boundaries using Sentinel-2 data and deep learning.” International Journal of Applied Earth
Observation and Geoinformation, 100, 102338.

[12] Mulla, D.J. (2013). “Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps.”
Biosystems Engineering, 114(4), 358-371.

Available online at www.sciencedirect.com

ScienceDirect Procedia

Computer Science

CrossMark

Procedia Computer Science 267 (2025) 165-175

www.elsevier.com/locate/procedia
Proceedings of the Third EuroHPC user day

Dynamic Resources Management for Exascale in ADMIRE
Framework

Jesus Carretero®*, David E. Singh?, Javier Fernandez-Mufioz?, Rocco Sedona®, Simone
Pernice®, Barbara Cantalupo®, Marco Aldinucci®, Massimo Torquati®, Ahmad Tarraf®,

Emmanuel Jeannotd, Felix Wolf*

@Universidad Carlos Il de Madrid, Leganes, Spain
b Forschungszentrum Jiilich, Jiilich, Germany
“Technical University of Darmstadt, Darmstadt, Germany
4INRIA Bordeaux, France, DDN-Japan and RIKEN-CCS, Japan
¢ University of Torino, Italy

Abstract

Due to new workloads arising with workflows and Al applications, dynamic resource allocation can improve productivity across
all system and application levels by adapting the applications’ configurations to the system’s resources. However, HPC system
software is not suited nowadays to provide dynamic resource management (DRM) for computing or I/O resources in runtime.
This paper presents the ADMIRE framework and its mechanisms for dynamic resource management. ADMIRE’s efforts enable an
integrated stack in which storage, compute, and orchestration layers were co-designed and validated across a shared, heterogeneous
testbed.

© 2025 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY 4.0 license (https://creativecommons.org/licenses/by/4.0)
Peer-review under responsibility of the scientific committee of the Proceedings of the Third EuroHPC user day

Keywords: Dynamic resource management; Adaptivity; Intelligent control; Performance models; High-Performance Computing;

1. Introduction

With the increase of multimodal scientific simulations and new applications, such as machine learning models and
workflows, the growing need to process huge data sets and manage system resources effectively is a major driver
for building Exascale HPC systems today [14]. Even though dynamic resource allocation can improve productivity
across all system and application levels by adapting the applications’ configurations to the system’s resources, the
HPC system software is not suited nowadays to provide dynamic resource management (DRM) for computing or I/O
resources at runtime due to several reasons.

Concerning the I/O stack, the flat storage hierarchies found in classic HPC architectures and the lack of flexibility
to manage resources dynamically in HPC systems no longer satisfy the performance requirements of data-processing

* Corresponding author. Tel.: +34-916249458; Fax: +34-916249129
E-mail address: jesus.carretero@uc3m.es

1877-0509 © 2025 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY 4.0 license (https://creativecommons.org/licenses/by/4.0)
Peer-review under responsibility of the scientific committee of the Proceedings of the Third EuroHPC user day
10.1016/j.procs.2025.08.243

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2025.08.243&domain=pdf

166 Jesus Carretero et al. / Procedia Computer Science 267 (2025) 165-175

applications. Uncoordinated file access, combined with limited bandwidth, makes any centralized back-end parallel
file system a serious bottleneck. Emerging multi-tier storage hierarchies can potentially remove this barrier. However,
maximizing performance still requires careful control to avoid congestion and balance computational and storage
performance. Unfortunately, appropriate interfaces and policies for managing such an enhanced I/O stack are still
lacking.

Regarding computing resource allocations, current schedulers used in HPC systems, such as SLURM, rely mainly
on rigid, static allocation of computing resources, giving nodes exclusively to one application. In this scenario, users
deploy jobs, mainly following a batch mechanism, requesting resources based on their experience with the application
and the system. The scheduler evaluates all the jobs requested in a period and deploys the applications, allocating the
requested resources or blocking them until resources become available. Once a job is deployed, resources are linked
to it until termination, independently of the needs of the application or the system. The scheduler typically considers
the workload and available resources to perform these allocations. However, complex workflows and heterogeneous
workload profiles can change the behaviour of the applications during runtime, generating inefficiencies that cannot
be solved by the applications or the scheduler nowadays.

The main objective of the ADMIRE' [11] project is to establish controls by creating an system software stack
that dynamically adjusts computation and storage requirements through intelligent global coordination of resources,
malleability of computation and I/O, and new scheduling techniques for computing and storage resources along all
levels of the system software stack. To achieve this, we developed a software-defined framework based on scalable
monitoring and control principles, separated control and data paths, and the orchestration of key system components
and applications through embedded control points.

In this paper, we present the ADMIRE framework, a software-only solution that allows substantially increasing the
throughput of HPC systems and the performance of individual applications and, consequently, decreasing energy con-
sumption. Our framework provides DRM of the systems at runtime through malleability [12], ad-hoc file systems that
can exploit fast and power-efficient node-local storage tiers (RAM, NVMe, SSD) [1], and in-transit/in-situ processing
facilities. The main contributions of this paper are:

e Presenting an adaptive HPC system software framework for HPC systems that utilize multi-hierarchical storage
alongside dynamic resource management to boost local application and global system performance.

e Demonstrating how the intelligent control continuously analyses and adjusts how resources are used, improving
throughput, reducing inefficiencies, and enabling a flexible, adaptive, and efficient HPC ecosystem.

e Evaluating our framework on a real system in production based on several popular applications.

An integrated and operational prototype has been validated with several use cases from various domains, including
climate/weather, life sciences, physics, remote sensing, and deep learning, showing the feasibility of the solution
proposed. The results obtained show that ADMIRE tools are able to enhance several performance metrics related
to application makespan, reducing contention in back-end file systems, enhancing I/O performance, and optimizing
energy consumption, among several others.

The structure of the paper is as follows. We introduce the ADMIRE framework and its components in Section 2.
Section 3 presents an intelligent controller for the system resources. The modeling and predictive component of our
framework is explained in Section 4, while Section 5 discusses our system prediction approach. Section 6 presents the
co-design and results of applications. Finally, we provide a conclusion in Section 7

2. The ADMIRE Framework

Figure 1 shows the primary components of the framework and the use cases codesigned to assess the feasibility
of our approach. It also shows how information, data, and controls are exchanged between the components. As ob-
served in the figure, the heart of the framework is the intelligent controller, a distributed control system that integrates
monitoring data from systems and applications to apply performance models and predictive Al techniques to make

! https://admire-eurohpc.eu/

Jesus Carretero et al. / Procedia Computer Science 267 (2025) 165-175 167

decisions to reshape applications and ad-hoc storage system configuration at runtime. The Data Scheduler is respon-
sible for the deployment and configuration of the Ad-hoc Storage System, the specification of bandwidth metrics, and
the implementation of I/O and data scheduling policies. The Malleability Manager determines and suggests malleable
actions related to each running application and ad-hoc storage system. These actions may produce the reconfiguration
of processes/threads of a specific application or the deployment/removal of one or more instances of the Ad-hoc Stor-
age System to balance the computation and I/O requirements optimally. The storage subsystem is represented in the
upper part of the figure and consists of the Ad-hoc and Backend Storage Systems. The former is responsible for pro-
viding each application with an ad-hoc high-performance storage system tailored to the application’s characteristics.
The latter (Backend Storage) represents the parallel file system used by the HPC platform (e.g., Lustre or BeeGFS).

| Monitoring & Profiling
Weather forecasting
| £
LTI g
L34 e 34 4
Molecular dynamics *‘:.éii = ED
AR €, 5
HiE:
g2 3
Turbulence simulation £ ¢ =
2 3
Continental-scale land 7.5 .
cover mapping 4 lob [Intelligent
Fracis Scheduler | Controller]
ol 27V ."-{(| B
3 3 - v Analytics
Brain Super-resolution)
imaging
i 1/0 co- Malleability
Software Heritage Scheduler Manager
Management and |
Indexing e

Fig. 1. ADMIRE architectural framework illustrating the interaction between the components and the application co-design aspect.

The applications ported to the framework are shown in the left part of Figure 1. ADMIRE-enabled applications
can provide user-defined, application-specific information to the system to aid in the identification of I/O patterns and
reconfiguration-safe states in which malleability commands can be executed. Both applications and storage systems
are monitored by the Monitoring and Profiling (MP) component, which collects system-wide performance metrics
at various levels (job, compute node, MPI, syscall, etc.) and stores them in an internal database. This component
generates the performance models for each application, which are used to support the Malleability Manager and
the Intelligent Controller in finding the most appropriate scheduling policy. A monitoring manager leverages the
information stored in the database to generate performance models related to (1) each running application, (2) all
storage systems (both ad-hoc and backend), and (3) the compute nodes.

3. The Intelligent Controller

The Intelligent Controller (IC) is a multi-criteria distributed component that integrates cross-layer data to have a
holistic view of the system. The IC uses data to dynamically and intelligently steer the system components, improving
the I/O system behavior and facilitating anticipatory decisions for resource allocation.

As illustrated in Figure 1, the Intelligent Controller is the main component in our framework, forwarding and
processing data to the various other components. Overall, the IC behaves as a MAPE loop (Monitor-Analyze-Plan-
Execute) and is in charge of coordinating the different architectural components to optimize the performance of the
applications and, therefore, the system throughput. To this aim, the IC collects and joins cross-layer information
through different data sources:

168 Jesus Carretero et al. / Procedia Computer Science 267 (2025) 165-175

e A dynamic “control plane”, composed of the monitoring and profiling system, the application manager, the
Slurm manager, the malleability manager, and the I/O Scheduler.

e Information from the “data plane,” composed of the ad-hoc and backend storage systems.

o Information provided by the applications and the HPC platform through the monitoring and profiling module.

The IC interoperates with all the components through the control points and related API, which are defined for
each one specifically. From this perspective, the main roles of the IC are:

e Collecting information to define the current system status, including combined information from the control
and data plane, the existing running applications, and historical job records.

e Providing different kinds of performance models according to the specific data sources and using them to predict
potential performance bottlenecks in the system.

e Making intelligent analyses on status information and performance models to design a malleable schedule
solution, considering suggestions provided by the Malleability Manager and the I/O scheduler.

e Providing programming support allowing applications to define basic malleability operations and to provide
hints about dynamic resource management.

The primary role of the Intelligent Controller (IC) is to manage application execution automatically on a dynamic
platform, where computing and I/O resources are provided according to the most appropriate provisioning policies.
The IC decision-making process allows for application execution and reconfiguration according to parameters set by
applying prediction models. This process is supported by monitoring and profiling features that can provide different
metrics of the running applications, system state, and behavior. Data from the system and applications are fed into the
Analytics module of the IC to predict the behaviour of the application and to make malleability decisions.

3.1. The Analytics Component

This paper focuses on the analytics component of the IC, which is distributed across different architecture modules
based on the data sources used to feed the performance modelling tools and depending on the prediction objective.
Several approaches have been investigated and implemented to model and predict the overall system behaviour, and
strong interaction has been developed among the IC and ADMIRE components, mainly the monitoring and profiling
modules. The fundamental components of ADMIRE Analytics are:

e Data sources.
e System behaviour prediction models.
e Performance (prediction) models.

The Analytics component of the IC can holistically integrate and analyse cross-layer system data to dynamically
and intelligently steer the system to tune I/O performance at the system scale [5]. Three main types of performance
data sources are provided as input to the Intelligent Controller (IC) [7]:

e Per-Node Time-Series: Each node in the ADMIRE-enabled supercomputer features a Prometheus time-series
database (TSDB), which is used to persist the local performance counters. The node-level nature of the database
avoids facing a data deluge when handling the combinatorial nature of jobs.

o Tree-Based Overlay Network (TBON): The LIMITLESS project provides support for spatially reducing per-
formance data over time. In practice, it allows data samples to be summed up at high frequency, providing a
real-time global view of the system.

e Per-Job Profiles: As understanding individual jobs is essential, the monitoring infrastructure also captures
for each job the final values of all metrics (which are summative), allowing post-mortem analysis to generate
performance models.

System behaviour and performance prediction models provided in ADMIRE are described in sections 4 and 5.

Jesus Carretero et al. / Procedia Computer Science 267 (2025) 165-175 169

3.2. The Malleability Manager

One of the key aspects examined in the ADMIRE project is job malleability [19], which refers to extending or
shrinking the resources of a job. In this context, the project distinguishes between compute and I/O malleability.

To make reasonable decisions, a dedicated component inside the Intelligent Controller, namely the Malleability
Manager, must consider the system’s current state, the jobs in the queue, user hints, and the scaling performance of
an application. Consequently, this manager needs performance models that describe how the application’s behaviour
changes at different scales alongside continuous monitoring information. Components, such as the I/O scheduler, need
more dynamic characterizations that describe the temporal I/O behaviour in terms of phases, for instance, rather than
for entire executions. Consequently, we have developed and extended several tools to create a continuous modelling
and monitoring framework that allows various components to acquire the needed information.

In particular, the ADMIRE project created a feedback loop between control (through the Intelligent Controller)
and the developed monitoring framework to optimize system and application performance [2].

3.3. The I/O Scheduler

To achieve better performance in HPC systems within the ADMIRE framework, ad hoc storage systems are in-
tegrated and controlled by the Scord I/O scheduler. Scord provides a system-wide I/O scheduling to the parallel file
system by implementing the IO-Sets method [8, 4] on top of the parallel file system (BeeGFS in the examples).

I/O scheduling strategies try to decide algorithmically which application(s) are prioritized (e.g., first-come-first-
served or semi-round-robin) when accessing the shared backend storage system. The I0-sets method combines exclu-
sive or fair-share accesses to the parallel file system by grouping applications according to their I/O frequency. The
application priority, as defined by I0-Sets, is based on the periodicity of the I/O phases of an application. Scord uses
FTIO [17] (Section 4) to extract the period of the I/O phases of the applications. Requests from clients generated by
the file system client (FSC) reach the storage servers and are queued there for later processing by worker threads. I/O
scheduling then becomes a matter of deciding in which order the requests are processed.

Our approach provides two advantages. Firstly, at the level of the parallel file system, the scheduling approach
is transparent to all applications, and no intervention at either the application code or I/O library level is needed.
Secondly, the parallel file system is already designed to handle a large number of requests and clients concurrently.
Therefore, we can leverage its well-designed architecture to develop new QoS mechanisms, thereby avoiding adding
a new point of overhead and failure in the systems (as would be the case with an external controller).

3.4. IC Integration

Concerning the platform integration, the GreatNector and Anomaly Detection tools are included in the IC decision
process. We provided a simple driving scenario to demonstrate how moldability can be applied. However, the next step
is defining a complete scenario for demonstrating how the available tools, starting with but not limited to GreatNector,
can support the IC in I/O tuning and malleability management.

4. Performance Prediction Models and Temporal Characterizations

Performance model projections are essential for understanding I/O in modern computing systems. Running parallel
programs on a given system requires satisfying the program’s requirements by the back-end storage in its current state.
However, the current state of the storage system can vary over time depending on the concurrent requirements of other
jobs running on the machine. Therefore, building models that can predict and project I/O performance application-
wise is essential. The ADMIRE project aimed to improve the understanding of these requirements so that applications
can be correctly scheduled while considering these requirements. Consequently, the monitoring infrastructure allows
for the application-wise projection of I/O performance, including predicting application behaviour using regression
analysis alongside more dynamic predictions like characterizing the temporal I/O behaviour in the frequency domain.
These projections provide valuable insights into the behaviour of the I/O subsystem, which can help improve the
performance of parallel programs running on the system.

170 Jesus Carretero et al. / Procedia Computer Science 267 (2025) 165-175

Performance modelling has a long research history [16]. A performance model is a mathematical formula express-
ing a performance metric of interest, such as execution time or energy consumption, as a function of one or more
execution parameters (e.g., the size of the input problem or the number of processors). The IC connects three perfor-
mance modelling tools: Extra-P, FlexMPI computational prediction model, and time-series-based performance model
(TSBPM), along with a temporal characterization tool FTIO.

Extra-P [9] is an automatic performance-modelling tool that supports the user in identifying these bugs by gen-
erating empirical performance models that predict the scaling behaviour of the different parts of an application. For
each call path of an application, Extra-P generates a performance model that predicts its scaling behaviour at dif-
ferent resource configurations (usually the number of processors and, optionally, other parameters like the problem
size). The tool has a long research history, with recent updates adding noise-resilient empirical performance modelling
capabilities based on Deep Neural Networks [16] and a strategy to reduce measurement efforts [15].

To balance the resource consumption of an application, we need to know the scaling behaviour of the computing,
communications, and especially I/O functions. In particular, it is not enough to only examine the scaling of the ex-
ecution time. Rather, other parameters, like the total bytes transferred, should also be modelled to paint the whole
picture. With such information, for instance, the application execution can be optimized, especially in the presence
of novel storage components like burst buffers exploited in the ADMIRE project. For example, knowing how many
bytes the applications write at different scales could influence the kind of burst buffer (shared or per node) used and
aid the decision on how many times the burst buffers need to be flushed. At the same time, the total times (e.g., total
compute time and total I/O time) are also needed to examine how resource-demanding an application is at different
scales. Together, these models could be very valuable for I/O contention avoidance strategies, job scheduling, and
increased system performance.

FlexMPI computational prediction model (CPM) implements a mathematical model that allows the malleability
policies to estimate the application performance. The execution time of a parallel application (7y;) depends on the
computation time and the communication time: Ts; = Tcomputation + T communication-

In this work, we assume that the MPI application employs synchronous MPI communication operations and that
the synchronization overhead counts as part of the application’s communication time.

The execution time of a parallel application during a sampling interval depends on the processor performance and
the system’s network performance. The values that model both types of components are provided as input to the
CPM. The monitoring component feeds the runtime performance metrics (collected via PAPI) to the CPM, which
allows it to estimate the computation cost of the application. To effectively estimate the communication cost of the
application, the CPM uses profiling data (collected by monitoring via PMPI) and the system network performance.
The network performance depends both on the network topology and on the network technology, which is specific
to the system environment. However, a reconfiguration action involves changing the number of processes and the
workload distribution of the applications. These operations have related the overheads for the process creation and
termination Operations (Toverhead,process,recon fig), as well as for the data redistribution Operations (Tuverheadllam,redisl)~
Therefore, the execution time of a malleable application that follows a reconfiguring action (7;) is computed as:
Tsir = 1 computation + Tcommunication + Toverhead,proceerecon fig + Tnver/wad,dam,redist

The overhead of data redistribution also depends on the system’s network performance and the size of the data
transferred. In FlexMPI both metrics are calculated at runtime. The overhead of process creation and termination
depends on the number of processes spawned or removed, the operating system, and the size of the program binary.
Therefore, these overheads are specific to the underlying hardware, the system environment, and the application
characteristics. The following sections describe the way that each one of the costs is modelled.

In case the malleability policy decides to spawn or remove processes, the CPM takes into account the overhead of
process creation and termination operations to predict the execution time of the next sampling interval. The time spent
by FlexMPI on creating a dynamic process is different to the time spent on removing it. These overheads depend on
various factors such as the operating system, the MPI implementation, and the size of the program binary. The CPM
uses an offline benchmark that tests the costs of process reconfiguring actions in a particular environment.

A process spawning action in a Linux environment implies the OS’s process manager creates the process through
a fork-exec call, then allocates the address space to the process, and enables communication with other MPI pro-
cesses through dedicated connections. The associated overheads depend on the particular execution environment of
the FlexMPI application. A process removing action implies at the system level deallocating the process resources,

Jesus Carretero et al. / Procedia Computer Science 267 (2025) 165-175 171

then all active connections with other MPI processes are closed, and finally, the process is safely finalized. In practice,
the overhead of spawning a dynamic process is significantly higher than the overhead of removing a single process.

Time-series based performance model (TSBPM). In ADMIRE, we developed a monitoring tool, named
LIMITLESS, which gathers performance metrics at the node level, enabling predictions specifically at the node level.
However, through the integration of LIMITLESS and FlexMPI, this joint effort collects metrics for both nodes and
applications, thereby enabling predictions for both aspects. Other monitoring tools can also be integrated to provide
more data about the system.

Pattern

Historical
2 data
Pattern
matching
— —

(1) Input
—p

Searching

SsolIas aw]

algorithms

(4)
Return

(3)
prediction

Get next row
S

Prediction

Fig. 2. Performance prediction based on time-series analysis and searching algorithms.

LIMITLESS adopts searching algorithms rather than regression or neural network models for predicting system
and application performance. LIMITLESS leverages the collected metrics to manage a time-series index depending on
the data source: when the time series comes from an idle node, the metrics are stored as general system behaviour.
If a specific application (denoted as A) is running on the node, the corresponding performance metrics are stored as
a performance model specific to A, representing an ensemble of n time series associated with its execution. When an
application (X) starts its execution, the system identifies the relevant ensemble and looks for the pattern, using the
partial time series generated from the start of X’s execution. Once the system has found the pattern, the returned pre-
diction is the next value of the time series (Figure 2 represents this set of operations). This solution makes sense when
the application metrics between executions (with the same arguments) remain constant. Otherwise, this methodology
couldn’t predict the system’s or application’s performance.

FTIO (Frequency techniques for I/O) is a tool to characterize the temporal behaviour of an application. Since the
behaviour of an application can vary during execution, it can be beneficial to characterize the current behaviour of an
application rather than to have post-execution performance models. In particular, knowing when the different phases of
an application occur can be very beneficial, for example, for contention avoidance algorithms like I/O scheduling [8]
and burst buffer management [3]. This is where FTIO [17] comes in, which allows us to characterize the temporal I/O
behaviour of an application in terms of phases. FTIO, which stands for frequency techniques for I/O, characterizes
the I/O phases of an application using a single metric, namely the frequency. Additionally, it is a confidence metric
alongside the identified frequency to gauge the confidence in the contained results. Furthermore, the tool can provide
further metrics (e.g., bytes per phase) that build on the identified dominant frequency.

FTIO has two modes for providing results: offline (detection) and online (prediction). In the offline mode, FTIO
reads post-simulation profiles or traces to detect the period of the I/O phases. Various existing tools, including
Recorder or Darshan, and newly developed tools like TMIO and the Metric Proxy are supported. In particular, the
online mode of TMIO [18] was developed for this purpose. Furthermore, the Metric Proxy has been recently extended
to yield traces with a high sampling rate for FTIO. FTIO allowed the I/O scheduler Set10 to boost system utilization by
26% and reduce I/O slowdown by 56% [17]. More details are provided in [19, 8]. A recent addition to FTIO allowed
executing it in parallel on thousands of gathered traces to quantify periodic I/O in HPC [21].

5. System Behaviour Prediction Models

The strategy of this component consists of training a clustering model that can handle jobs with heterogeneous I/O
patterns, detect congestion, perform resource provisioning, and anomaly detection that will help the IC to identify

172 Jesus Carretero et al. / Procedia Computer Science 267 (2025) 165-175

and predict potential risks and failures of applications. In ADMIRE, we have developed two models to predict system
behaviour:

¢ Anomaly detection provides clustering of power time series on different nodes with the aim of predicting anoma-
lies in the system behaviour.

o GreatNector: Based on a Markovian Model that uses application counter time series produced by the Metric
Proxy [6], it provides Application Clustering that allows performing what-if analysis on the system status. Con-
sequently, knowing which applications will be running on the system allows predicting the system behaviour in
terms of performance degradation and queue congestion.

Anomaly Detection is a process of detecting rare events occurring in the system, which can help to expose hard-
ware or software-related problems in near real time. The nature of the problems can vary from scheduler errors,
hardware malfunctions, erroneous configurations, and more due to the enormous complexity of HPC systems. We
have used autoencoders to implement anomaly detection. To show the feasibility of our solution, in Figure 3, we show
the reconstruction error for the month of February, calculated from 150 nodes and the system trained with 4 time series
sample every minute (2 CPU temperatures, power measurement, and the number of allocated CPUs). Processing time
uses a sliding window of 20 minutes, moving every 10 minutes per step. The figure shows that our system was able
to predict a possible anomaly 10 hours before the first reports of HPC failure were given by the monitoring system
(2023-02-06 22:46:00).

test_reconstruction_error bid
2500
2000
1500
1000

500

0 2,000 4,000 5746)0 8,000 10k 12k 14k

Runt Value Step Relative
lightning_logs/ae/2023.03_31-15.46.03 1408 5759 3.271min

Fig. 3. Example of anomaly prediction using autoencoders.

GreatNector is a workflow developed to model applications’ behaviour in HPC systems, characterized by three
main steps, starting from the elaboration of the traces of the application, their clusterization into different groups
which will represent the application templates characterizing all the applications with similar behaviour, and the
system calibration and simulation to fit the average traces of the application templates. The steps are defined below:

e Data processing. Application traces are processed by a Python script by aggregating the time spent in a state
and the number of calls of that state in a specific time interval (e.g., IO, MPI, etc).

o Clustering. There are two types of clusterizations: inter- and intra-clustering. The former fits and clusters the
temporal data to highlight differences and similarities among the traces (inter-clustering). The obtained clusters’
average trace will be exploited to define template-application as representative of all the traces that belong to
the corresponding cluster. Given that the template-applications might be characterized by repetitive patterns,
the intra-clustering approach simplifies the template-application into similar parts that will be used to calibrate
the model.

e Modelling. In this step, GreatNector [13] uses the Stochastic Simulation Algorithm to simulate a Petri Net
model based on a stochastic Markovian process. Unknown parameters, defined as the homogeneous groups
characterizing a template-application, are calibrated and then used to run various what-if scenarios using Great-
Nector’s simulation engine [20].

Jesus Carretero et al. / Procedia Computer Science 267 (2025) 165-175 173

10 % 10 calls) MPI % MPI calls

4 6
— Mean 3000 — Mean — Mean — Mean
e — Reference — Reference — Reference 4000 — Reference

2000~ 4 3000

1000~ 2

' " i llMM.‘ Ml!'ﬁ‘.l ‘.‘L‘ ‘.“.k‘.m l‘hdu%, T heemnenenenen e bad,
00 o BUTRRENN (i vm*{.) TR

300 0 100

300 0 100 00 300 0

100 200 200 100 200
Time (sec.) Time (sec.) Time (sec.)

Fig. 4. Fitting results in the simulation of QuantumEspresso application with 8 processes using GreatNector.

As an example, QuantumEspresso was modeled, and the fitting results are shown in Fig.4. The dashed black line
is the mean of the average trace considering 500 simulations and the red solid line the trace of calls. As may be seen,
the average simulations capture the average pattern of the application.

6. Results

In ADMIRE, use cases played a central role not merely as targets for technology demonstration but as active drivers
of co-design. The diversity of the use cases—ranging from real-time environmental forecasting to large-scale code
archive analytics—allowed ADMIRE to validate its solutions across a broad spectrum of workloads, reinforcing both
horizontal and vertical integration across the HPC ecosystem. The six use cases are: An environmental application
(WaComM++) that focuses on modelling water quality and ecosystem dynamics; Quantum ESPRESSO, a widely
used suite that provides a computationally intensive and GPU-accelerated workload; NEK5000, a high-fidelity spectral
element code for fluid dynamics, often used in nuclear reactor and turbulence simulations; Remote Sensing, which
deals with large-scale geospatial data analysis and deep learning workloads for remote sensing imagery; Life Sciences,
representing biomedical workloads, employed large-scale omics data and machine learning pipelines; and Software
Heritage Analytics application, an analytics use case mining the Software Heritage archive—a large collection of
public source code. Those applications are programmed in C++, FORTRAN, and Python, so the ADMIRE framework
provided interfaces for those 3 programming languages.

To enable co-design across applications and ADMIRE technologies, all tools were integrated and validated on a
consistent HPC environment, a cluster hosted at the University of Turin. This platform, part of HPC4Al, features a
diverse set of compute architectures 2.

Compute malleability was implemented using two complementary approaches, depending on the application’s
programming model. For traditional MPI-based applications such as NEK5000 and WaComM++, ADMIRE adopted
Flex-MPI, a dynamic runtime extension of MPICH that tracks performance via hardware counters and MPI profiling
interfaces. For non-MPI applications or MPI applications where FlexMPI was not suitable due to their complexity
with communicators or data redistribution, start-stop model has been developed. In this model, the IC uses checkpoint
stages of an application to restart it with the required number of new processes. For machine learning applications, we
provide a connector for Elastic Horovod (see Table 1).

Use Case IC integration FlexMPI Start-Stop Elastic Horovod
Environmental Application X X

NEKS5000 X X

Quantum Espresso X

Remote Sensing X X

Life Sciences X X

Software Heritage Analytics

Table 1. Overview of ADMIRE use case support across storage, integration, and dynamic resource management capabilities.

2 https://hpc4ai.unito.it/

174 Jesus Carretero et al. / Procedia Computer Science 267 (2025) 165-175

Flex-MPI was particularly effective in WaComM++ [10], where the computational load varies across simulation
cycles depending on the behaviour of simulated particles. A simplified C implementation of WaComM++ was devel-
oped to facilitate the integration of Flex-MPI, allowing for precise experimentation with elasticity under controlled
conditions. The ability to shrink or grow the number of active MPI ranks during execution enabled finer-grained con-
trol over performance and resource usage, aligning compute effort with problem complexity over time (See Fig. 5).
Large-scale experiments have shown that, by adapting dynamically to the workload per iteration through ADMIRE
tools, WaComM++ application turnaround can be reduced up to 45%.

15000

o 520 a;a‘l;]*gl)ign-dn' G ,;L.‘IV;::<I>,2~: :m-.,;u[.*I»f.u.v,;g,ﬂl»r:a:-a' 18=gapg
10000

5000

Particles per second

number of processes

Fig. 5. Dynamic resources adaptation in WaComM-++ with the computational load.

7. Conclusion

In this paper, the ADMIRE framework and its mechanisms for dynamic resource management have been presented.
ADMIRE’s efforts enabled an integrated stack in which storage, compute, and orchestration layers were co-designed
and validated across a shared, heterogeneous testbed. All components were monitored and coordinated in real-time
through an intelligent controller capable of interpreting performance alarms and initiating adaptation through near
real-time analytic mechanisms, a plethora of performance prediction models that can be chosen dynamically.

Dynamic load balancing is provided even in complex cases, as we have two models for malleability: runtime, and
stop-start. In the second case, when the application cannot be modified on the fly, the IC uses checkpoint stages to
restart with the required number of new processes. However, it is important to mention that we have not adapted our
solution to every kind of application, thus supporting dynamic resource management for some large-scale codes might
not be possible with ADMIRE’s framework.

Work is going on to interface the IC with PMIx and to provide management for MPI sessions. In addition, we are
researching the application to composable hardware systems, so that we can provide greater flexibility, scalability, and
efficiency in resource utilization compared to traditional, siloed architectures.

Acknowledgements

ADMIRE project received funding from the EuroHPC Joint Undertaking (JU) under grant agreement No 956748,
as well as funding from Spain, Germany, France, Italy, Poland, and national research agencies. This publication was
also partially funded by project PID2022-138050NB-100, funded by the grant MICIU-AEI-10.13039-501100011033.
Thanks to the University of Torino for the use of the HPC4AI cluster for the experiments.

References

[1] Al-Maaitah, N.O., Garcia-Blas, J., Sanchez-Gallegos, G., Carretero, J., Vef, M.A., Brinkmann, A., 2025. A comparative study of ad-hoc file
systems for extreme scale computing. Future Generation Computer Systems 170, 107815. URL: https://www.sciencedirect.com/
science/article/pii/S0167739X25001104, doi:https://doi.org/10.1016/j.future.2025.107815.

[2] Almaaitah, N.O., Singh, D.E., Ozden, T., Carretero, J., 2024. Performance-driven scheduling for malleable workloads. The Journal of Super-
computing 80, 11556-11584.

[3]
[4]
[3]

(6]

(7]
(8]
(91
[10]
[11]
[12]
[13]
[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Jesus Carretero et al. / Procedia Computer Science 267 (2025) 165-175 175

Aupy, G., Beaumont, O., Eyraud-Dubois, L., 2019. Sizing and partitioning strategies for burst-buffers to reduce IO contention, in: IPDPS’19,
IEEE. pp. 631-640.

Bandet, A., Boito, F, Pallez, G., 2024. Scheduling distributed i/o resources in hpc systems, in: European Conference on Parallel Processing,
Springer. pp. 137-151.

Besnard, J.B., Tarraf, A., Barthélemy, C., Cascajo, A., Jeannot, E., Shende, S., Wolf, F., 2023. Towards smarter schedulers: Molding jobs into
the right shape via monitoring and modeling, in: International Conference on High Performance Computing, Springer. pp. 68-81.

Besnard, J.B., Tarraf, A., Cascajo, A., Shende, S., . Introducing the metric proxy for holistic I/O measurements, in: Weiland, M., Neuwirth,
S., Kruse, C., Weinzierl, T. (Eds.), High Performance Computing. ISC High Performance 2024 International Workshops, Springer Nature
Switzerland. pp. 213-226. doi:10.1007/978-3-031-73716-9_15.

Besnard, J.B., Tarraf, A., Cascajo, A., Shende, S., 2025. Introducing the metric proxy for holistic i/o measurements, in: International Conference
on High Performance Computing, Springer. pp. 213-226.

Boito, F, Pallez, G., Teylo, L., Vidal, N., 2023. 10-sets: Simple and efficient approaches for I/O bandwidth management. IEEE Transactions
on Parallel and Distributed Systems 34, 2783-2796.

Calotoiu, A., Hoefler, T., Poke, M., Wolf, F., 2013. Using automated performance modeling to find scalability bugs in complex codes, in: Proc.
of the ACM/IEEE Conference on Supercomputing (SC13), Denver, CO, USA, ACM. pp. 1-12. doi:10.1145/2503210.2503277.

Carretero, J., Exposito, D., Cascajo, A., Montella, R., 2022. Malleability techniques for hpc systems, in: International Conference on Parallel
Processing and Applied Mathematics, Springer. pp. 77-88.

Carretero, J., Garcia-Blas, J., Aldinucci, M., Besnard, J.B., Acquaviva, J.T., Brinkmann, A., Vef, M.A., Jeannot, E., Miranda, A., Nou, R., et al.,
2023. Adaptive multi-tier intelligent data manager for exascale, in: Proceedings of the 20th ACM International Conference on Computing
Frontiers, pp. 285-290.

Carretero, J., Suarez, E., Schulz, M., 2024. Malleability techniques applications in high-performance computing.

Pernice, S., Maglione, A., Tortarolo, D., Sirovich, R., Clerico, M., Rolla, S., Beccuti, M., Cordero, F., 2023. A new computational workflow
to guide personalized drug therapy. Journal of Biomedical Informatics 148, 104546.

Pleiter, D., Haus, U.U., Buttari, A., Anciaux-Sedrakian, A., Garcia, A., Ma, B., Samaey, G., Battiato, G., Houzeaux, G., Brandt, L., et al., 2025.
ETP4HPC SRA 6 White Paper-Mathematical Methods and Algorithms. Technical Report. European Technological Platform for HPC.

Ritter, M., Calotoiu, A., Rinke, S., Reimann, T., Hoefler, T., Wolf, F., 2020. Learning cost-effective sampling strategies for empirical per-
formance modeling, in: 2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS), pp. 884-895. doi:10.1109/
IPDPS47924.2020.00095.

Ritter, M., Geil3, A., Wehrstein, J., Calotoiu, A., Reimann, T., Hoefler, T., Wolf, F., 2021. Noise-resilient empirical performance modeling
with deep neural networks, in: 2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS), p. 23-34. doi:10.1109/
IPDPS49936.2021.00012.

Tarraf, A., Bandet, A., Boito, F., Pallez, G., Wolf, F., a. Capturing periodic I/O using frequency techniques, in: 2024 IEEE International Parallel
and Distributed Processing Symposium (IPDPS), pp. 465-478. doi:10.1109/IPDPS57955.2024.00048.

Tarraf, A., Muiioz, J.F,, Singh, D.E., Ozden, T., Carretero, J., Wolf, ., b. I/O Behind the Scenes: Bandwidth Requirements of HPC Appli-
cations With Asynchronous I/O, in: 2024 IEEE International Conference on Cluster Computing (CLUSTER), pp. 426-439. doi:10.1109/
CLUSTER59578.2024.00044.

Tarraf, A., Schreiber, M., Cascajo, A., Besnard, J.B., Vef, M.A., Huber, D., Happ, S., Brinkmann, A., Singh, D.E., Hoppe, H.C., Miranda,
A., Pefia, A.J., Machado, R., Gasulla, M.G., Schulz, M., Carpenter, P., Pickartz, S., Rotaru, T., Iserte, S., Lopez, V., Ejarque, J., Sirwani, H.,
Carretero, J., Wolf, F., c. Malleability in modern HPC systems: Current experiences, challenges, and future opportunities. IEEE Transactions
on Parallel and Distributed Systems , 1-14doi:10.1109/TPDS. 2024 .3406764.

Terrone, 1., Volpatto, D., Pernice, S., Amparore, E., Sirovich, R., Cordero, F., Beccuti, M., 2025. Extension of the greatmod modeling frame-
work to simulate non-markovian processes with general-distributed events, in: Computational Intelligence Methods for Bioinformatics and
Biostatistics, Springer Nature Switzerland, Cham. pp. 177-191.

Zanon Boito, F., Teylo, L., Popov, M., Jolivel, T., Tessier, F., Luettgau, J., Monniot, J., Tarraf, A., Carneiro, A., Osthoff, C., 2025. A deep
look into the temporal I/O behavior of HPC applications -extended version. Technical Report RR-9577. Inria & Labri, Univ. Bordeaux. URL:
https://inria.hal.science/hal-04978752.

Available online at www.sciencedirect.com

ScienceDirect Procedia

Computer Science

CrossMark

Procedia Computer Science 267 (2025) 176-186

www.elsevier.com/locate/procedia
Proceedings of the Third EuroHPC user day
Enhancing Financial NLP with Supercomputing: Spell Correction
and Domain-Specific BERT Pretraining

Derya Uysal?, Dogacan Toka?, Elif Bozkurt?, Osman Kumas®, Hasan Hiiseyin Yilmaz*

“Yapi Kredi Technology, Istanbul, Turkey

Abstract

In this study, we present a two-stage approach to enhance natural language understanding in financial applications using deep
learning techniques, supported by high-performance computing infrastructure. The first stage focuses on improving user input
clarity through automatic spelling correction. We fine-tune the mT5 language model to detect and correct misspelled words in user
messages, particularly in informal, user-generated financial texts. This preprocessing step is essential in financial chatbot systems,
where even small textual errors can lead to critical misunderstandings or misclassifications. In the second stage, we pretrain a BERT-
based language model on large-scale, open-source Turkish financial corpora to create a domain-adapted representation suitable for
a variety of NLP tasks such as intent detection, entity recognition, and document classification. Unlike most prior work focusing
on high-resource languages, our study addresses the significant challenge of developing domain-specific models for Turkish—a
morphologically rich and under-resourced language. To accelerate model training and ensure scalability, all computations were
carried out on supercomputers provided by the EuroHPC initiative. This infrastructure enabled faster training and higher model
efficiency, reducing a task that took 19 hours on a local machine to just 30 minutes—achieving a 38x speedup. Furthermore, the
resulting models can be fine-tuned and deployed on private, secure institutional servers, enabling use with sensitive banking data
without compromising privacy. Our work demonstrates the critical role of supercomputing resources and domain adaptation in
building practical, language-specific NLP systems for the financial industry.

© 2025 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY 4.0 license (https://creativecommons.org/licenses/by/4.0)
Peer-review under responsibility of the scientific committee of the Proceedings of the Third EuroHPC user day

Keywords: Spell correction; financial BERT; conversation with Al

1. Introduction

In recent years, natural language processing (NLP) has undergone a transformative evolution, driven by advances
in deep learning and the increasing availability of large-scale datasets. These developments have enabled machines to
generate, and interact with human language in ways that were previously unattainable. As a result, NLP technologies
are now being integrated into a wide range of real-world applications, from digital assistants and customer service bots

E-mail address: derya.uysal @ykteknoloji.com.tr

1877-0509 © 2025 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY 4.0 license (https://creativecommons.org/licenses/by/4.0)
Peer-review under responsibility of the scientific committee of the Proceedings of the Third EuroHPC user day
10.1016/j.procs.2025.08.244

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2025.08.244&domain=pdf

Derya Uysal et al. / Procedia Computer Science 267 (2025) 176—186 177

to document analysis and sentiment tracking. Among these applications, the financial domain presents both unique
opportunities and significant challenges due to the domain’s reliance on highly specific language, the sensitivity of its
data, and the critical need for accuracy.

Financial institutions are increasingly leveraging NLP to automate customer interactions, extract insights from large
volumes of textual data, and support decision-making processes. However, effective deployment of NLP in this con-
text requires more than generic language models. Financial text often includes domain-specific jargon, abbreviations,
and numerical expressions that are poorly understood by general-purpose models. Moreover, user-generated financial
inputs—such as customer queries or transaction descriptions—tend to be informal and error-prone, frequently con-
taining spelling mistakes, ambiguous phrases, or code-switching between languages. These challenges necessitate the
development of robust, domain-adapted NLP systems that can handle noisy inputs while maintaining high accuracy
and contextual understanding. Furthermore, most research in financial NLP has focused on high-resource languages
such as English or Chinese. In contrast, Turkish presents unique challenges due to its agglutinative structure, rich
morphology, and limited availability of domain-specific linguistic resources. These characteristics make both spelling
correction and domain adaptation significantly more difficult and underexplored, thus amplifying the impact and nov-
elty of our approach.

Another layer of complexity arises from the stringent data security and privacy requirements in financial services.
Due to regulatory constraints and the sensitive nature of financial data, cloud-based NLP solutions may not be viable
for many institutions. While our approach is compatible with private fine-tuning and on-premises deployment, we do
not directly address the security protocols or infrastructure needed to achieve full regulatory compliance. Instead, we
acknowledge this as a critical aspect for future exploration in real-world deployments.

To address these challenges, this study proposes a two-stage deep learning approach supported by high-
performance computing infrastructure. The first stage aims to improve the clarity of user input through automatic
spelling correction. By fine-tuning the multilingual TS (mT5) model, we enable the detection and correction of mis-
spelled words in user messages, thereby reducing noise in downstream tasks and improving the coherence of conver-
sational agents. This step is critical in real-world financial settings where user-facing systems must respond accurately
and promptly, even in the presence of imperfect input. While spelling correction is a general NLP task, its role is
particularly crucial in financial chatbots. Users frequently input transaction details, abbreviations, or product names
with typos or informal expressions. In this domain, even a minor misspelling can mislead intent recognition or entity
extraction processes, leading to customer dissatisfaction or incorrect recommendations. Therefore, we approach this
task not as a generic preprocessing step, but as an essential enabler for high-precision downstream tasks in Turkish
financial applications.

In the second stage, we focus on domain adaptation for financial language understanding. We utilize a BERT-based
transformer architecture and perform pretraining on large-scale, publicly available financial text corpora. Specifically,
a ModernBERT [7] model is pretrained on Turkish financial data, benefiting from architectural enhancements tailored
to encoder-only models. This pretraining allows the model to internalize the semantic and syntactic structures common
in financial discourse, resulting in a representation that is more aligned with domain-specific NLP tasks such as named
entity recognition, intent classification, and document summarization within financial contexts.

Crucially, the entire training pipeline is accelerated through the use of supercomputers provided by the EuroHPC
initiative. Leveraging this infrastructure not only reduces training time but also allows for the exploration of larger
model architectures and datasets, pushing the boundaries of what is feasible in academic and industrial NLP research.
Furthermore, the trained models are designed to allow fine-tuning and deployment on private servers using institution-
specific data. While this dual approach—combining public pretraining with private adaptation—has the potential to
support compliance with data governance requirements, we treat this only as a deployment possibility rather than a
fully implemented security solution. Ensuring production-level data protection remains an open research problem that
falls outside the scope of this study.

In summary, this work demonstrates how the synergy between advanced deep learning techniques and high-
performance computing can drive progress in domain-specific NLP. By addressing the twin challenges of input
quality and domain adaptation, and by providing scalable, privacy-preserving deployment pathways, our approach
lays the groundwork for robust NLP solutions in the financial industry. Importantly, this study represents one of the
few attempts to build a domain-specific language model for the Turkish financial sector. By combining multilingual
transformer models, Turkish financial corpora, and HPC infrastructure, we address the twin challenges of working

178 Derya Uysal et al. / Procedia Computer Science 267 (2025) 176—186

in a low-resource language and on a domain that requires high-precision downstream tasks. This dual-layered chal-
lenge—often overlooked in high-resource language studies—constitutes a core contribution of our work.

2. Related Works

In this section, we provide a comprehensive overview of the existing literature relevant to our study. The related
works are categorized into three primary areas and each category is discussed in detail to highlight the methods,
datasets, and contributions of prior studies, thereby positioning our approach within the current research landscape.

2.1. Spelling Correction in Natural Language Processing

Spelling correction is a foundational task in natural language processing, critical for ensuring input quality and
preserving coherence in downstream applications—especially in sensitive domains like finance. Early approaches to
spelling correction were mostly rule-based or relied on statistical models. However, with the advent of deep learning
and transformer architectures, spelling correction has taken a significant leap forward. One such model is mT5 [13], a
multilingual extension of the TS transformer, pre-trained on the massive multilingual mC4 corpus. It has shown strong
performance across over 100 languages, especially in grammatical and lexical error correction tasks [1].

Similarly, the ByT5 model approaches spelling correction from a character-level perspective, making it suitable
for typographic and diacritic restoration tasks across 13 languages. This method significantly outperforms traditional
dictionary-based spell checkers, particularly in morphologically rich languages [2]. These methods highlight the grow-
ing relevance of transformer-based models in solving orthographic and typographic inconsistencies in user-generated
text—Ilaying a solid foundation for domain-specific applications like financial conversational agents. However, few
studies have explored multilingual transformer adaptation for spelling correction in domain-specific Turkish datasets,
especially in financial contexts. Our work contributes to this body of research by evaluating and adapting mT5 for
Turkish financial spelling correction, a setting that combines both low-resource and high-noise characteristics.

2.2. Domain Adaptation in Financial NLP

The financial domain poses unique challenges for NLP models, such as jargon, abbreviations, and significant
requirements for semantic precision. General-purpose models like BERT may perform inadequately without domain-
specific tuning. FinBERT was one of the pioneering efforts to address this. Trained on large-scale financial corpora
such as Reuters TRC2, FinBERT demonstrated substantial gains in financial sentiment analysis and entity recogni-
tion tasks. It showed that even a general model like BERT could be significantly enhanced through domain-specific
pretraining [3].

Further research compared models like FinBERT and domain-adapted BERTs and concluded that continual pre-
training on in-domain data yields more consistent improvements than training from scratch [4]. This strategy also
conserves computational resources while leveraging existing model knowledge. Non-English financial NLP has also
seen promising progress. KR-FinBERT is a Korean BERT model trained on financial news and reports, achieving
up to 96.3% accuracy in sentiment analysis tasks [5]. Likewise, research into Indonesian financial texts showed that
domain-specific adaptation of multilingual BERT (mBERT) outperformed both standard and local models in classifi-
cation and named entity recognition tasks [6]. Together, these efforts underscore the necessity of domain adaptation
to meet the nuanced demands of financial language processing, particularly across multilingual contexts. Yet, existing
financial BERT variants have largely focused on English or East Asian languages, leaving a gap for Turkish financial
language modeling.

2.3. High-Performance Computing in NLP Training

Training large-scale transformer models is computationally intensive, making high-performance computing (HPC)
infrastructures essential for timely and scalable model development. The EuroHPC initiative provides state-of-the-
art supercomputers to support Al research across Europe. For example, the TrustLLM [26] project is leveraging this
infrastructure to develop large, trustworthy language models tailored for European needs. This project illustrates the
importance of scalable compute resources for both foundational model training and fine-tuning on sensitive data.

Derya Uysal et al. / Procedia Computer Science 267 (2025) 176—186 179

The Leonardo supercomputer has also been employed for NLP research, enabling institutions like RISE to exper-
iment with large language models in secure, high-throughput environments. This access accelerates innovation while
maintaining data privacy and training efficiency. By using HPC resources, researchers can experiment with larger
architectures, conduct extensive hyperparameter tuning, and pretrain models on domain-specific corpora—tasks that
would be prohibitive on conventional hardware. Our work aligns with this direction by combining EuroHPC in-
frastructure with domain-specific pretraining for Turkish, providing a concrete use case for resource-constrained,
high-precision NLP in finance.

3. Methodology

This section outlines the methodological framework employed in our study to enhance natural language under-
standing in financial applications. The proposed approach is divided into two main components: a spell correction
pipeline to improve the quality of user-generated inputs, and a domain-specific language model pretraining strategy
tailored for financial text processing. We first describe the datasets used in both stages, including curated collections of
financial documents and multilingual textual resources. Next, we elaborate on the preprocessing strategies that convert
raw data into suitable formats—such as word, sentence, and paragraph structures—optimizing them for deep learning
models. The spell correction module is implemented via fine-tuning the mT5 model, while the second stage involves
continued pretraining of a BERT-based architecture on financial corpora to obtain a robust, domain-adapted repre-
sentation. Each component is designed to be modular and scalable, ensuring compatibility with high-performance
computing environments and future domain-specific fine-tuning efforts. The following subsections detail each stage
of the methodology.

3.1. Datasets

To support the two-stage architecture proposed in this study, we utilized a diverse collection of open-source datasets
tailored for distinct components of our methodology. The first group of datasets comprises financial documents used
for domain-specific pretraining of the ModernBERT-based language model. These were compiled from a variety of
publicly available PDF sources, including financial reports, regulatory filings, and market analysis documents, to
ensure rich and representative coverage of financial language. The second group consists of three curated datasets
structured at the word, sentence, and paragraph levels, respectively. These datasets were specifically designed to train
and evaluate the spelling correction module, enabling it to learn contextual patterns of error and correction at varying
linguistic granularities. Detailed descriptions of both dataset groups are provided in the following subsections.

3.1.1. Word, Sentence, Paragraph formats for Correction

A comprehensive review of existing resources for Turkish grammatical and orthographic error correction was
conducted in order to construct a robust dataset suitable for the proposed multi-phase curriculum learning approach.
During this survey, multiple publicly available datasets were evaluated based on their size, quality, and relevance to
the objectives of the study. The key datasets considered include:

1. GECTurk (GGLAB-KUyjgecturk) [8]: approximately 100,000 annotated sentences for grammatical error correc-
tion tasks, primarily focused on formal and academic text structures.

2. Annotated Tweets Dataset (atubakoksal/annotated tweets) [9]: a smaller corpus comprising approximately 2,000
annotated Turkish tweets, containing various informal linguistic phenomena.

3. Spellchecker Dataset (pnr-svc/spellchecker-dataset) [10]: a large-scale collection containing nearly 9 million
words, targeting spelling correction across different Turkish domains.

4. Turkish Spelling Dictionary (asimokby/Turkish-Spelling-Dictionary) [11]: a manually curated list of approxi-
mately 100,000 base word pairs (expanded to 700,000 through data augmentation) intended for basic ortho-
graphic correction tasks.

5. Turkish GPT GEC Dataset (asimokby/Turkish-GPT-GEC) [12]: a dataset containing around 80,000 synthetically
generated sentence pairs created to simulate realistic Turkish grammatical errors at the sentence level.

180 Derya Uysal et al. / Procedia Computer Science 267 (2025) 176—186

Following a detailed evaluation, forth and fifth datasets were selected as the primary sources for training and
evaluation. The Turkish Spelling Dictionary was extensively utilized in both Phase 1 and Phase 2 to develop the
model’s capacity for correcting isolated word-level errors. In Phase 1, a random subset of 150,000 word pairs was
selected to train the model on basic orthographic correction tasks. To prevent catastrophic forgetting and maintain
word-level correction ability in Phase 2, an additional set of 20,000 previously unseen word pairs from the same
source was incorporated into the training data.

To address discourse-level correction in Phase 3, an additional dataset was constructed manually. A corpus of
5,000 long user complaint texts was collected from sikayetvar.com, a Turkish online consumer complaint platform.
These texts naturally contained a rich variety of spelling mistakes, grammatical inconsistencies, punctuation errors,
and discourse-level incoherence. To create aligned corrected versions of these texts, a custom crawling and post-
processing pipeline was developed. As part of this pipeline, texts were automatically corrected using GPT-40-mini
with tailored prompt engineering strategies designed to maximize correction quality while preserving the original
semantic structure. This process resulted in a high-quality paired dataset consisting of noisy (corrupted) and corrected
versions of real-world long-form Turkish texts.

Word-Level Training. In the initial phase, the model was trained on a dataset consisting of 150,000 isolated incorrect-
correct word pairs. These examples contained no context and served as direct lexical mappings. The primary goal of
this phase was to establish a foundational understanding of:

e Basic orthographic errors (e.g., character omissions, replacements)
o Common Turkish spelling patterns and suffixation rules
e Capitalization and diacritic inconsistencies

The training data was shuffled and split into training and evaluation sets using a 90/10 ratio. No sentences or
contextual information were introduced at this stage. This low-context setup allowed the model to focus exclusively
on token-level transformations without distraction from broader grammatical structures.

Sentence-Level Integration and Lexical Retention. In the second phase, the training regime was expanded to include
both sentence-level examples and additional unseen word pairs. Specifically:

e 20,000 new word pairs were added from the source dataset, with care taken to ensure no overlap with the
Phase 1 subset. This served a dual purpose: reinforcing low-level correction capabilities, preventing catastrophic
forgetting of previously learned patterns

e 80,000 sentence pairs were added, each containing one erroneous sentence and its corrected version. These
examples introduced more complex linguistic phenomena, such as: subject-verb agreement errors, word order
misplacements, incorrect suffix usage or omission, over- or under- generation of function words.

By blending token-level and sentence-level training, this phase enabled the model to bridge the gap between local
corrections and syntactic structure awareness. Sentence-based examples helped the model understand grammatical
constraints that operate across word boundaries, which are common in agglutinative languages like Turkish.

Discourse-Level and Multi-Sentence Context Training. The final phase targeted higher-order linguistic errors span-
ning multiple sentences or full paragraphs. The dataset included:

¢ 5,000 new sentences not seen in Phase 2, again introduced to maintain word and sentence-level retention while
offering fresh error examples.

e 5,000 short paragraph-style texts, each consisting of two to three sentences. These were largely derived from
real-world, user-generated texts, particularly customer complaints.

In this phase, the model encountered errors such as, lack of sentence-ending punctuation, missing capitalization at
the beginning of new sentences, pronoun resolution issues across sentence boundaries, misuse of discourse connectives
and punctuation across clauses. The goal of this phase was to condition the model to perform context-aware correction

Derya Uysal et al. / Procedia Computer Science 267 (2025) 176—186 181

at the discourse level, including, long-distance dependency resolution, coherence and cohesion repair, inter-sentential
normalization. This phase most closely reflects the type of input the model would receive in a production setting,
where errors may span several sentences and exhibit nested, context-sensitive patterns.

3.1.2. Financial Documents for BERT

For the domain-specific pretraining of the ModernBERT model, we collected a corpus of publicly available finan-
cial documents in Turkish. The dataset spans multiple sectors, including finance, automotive, energy, telecommunica-
tions, and tourism, and comprises various document types such as financial reports, legal and regulatory texts, financial
terminology dictionaries, and periodic financial publications. In total, the corpus consists of 82 carefully curated doc-
uments. To prepare the data for pretraining, all documents were converted into plain text format and preprocessed
to create structured inputs suitable for masked language modeling (MLM) [7]. This preprocessing step ensured the
consistency and quality of the training data, enabling the model to effectively learn domain-specific linguistic patterns
and financial terminology.

3.2. Correction

In this section, we describe the multi-phase training strategy designed for the task of orthographic and grammat-
ical error correction in Turkish. Our approach follows a curriculum learning paradigm, where the model is exposed
to progressively more complex linguistic structures—from isolated words to fully formed paragraphs—across three
distinct training phases. This methodology aims to emulate human language acquisition patterns, whereby learners
first internalize lexical rules before acquiring syntactic and discourse-level competencies.

3.2.1. Model Architecture and Design

We utilized the google/mt5-x1 model as the backbone architecture for all training phases. MT5 is a multilingual
variant of the TS5 encoder-decoder model, pre-trained on a massive multilingual corpus. It is particularly suitable for
our task due to its strong performance on both low-resource languages and generation-based tasks such as machine
translation and grammatical correction. To enable efficient fine-tuning on large-scale data with limited computational
resources, we employed a parameter-efficient fine-tuning strategy based on Low-Rank Adaptation (LoRA), coupled
with quantization via the bitsandbytes library. Specifically:

The model weights were loaded in 4-bit precision using NF4 quantization, significantly reducing memory usage.
A LoRA adapter was applied to the query (q) and value (v) projection layers in both self-attention and encoder-
decoder attention submodules.

The adapter dimension (r) was set to 64, with a scaling factor (lora alpha) of 32, and dropout of 0.1.

LoRA was applied without altering bias terms, preserving the original model initialization.

3.2.2. Curriculum-Based Multi-Phase Training Strategy

The model was trained in three sequential phases, each designed to incrementally increase the complexity and
contextual requirements of the correction task. Rather than mixing all examples together from the outset, we adopted
a curriculum-style training scheme to guide the model from simpler to more complex examples, reducing the risk of
overfitting on long-form text before mastering lower-level correction patterns.

3.3. Financial BERT

There have been various advancements on the BERT model architecture, training methods and context length. Our
Financial BERT model is based on the ModernBERT architecture [7], which integrates several recently introduced
methods including Rotary Positional Embedding (RoPE) [14], Local- Global Alternating Attention [15], and Flash
Attention [16].

Architectural improvements in ModernBERT include the the Rotary Positional Embeddings (RoPE) [17] and
GeGLU activation function [18]. RoPE introduces performance improvements in short- and long-context language
models that enables easily extending context size. We adopt the GeGLU activation function, which is a combination
of Gated-Linear Units (GLU)-based activation function [19] and BERT’s GeLLU activation function [25].

182 Derya Uysal et al. / Procedia Computer Science 267 (2025) 176—186

Additionally, ModernBERT also has efficiency improvements such as alternating attention, unpadding and Flash
Attention. As presented in the ModernBERT model architecture, we apply global attention every 3 layers. Alternating
between local and global attention makes it efficient to model long context models [15]. In global attention, every
token within a sequence attends to every other token, whereas in local attention, tokens only attend to each other
within a small sliding window. We use a window size of 128 tokens for local attention. We also employ unpadding
[20] for both training and inference, which removes semantically empty tokens. Flash Attention is a core component
of modern transformer-based models that made it possible computing efficient attention kernels. ModernBERT uses
Flash Attention 3 [21] for global attention layers and Flash Attention 2 [22] for the local attention layers.

We follow the two-stage training approach of the ModernBERT model. In the first stage, the model is pretrained
with a maximum context length of 1024 tokens. In the second stage, the context length is extended to 8192 tokens.
We use the Masked Language Modeling (MLM) objective and set the mask rate to 30 %. We use the StableAdamW
[23] optimizer that is based on the AdamW optimizer [24]. Our model is based on the ModernBERT-base model that
has 22 hidden layers, with a total number of 149 million parameters. Additionally, the model has a hidden size of
768 with a GLU expansion of 2304. and 12 attention heads. We use a BPE-based tokenization approach, trained on
financial data that has a vocabulary size of 50368, a multiple of 64, to ensure optimal GPU utilization .

4. Experiments

This section presents the experimental evaluation of the proposed two-stage framework, focusing on the effec-
tiveness of the spelling correction module and the domain-specific BERT model trained on financial text. To assess
the practicality and scalability of our approach, we conducted experiments in both local computing environments
and high-performance computing (HPC) systems provided by the EuroHPC infrastructure. In Section 4.1, we report
the performance of the word-level correction system under different runtime settings, including training times and
model accuracy comparisons between local servers and supercomputer clusters. In Section 4.2, we evaluate the Fi-
nancial BERT model pretrained on financial documents. The goal of these experiments is not only to measure model
effectiveness, but also to assess the impact of HPC infrastructure on training efficiency and scalability.

4.1. Word Correction

4.1.1. Experimental Setup Overview

To evaluate the effectiveness of the proposed multi-phase training strategy for Turkish grammatical and ortho-
graphic error correction, a series of controlled experiments were conducted. All phases were trained on a single
NVIDIA A100 GPU (40 GB memory), providing sufficient computational resources for large-scale fine-tuning using
memory-efficient techniques.

All experiments utilized the mT5-XL model, a multilingual encoder-decoder transformer architecture, which was
fine-tuned using a combination of Low-Rank Adaptation (LoRA) and 4-bit quantization. Specifically, LoRA modules
were integrated into the query and value projection layers of both the self-attention and encoder-decoder attention
mechanisms.

Training was performed using the paged AdamW optimizer with 32-bit weight precision. Across all phases, the
initial learning rate was set to 5e-4, and a weight decay coefficient of 0.01 was applied to regularize the model
parameters and prevent overfitting. Each phase was trained for 10 epochs. In every phase, a 90/10 split was used
to separate the training and validation datasets. To facilitate smoother convergence and mitigate the risk of early
overfitting, we applied a custom learning rate scheduler that multiplied the learning rate by a factor of 0.2 every
two epochs. This gradual decay of the learning rate allowed the model to perform aggressive updates in the early
stages of training while refining its parameters more delicately towards the end. All training phases utilized gradient
checkpointing to further reduce memory consumption and employed bfloat16 mixed-precision training to accelerate
computations without significant loss of numerical stability.

During training, model performance was evaluated at the end of each epoch using loss, Character Error Rate
(CER), and Word Error Rate (WER) metrics. These evaluation metrics were chosen to provide a comprehensive view
of the model’s correction capabilities, both at the character level and at the semantic structure level. The following
subsections present detailed descriptions of the training configurations and outcomes for each phase individually.

Derya Uysal et al. / Procedia Computer Science 267 (2025) 176—186 183

4.1.2. Phase 1 — Word Level Training

The first phase of training focused exclusively on isolated word-level error correction. A total of 150,000 corrupted-
corrected word pairs were randomly sampled from the Turkish Spelling Dictionary dataset. These examples contained
no sentence context, ensuring that the model concentrated solely on character-level transformations and morphological
regularities typical of Turkish orthography.

Given the short length of individual words, the maximum input and output sequence length was set to 16 tokens,
which allowed for highly efficient batch processing. The objective of this phase was to enable the model to acquire
a robust foundation in correcting basic orthographic errors such as character omissions, substitutions, and common
suffixation patterns, as well as resolving diacritic inconsistencies and capitalization errors.

4.1.3. Phase 2 — Sentence Level Augmentation

In the second phase of training, the model was exposed to more complex linguistic structures by extending the train-
ing data beyond isolated words to include full sentences. The dataset for this phase consisted of a mixture of 20,000
additional incorrect-correct word pairs and 80,000 corrupted-corrected sentence pairs. This augmentation aimed to
enable the model to perform corrections not only at the token level but also within larger syntactic contexts, including
subject—verb agreement, word order, suffix attachment, and function word usage.

Given the increased complexity and sequence length of the examples, the maximum tokenization length was raised
to 32 tokens, allowing the model to capture broader contextual dependencies within each sentence. To accommodate
this longer sequence structure without exceeding memory constraints, the effective batch size was adjusted to 128
tokens per device, and gradient accumulation was set to 8 steps to maintain an equivalent global batch size.

4.1.4. Phase 3 — Discourse Level and Multi-Sentence Context Training

In the third and final phase, the model was exposed to extended discourse-level structures, enabling it to learn
corrections across multiple sentences and short paragraphs. The training data consisted of 5,000 additional corrupted-
corrected sentence pairs (which were distinct from those used in Phase 2) and 5,000 corrupted-corrected short text
passages, each containing two to three sentences. These examples included a variety of higher-order errors such
as missing sentence boundaries, incorrect capitalization at the beginning of new sentences, and inconsistencies in
pronoun use across adjacent clauses.

To adequately capture these extended linguistic contexts, the maximum sequence length during tokenization was
increased to 512 tokens. Given the substantial growth in input size, the per-device training batch size was reduced
to 12, and the per-device evaluation batch size to 16, while gradient accumulation was set to 16 steps to maintain
an effective large batch size without exceeding memory constraints. Training in Phase 3 was conducted over 10
epochs, with the optimization and regularization strategies consistent with the previous phases. However, due to the
significantly larger input sequences and the complexity of discourse-level corrections, convergence occurred more
gradually.

In Phase 1, which involved isolated word-level correction, the model achieved a best validation loss of 0.1991, a
best Word Error Rate (WER) of 0.2461, and a Character Error Rate (CER) of 0.0608. This phase primarily helped the
model to internalize basic orthographic patterns, suffixation rules, and diacritic usage prevalent in Turkish. Upon inte-
grating sentence-level examples in Phase 2, a substantial improvement was recorded. The best validation loss dropped
to 0.1447, WER decreased to 0.1194, and CER to 0.0310. These results demonstrated that the model successfully
adapted to syntactic structures, mastering not only token-level but also phrase- and clause-level correction tasks.

Finally, Phase 3, which introduced multi-sentence and paragraph-level contexts, led to the best overall performance.
The model attained a minimum validation loss of 0.0223, a WER of 0.0619, and a CER of 0.0157. As also evidenced
in Table 1, this phase confirmed the model’s ability to handle discourse-level phenomena such as sentence boundary
errors, inter-sentential coherence issues, and long-range dependency corrections.

The cumulative training time across all phases amounted to approximately 12 hours and 45 minutes. Despite the
increase in input complexity and sequence length at each stage, the model maintained stable learning dynamics and
achieved increasingly lower error rates, highlighting the effectiveness of the curriculum learning approach employed
in this work.

As part of our high-performance experimentation, we leveraged the MeluXina supercomputer located in Luxem-
bourg, under the EuroHPC initiative. The experiments were conducted on multi-GPU A100 servers, enabling efficient

184 Derya Uysal et al. / Procedia Computer Science 267 (2025) 176—186

Table 1. Evaluation results of spell correction training

Granularity Level WER (%) CER (%) Training Time
Word (ours - 10 epoch) 0.2461 0.0608 1h 19m
Sentence (ours - 10 epoch) 0.1184 0.0299 2h 32m
Paragraph (ours - 10 epoch) 0.0619 0.0157 8h 54m

Word (meluxina - 20 epoch) 0.3922 0.0923 1h 5m 56s
Sentence (meluxina - 20 epoch) 0.3644 0.0665 13m 58s
Paragraph (meluxina - 20 epoch) 0.1917 0.1238 33m 25s

and scalable training of our spelling correction model across three levels of textual granularity: word, sentence, and
paragraph.

To maintain consistency and comparability, we used the same hyperparameters as in our local experiments. The
primary objective was to reduce training time through parallelization, while ensuring that the trained models could be
seamlessly transferred and re-used on private infrastructure, particularly for applications involving sensitive financial
data in banking environments. The results from the supercomputer-based training sessions are summarized in Table 1
below.

As shown in the table, sentence-level training yielded the lowest CER, while paragraph-level training achieved the
best WER, suggesting that larger context windows help the model learn word relationships more effectively. On the
other hand, word-level training offered faster runtime performance due to smaller input sizes and lower computational
load. These results validate the suitability of MeluXina’s HPC infrastructure for large-scale, multi-GPU training.
The models trained in this setup can be efficiently ported to internal environments, allowing secure fine-tuning on
institution-specific, proprietary datasets without compromising performance or data privacy.

Discussion of MeluXina Results.. Interestingly, the models trained on the MeluXina supercomputer exhibited higher
Word Error Rate (WER) and Character Error Rate (CER) values compared to the locally trained models, despite
using identical hyperparameters. For instance, sentence-level training yielded a WER of 11.84% on the local setup
versus 36.44% on MeluXina. This discrepancy may be attributed to differences in data shuffling, tokenizer handling, or
gradient synchronization behavior inherent in multi-GPU distributed training environments. Furthermore, the expected
monotonic trend of improved performance from word- to paragraph-level training observed in the local setup was
not consistently replicated on MeluXina. We hypothesize that this may result from increased noise accumulation
or suboptimal convergence during distributed training, particularly when the effective batch size or communication
efficiency is not fine-tuned per hardware topology.

These observations warrant further investigation and suggest that while HPC infrastructure enables rapid training,
care must be taken to ensure reproducibility and stability across different hardware and parallelization regimes. Future
work will explore more robust distributed training strategies and dynamic batch scaling to mitigate such discrepancies.
Although we carefully ensured identical software stacks and hardware configurations between the local and HPC
environments, the significant performance gap highlights the complexity of distributed training on large-scale HPC
systems and the need for environment-specific optimization and validation procedures.

4.2. Financial BERT

For the domain-adapted language modeling stage, we trained a Turkish version of ModernBERT by continuing
pretraining on our curated corpus of financial documents using the Masked Language Modeling (MLM) objective.
We followed the ModernBERT methodology and adopted a masking rate of 30%, which has been shown to improve
performance in domain adaptation scenarios by exposing the model to a wider variety of masked token combinations.
Our training loss saturated after 80 epochs. Throughout the training process, we monitored the model’s loss conver-
gence and ensured stability through a combination of learning rate scheduling and gradient clipping. We also used a
drop-out value of 0.1 to prevent overfitting with limited training data.

In our experiments, we used the Medium sized Turkish BERT model as the baseline [27]. The baseline model has
8 attention heads, 4 hidden layers and 42.2M parameters. Since the baseline model is trained on crawled data, it inher-

Derya Uysal et al. / Procedia Computer Science 267 (2025) 176—186 185

ently may contain various biases and may fail to capture domain-specific terminology. To evaluate the performance of
our models, we selected the mask prediction task that evaluates a model’s ability to decipher context. Our proposed
ModernBERT-based model achieved 83.44 % accuracy on the masked set, whereas the baseline model achieved 61.32
% accuracy. The final pretrained ModernBERT model captures domain-specific terminology and syntactic structures
common to financial documents, which we observed to improve downstream performance in tasks such as named
entity recognition (NER), question answering (QA), and document classification (to be explored in future work).

This pretraining phase serves as the foundation for secure, institution-specific fine-tuning, allowing the model to
be further adapted on proprietary banking data without the need to re-train from scratch. The resulting ModernBERT
model is optimized for real-world financial language understanding tasks, offering both scalability and adaptability
for private-sector deployment.

The training was carried out on the MeluXina supercomputer using A100 GPUs, allowing us to efficiently process
large-scale financial texts. ModernBERT uses larger context size than BERT, where attention matrix calculation com-
plexity increases with sequence length and attention head dimension. ModernBERT employs Flash Attention 2 and 3
for handling attention calculations for long sequences, whose effectiveness depends on the hardware it runs on. In our
case, A100 GPUs were highly optimized for Flash Attention.

5. Conclusion

The experimental results demonstrate the effectiveness and scalability of our two-stage approach for enhancing
natural language understanding in financial applications. Training on the local server provided strong baseline perfor-
mance; however, the use of the MeluXina supercomputer significantly accelerated the training process, especially as
the input granularity increased. Notably, while sentence- and paragraph-level datasets contain more tokens per sample
compared to word-level datasets, the total number of steps required for convergence decreases, leading to shorter over-
all training times on high-performance computing (HPC) infrastructure. This behavior can be attributed to the richer
contextual information available in larger text units, which enables faster and more efficient learning by the model.
Furthermore, by following a curriculum learning strategy—from words to sentences to paragraphs—we effectively
emulate natural language acquisition patterns, allowing the model to progressively internalize lexical, syntactic, and
discourse-level knowledge.

In the second stage, our FinBERT model—trained using a Masked Language Modeling (MLM) setup with a
30% masking rate, consistent with the ModernBERT methodology—successfully adapted general BERT architectures
to financial domain-specific tasks. The combination of domain-specific pretraining and supercomputing capabilities
yielded models that are not only highly accurate but also efficiently trainable at scale.

Overall, these findings highlight the critical role of HPC resources in accelerating model development for special-
ized domains, and demonstrate that structured curriculum learning, combined with domain adaptation strategies, offers
a powerful framework for building high-quality natural language processing systems tailored for real-world finan-
cial applications. The models developed through this study are ready for further fine-tuning on sensitive, institution-
specific datasets, enabling secure, private deployment without compromising on performance.

However, we acknowledge that this work does not provide a comprehensive treatment of security and data privacy
aspects associated with deploying NLP models in production financial environments. While the proposed architec-
ture is compatible with local deployment and private fine-tuning, critical challenges such as model leakage, secure
inference, and regulatory compliance remain unaddressed. We identify this as an important direction for future work,
potentially involving techniques such as federated learning, differential privacy, or encrypted model serving to enable
robust and compliant deployment pipelines.

Although our current pipeline focuses primarily on linguistic challenges such as spelling correction and domain
adaptation, we acknowledge that quantitative reasoning remains an open challenge in financial NLP. Future extensions
may integrate numerical reasoning modules or leverage hybrid architectures that combine language models with
symbolic computation components [e.g., LILA, Toolformer, etc.], especially for tasks such as portfolio analysis or
risk estimation.

186 Derya Uysal et al. / Procedia Computer Science 267 (2025) 176—186

Acknowledgements

The authors gratefully acknowledge the use of the MeluXina supercomputer hosted by LuxProvide, Luxembourg,
as part of the European High Performance Computing Joint Undertaking (EuroHPC JU) infrastructure. Access to this
HPC resource has been instrumental in conducting the large-scale experiments presented in this study.

References

[1] Pajak, K., Pajak, D. (2022). Multilingual fine-tuning for grammatical error correction Expert Systems with Applications, 200, 116948.

[2] Stankevicius, L., LukoSevicius, M., Kapociute-Dzikiené, J., Briediené, M., Krilavi¢ius, T. (2022). Correcting diacritics and typos with a ByT5
transformer model. Applied Sciences, 12(5), 2636.

[3] Yang, Y., Uy, M. C. S., Huang, A. (2020). Finbert: A pretrained language model for financial communications. arXiv preprint
arXiv:2006.08097.

[4] Peng, B., Chersoni, E., Hsu, Y. Y., Huang, C. R. (2021). Is domain adaptation worth your investment? comparing BERT and FinBERT on
financial tasks. Association for Computational Linguistics (ACL).

[5]1 Kim, E., Shin, H. (2022). KR-FinBert: Fine-tuning KR-FinBert for sentiment analysis. Github. com.

[6] Maharani, N. P. I., Purwarianti, A., Yustiawan, Y., Rochim, F. C. (2023, October). Domain-Specific Language Model Post-Training for Indone-
sian Financial NLP. In 2023 International Conference on Electrical Engineering and Informatics (ICEEI) (pp. 1-6). IEEE.

[7]1 Warner, B., Chaffin, A., Clavié, B., Weller, O., Hallstrom, O., Taghadouini, S., Gallagher, A., Biswas, R., Ladhak, F., Aarsen, T., Cooper,
N., Adams, G., Howard, J. & Poli, I. Smarter, Better, Faster, Longer: A Modern Bidirectional Encoder for Fast, Memory Efficient, and Long
Context Finetuning and Inference. (2024), https://arxiv.org/abs/2412.13663

[8] Atakan Kara, Farrin Marouf Sofian, Andrew Bond, and Gozde Giil Sahin. (2023). GECTurk: Grammatical Error Correction and Detection
Dataset for Turkish. arXiv:2309.11346

[9] Atuba Koksal. (2024). annotated tweets [Dataset]. GitHub. (Accessed: 28 April 2025).

[10] pnr-sve. (2024). spellchecker-dataset [Dataset]. Hugging Face. (Accessed: 28 April 2025).

[11] Asimokby. (2024). Turkish-Spelling-Dictionary [Dataset]. Hugging Face. (Accessed: 28 April 2025).

[12] Asimokby. (2024). Turkish-GPT-GEC [Dataset]. Hugging Face. (Accessed: 28 April 2025).

[13] Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, and Colin Raffel. (2021). mT5: A
Massively Multilingual Pre-trained Text-to-Text Transformer. In Proceedings of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pages 483-498, Online. Association for Computational Linguis-
tics.

[14] Su, J., Lu, Y., Pan, S., Murtadha, A., Wen, B. & Liu, Y. RoFormer: Enhanced Transformer with Rotary Position Embedding. (2023),
https://arxiv.org/abs/2104.09864

[15] Team, G., Riviere, M., Pathak, S., Sessa, P., Hardin, C., Bhupatiraju, S., Hussenot, L., Mesnard, T., Shahriari, B., Ramé, A., et al., Gemma 2:
Improving Open Language Models at a Practical Size. (2024), https://arxiv.org/abs/2408.00118

[16] Dao, T., Fu, D., Ermon, S., Rudra, A. & Ré, C. FlashAttention: Fast and Memory-Efficient Exact Attention with I0-Awareness. (2022),
https://arxiv.org/abs/2205.14135

[17] Black, S., Biderman, S., Hallahan, E., Anthony, Q., Gao, L., Golding, L., He, H., Leahy, C., McDonell, K., Phang, J., Pieler, M., Prashanth,
U., Purohit, S., Reynolds, L., Tow, J., Wang, B. & Weinbach, S. GPT-NeoX-20B: An Open-Source Autoregressive Language Model. (2022),
https://arxiv.org/abs/2204.06745

[18] Shazeer, N. GLU Variants Improve Transformer. (2020), https://arxiv.org/abs/2002.05202

[19] Dauphin, Y., Fan, A., Auli, M. & Grangier, D. Language Modeling with Gated Convolutional Networks. (2017),
https://arxiv.org/abs/1612.08083

[20] Zeng, J., Li, M., Wu, Z., Liu, J., Liu, Y., Yu, D. & Ma, Y. Boosting Distributed Training Performance of the Unpadded BERT Model. (2022),
https://arxiv.org/abs/2208.08124

[21] Shah, J., Bikshandi, G., Zhang, Y., Thakkar, V., Ramani, P. & Dao, T. FlashAttention-3: Fast and Accurate Attention with Asynchrony and
Low-precision. (2024), https://arxiv.org/abs/2407.08608

[22] Dao, T. FlashAttention-2: Faster Attention with Better Parallelism and Work Partitioning. (2023), https://arxiv.org/abs/2307.08691

[23] Wortsman, M., Dettmers, T., Zettlemoyer, L., Morcos, A., Farhadi, A. & Schmidt, L. Stable and low-precision training for large-scale vision-
language models. (2023), https://arxiv.org/abs/2304.13013

[24] Loshchilov, I. & Hutter, F. Decoupled Weight Decay Regularization. (2019), https://arxiv.org/abs/1711.05101

[25] Hendrycks, D. & Gimpel, K. Gaussian Error Linear Units (GELUs). (2023), https://arxiv.org/abs/1606.08415

[26] European High-Performance Computing Joint Undertaking (EuroHPC). TrustLLM: Large Language Model Technology for Europe. Accessed:
April 29, 2025.

[27] Kesgin, H., Yuce, M. & Amasyali, M. Developing and Evaluating Tiny to Medium-Sized Turkish BERT Models. ArXiv Preprint
ArXiv:2307.14134. (2023)

Available online at www.sciencedirect.com

ScienceDirect PrOCGd iCI

Computer Science

CrossMark

Procedia Computer Science 267 (2025) 187-196

www elsevier.com/locate/procedia
Proceedings of the Third EuroHPC user day

An accelerated implementation of Extended Cellular Potts Model for
tumor angiogenesis simulations

Luigi D’Onofrio?, Pasquale De Luca®*, Anna Greco?, Livia Marcellino®

“Department of Science and Technology, Parthenope University of Naples, Naples, Centro Direzionale Isola C4, 80143

Abstract

Modern distributed systems and neural computation face increasing demands in processing complex simulations, particularly in com-
putational biology. While distributed computing offers powerful solutions for large-scale problems, certain computational challenges
can be effectively addressed through GPU acceleration alone, providing a foundation for future distributed implementations. In this
work, we present a GPU-parallel approach for simulating angiogenesis using the Cellular Potts Model (CPM). Here we deal with
how a traditionally sequential biological simulation can be transformed into a parallel implementation, establishing a methodology
that could be extended to distributed systems. By implementing the CPM on GPU using CUDA, and incorporating both chemotaxis
and electric field effects, we extend the basic angiogenesis model by introducing a tumor-related chemical source, thus making a

more detailed and biologically relevant simulation environment, we develop a framework that achieves significant performance

improvements while maintaining biological accuracy. Experiments conducted on LEONARDO supercomputer, show up to 39x
speedup compared to CPU implementations, particularly in handling large-scale matrices and complex energy calculations.
© 2025 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY 4.0 license (https://creativecommons.org/licenses/by/4.0)
Peer-review under responsibility of the scientific committee of the Proceedings of the Third EuroHPC user day

Keywords: Big-data simulations, angiogenesis, parallel algorithms, GPU computing, Leonardo Super-computer

1. Introduction

Modern computational challenges in neural networks and distributed systems often are related to the efficient
processing of complex, large-scale simulations. As computational biology continues to advance, the demand for
high-performance computing solutions has become increasingly critical, particularly in simulating complex biological
phenomena [1, 2]. Among these phenomena, angiogenesis, the formation of new blood vessels from pre-existing
ones, represents a compelling case study in computational complexity and resource requirements. The intersection of
distributed computing, neural computation, and biological system modeling presents unique opportunities for advancing
our understanding of complex physiological processes [3, 4]. While distributed systems have traditionally focused
on partitioning computational loads across multiple nodes [5], certain biological simulations, such as angiogenesis

* Corresponding author. Tel.: +39-345-4150-455.
E-mail address: pasquale.deluca@uniparthenope.it

1877-0509 © 2025 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY 4.0 license (https://creativecommons.org/licenses/by/4.0)
Peer-review under responsibility of the scientific committee of the Proceedings of the Third EuroHPC user day
10.1016/j.procs.2025.08.245

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2025.08.245&domain=pdf

188 Luigi D’Onofrio et al. / Procedia Computer Science 267 (2025) 187—196

modeling, can benefit significantly from computational accelerators [6, 10, 7, 8, 9, 29] as a foundational step toward
future distributed implementations [11]. Angiogenesis plays an important role in both physiological and pathological
conditions, particularly in cancer development, where it contributes to tumor growth and metastasis. The computational
modeling of this process requires sophisticated mathematical frameworks capable of capturing multiple physical
and chemical interactions [12]. The Cellular Potts Model (CPM), a lattice-based Monte Carlo method, has emerged
as a powerful tool for simulating such cellular behaviors, but its computational intensity has historically limited its
application to smaller-scale systems. Traditional CPU-based implementations of the CPM face significant performance
limitations, particularly when simulating large-scale systems. As the lattice size increases, the computational require-
ments grow quadratically, making large-scale simulations impractical on conventional CPU architectures. In this work,
we address these computational challenges through a GPU-parallel implementation of the CPM, focusing on efficient
parallel processing of the core components of the model. Moreover, the mathematical framework of our implementation
extends the traditional CPM by incorporating additional field terms that account for both chemical and electrical
influences on cell behavior. These extensions allow for more realistic biological simulations by capturing the complex
interplay between cells and their environment. Our model considers how cells respond to chemical gradients through
chemotaxis and how electric fields influence cellular migration, providing a more comprehensive representation of
biological reality.

The paper is organized as follows: Section 2 presents the mathematical framework and theoretical background of the
problem, including the detailed formulation of the Cellular Potts Model and its sequential algorithmic implementation.
Section 3 describes our GPU-parallel approach, detailing the optimization strategies and implementation techniques
used to accelerate the simulation. Section 4 presents experimental results, providing a thorough analysis of the
performance improvements achieved through GPU parallelization compared to the sequential implementation. Finally,
Section 5 closes the paper with conclusions.

2. Mathematical framework

In this section, we present the mathematical framework of the extended Cellular Potts Model. Starting from the
basic CPM formulation [13] and taking account the mathematical background presented in [14], we detail the addition
of chemotaxis and electric field terms to capture complex cell behavior in tumor angiogenesis. Let @ © Z¢ be a d-
dimensional lattice representing the spatial domain where cells evolve, with d typically is equal to 2 or 3 for biological
applications. At each lattice site x € (), we assign a cell index o(x) € {0,1,...,N}, where 0 denotes the
extracellular medium and positive integers represent distinct cells. Each cell is characterized by its type 7(o),
allowing for multiple cell populations within the system.
The Cellular Potts Model describes the evolution of cellular configurations through the minimization of a Hamiltonian
energy function H. In our extended formulation, the total energy of the system is given by:

H= Had + Hv + Hs + Hchemo + Helectricr (1)

where H,; quantifies adhesion interactions between neighboring cells, H,, represents volume constraint energy, Hg
represents surface area constraint energy, H.n.mo, captures chemotactic response energy, and H,jctric models
electric field influence energy. The adhesion term H,,; quantifies the interaction energy between neighboring cells:

Ha=p Y J@0) (@@ - 8o(),o())) ®

X XIEN(x)

where V' (x) represents the neighborhood of site x, /(t,,7,) denotes the adhesion energy between cells of types
7, and t,, and § is the Kronecker delta function. Cell volume and surface area are constrained through quadratic
energy terms:

Ho =2) (V(©) = Virgae(@)2 Ho =25) (S(0) = Stargaa(@))? ®

o>0 o>0

Luigi D’Onofrio et al. / Procedia Computer Science 267 (2025) 187-196 189

where V(o) and S (0) are the current volume and surface area of cell 0, Vigrger(0) and Siqpgee(0) are their

respective target values, and A4, , A; are Lagrange multipliers controlling the strength of these constraints. The
chemotactic response is incorporated through:

Hehemo = —Ac Z Z wi (t(o(x)))ci(x) “4)

where A is the chemotaxis strength parameter, pi(t) represents the chemotactic sensitivity of cell type T to chemical
species i, and c; (x) denotes the concentration of chemical i at position x. The electric field contribution is modeled as:

5
Heeetric = —Ag Z E(x)-x (5)
x

where A controls the strength of the electrical response and E(x) is the electric field vector at position x. The
electric field is derived from a potential ¢ satisfying the Poisson equation:

r2p = —p ©)

with charge density p(x) = ac(x), relating the electrical properties to chemical concentrations through the pro-

portionality constant a. The system evolves through a Monte Carlo algorithm with Metropolis dynamics. For each
attempted update, the probability of accepting a change in cell index from o (x) to o(x') is:

P(o(x) = o(x)) = min(1,e~2#/T) (7)

in which AH is the total energy change and T is a temperature parameter controlling fluctuations. The chemical
fields evolve according to reaction-diffusion dynamics:

aCl' 2
Frin D;V%c; + Ri(¢cq, ..., Cp, O).

®)

Here, D; represents the diffusion coefficient of species i and R; includes reaction terms. The electric field components
are computed through central differences:

Gir1,j — Pi-1,j

.. .. bijr1— bij-1 ©
Ex(i,)) = Sy — E,(i,)) = SELLTAE S (L7 X

24x

In order to compute the electric field, we solve a linear system based on the current state of the cells and the chemical
field. We assume that the electric potential ¢ satisfies a Poisson equation:

190 Luigi D’Onofrio et al. / Procedia Computer Science 267 (2025) 187—196

V¢ =—p

where p is a charge density that we relate to the chemical concentration and cell distribution. For simplicity, we
assume p is proportional to the chemical concentration c:

p(x) = ac(x)

where « is a proportionality constant. On our lattice, we discretize the Laplacian operator using the standard 5-point
finite difference stencil method:

72 i1y T it Pijar TP — 4Py
Pij = (4x)?

where Ax is the lattice spacing. This leads to a system of linear equations:
Ad = b. (10)

In detail, A is a sparse matrix representing the discretized Laplacian, ¢ is the vector of electric potential values
at each lattice site, and b is the vector of charge density values (scaled by —(Ax)?). Once the electric potential ¢ is
obtained by solving the linear system in Eq. (10), we compute the electric field E as the negative gradient of ¢:

E=-Vp.

The electric field affects cell movement through the H, ;. :ri. term in the Hamiltonian. The energy change for
a proposed cell index copy from site x to x” due to the electric field is: AH,jpctric = —Ag[E(x") - x' — E(x) - x.

This energy change is incorporated into the Metropolis algorithm along with the other energy terms, influencing the
probability of accepting cell movements. The algorithm runs the system through a series of Monte Carlo steps, where
each step involves updating the cell configuration based on the energy minimization principle. To simulate the evolution
of the system over time, we employ a time-stepping loop in which the Metropolis algorithm is executed at each time
step. Let t denote the current time, the system evolves iteratively over a sequence of time steps t = ty,tq, ..., tnax-
At each time step t, the following steps are performed:

STEP 1 Monte Carlo Steps: A fixed number of Monte Carlo steps Ny, are executed to update the cell configuration.

Each Monte Carlo step involves proposing a change to the cell configuration and accepting or rejecting it based
on the Metropolis criterion:

P(o(x) » o(x")) = min(1,e 2H/T), (11)

Luigi D’Onofrio et al. / Procedia Computer Science 267 (2025) 187-196 191

where AH is the change in the Hamiltonian energy due to the proposed update. The total energy change AH is
computed as the sum of the individual energy changes:

AH = AH,g + AH, + AH + AH_ pemo + AHcjectricr (12)

STEP 2 Chemical Dynamics: The chemical concentrations c; (x) are updated using reaction-diffusion dynamics:

dc; 5
Frin D;V%c; + Ri(cy, ..., Cp, 0).

STEP 3 Electric Field Update: The electric potential ¢ and electric field E are recomputed by solving (10).

This iterative process continues until the final time t,,,, is reached, allowing the system to evolve dynamically
under the influence of mechanical, chemical, and electrical interactions. Previous procedures are compactly
summarized in the following algorithm:

Algorithm 1 Extended Cellular Potts Model
1: Initialize lattice €, cell indices 0(x) and chemical concentrations c; (x)
2: Compute ¢ and electric field E as in Eq. (10)
3: fort = ty,t1,..., thayx do
4 for each Monte Carlostep k = 1,2,..., Ny do

5 Select a random lattice site x and x’

6: Compute AH % as in Eq. (12)

7: Accept the change % as in Eq. (11)

8 end for

9 update chemical concentrations c; (x)
10: solve the linear system as in Eq. (10)
11: end for

The sequential implementation of the Algorithm 1 relies on several specialized libraries to handle different com-
putational aspects of the simulation. For solving the linear systems arising from the electric field calculations, we
employ both LAPACK and SuiteSparse libraries [16][17]. LAPACK (Linear Algebra Package) is utilized for dense
matrix operations, particularly through the LAPACKE dgesv function, which performs LU factorization with
partial pivoting for solving systems of linear equations. However, as the lattice size increases, the matrix
representing the discretized Laplacian becomes increasingly sparse, making dense matrix approaches
computationally inefficient. To address this limitation, we integrate the SuiteSparse library, specifically its CSparse
component, which provides efficient sparse matrix operations. The sparse matrix is initially constructed in triplet format
using cs_spalloc and cs entry functions, then converted to compressed-column format via cs _compress for
optimal computational efficiency. The solution of the linear system involves symbolic factorization through cs_sqr,
followed by numerical factorization using cs_1u, with the final solution obtained through a combination of cs ipvec,
cs lsolve, and cs _usolve operations. In order to handle the reaction-diffusion dynamics of chemical fields, we
implement finite difference methods using standard numerical libraries. The Monte Carlo steps, which form the core of
the CPM evolution, are implemented using a sequential random number generator for the Metropolis acceptance
criterion. The algorithm maintains separate data structures for the lattice configuration, chemical concentrations, and
electric field components, with updates performed sequentially at each time step. This implementation, while
functionally complete, faces performance limitations when dealing with large-scale simulations, particularly in the
computation of energy terms and the resolution of field equations, motivating the need for parallel implementation
strategies.

192 Luigi D’Onofrio et al. / Procedia Computer Science 267 (2025) 187—196

3. Parallel approach

The computational complexity of simulating angiogenesis using the Extended Cellular Potts Model presents
significant challenges when executed sequentially, particularly for large-scale systems. For a standard simulation
domain of 200 x 200 lattice sites, the algorithm processes 40,000 individual sites (N = 200) and manage complex
energy calculations during each Monte Carlo step. The additional overhead of chemical field diffusion and electric
field computations makes real-time simulation computationally prohibitive using traditional sequential approaches.
In order to address these issues and enable practical large-scale simulations, we developed a parallel implementation
leveraging the Single Instruction Multiple Data (SIMD) architecture of Graphics Processing Units (GPUs) by means of
CUDA framework [18]. Our parallel implementation mimics the core Algorithm 1 while maintaining the biological
accuracy of the simulation. The approach distributes computational tasks across thousands of concurrent threads,
with each thread handling calculations for individual lattice sites. We identified several key components amenable to
parallelization: energy calculations, chemical field updates, and electric field computations. The parallel architecture
enables simultaneous processing of multiple lattice sites, significantly reducing the overall computation time. The first
optimization involves restructuring data representations to align with GPU memory access patterns. The core simulation
routine, for initializing cells, handles the parallel initialization of the lattice structure. This routine implements a
transformation from the sequential CPM algorithm described by Glazier and Graner [13] to a parallel framework. The
function operates by mapping thread blocks to lattice regions, with each thread processing an unique lattice site given
by the transformation T°: (i,)7 — z, where z = i - N + j for a lattice of size N X N. Following the initialization, the
chemical updating procedure manages the parallel evolution of chemical fields. This kernel implements the discretized
reaction-diffusion equations through a parallel finite difference scheme. The computational domain is partitioned into
blocks of 256 threads per block threads, chosen to optimize occupancy on current GPU architectures as demonstrated
in [15]. The parallel electric field computation is handled by building and solving the sparse linear system arising
from the discretization of the Poisson equation. This routine leverages cuDSS library [21], employing techniques

developed in [19] for efficient sparse matrix operations on GPUs. The system matrix 4 € RV “xN? maintains its
sparsity pattern throughout the simulation, allowing for optimized memory access patterns and computational
workflows. The Monte Carlo step implementation maintains the statistical validity of the Metropolis algorithm while
exploiting parallel computation. Following the approach of [20], the kernel utilizes the cuRAND library [23] for
parallel random number generation, ensuring statistical independence across threads through the maintenance of
separate random states {Ei}{-":zl for each lattice site. The chemical field normalization process is implemented through
ad-hoc CUDA kernels. These functions employ a two-phase approach using parallel reduction operations from the
CUB library [22]. The maximum chemical value c,,,, is computed through a parallel reduction operation

R: RV’ - Rdefined by:

2
R((c}ln) = max, ci (13

The parallel algorithm can be expressed formally as follows:

Algorithm 2 Parallel CPM Implementation

1: Initialize GPU memory and transfer initial lattice state

2: Configure CUDA streams and events for asynchronous operation
3: for each Monte Carlo step do

4: compute parallel energy calculation kernel

5: compute chemical field update kernel

6: solve electric field system using cuDSS

7: compute parallel field normalization

8 if visualization step then

9: Asynchronously transfer current state to host
10: end if
11: end for

12: Finalize and release GPU resources

Luigi D’Onofrio et al. / Procedia Computer Science 267 (2025) 187196 193

Table 1: Execution time comparison (seconds).

Implementation | N =200 | N =400 | N =800
Sequential C 64.60 1101.09 | 18289.29
CUDA 6.11 47.64 437.95

Thread block configurations are optimized based on empirical testing by providing optimal occupancy across various
problem sizes as follows: threads_per. block = 256.

For the chemical field update kernel, we employ a 2D block configuration that better matches the spatial locality of
the computation. In detail, the grid configuration is adapted to the lattice dimensions:

block id N (1
OCKS_PeL_BHE = N reads _per_block|’
The electric field solver engages cuDSS for optimal performance, with the matrix structure:
-4 1 0 1
1 -4 1 - 0
A=|l0 1 -4 - 0 . (15)
1 0 0 - —4lyayp2

This structured sparsity pattern enables efficient parallel solution strategies. The solver pipeline consists of symbolic
analysis, numerical factorization, and solution phases, all executed on the GPU to minimize data movement. Synchro-
nization between different computational phases is managed through CUDA events and streams, enabling overlap of
computation and communication where possible.

4. Results

The experimental evaluation of the proposed GPU-parallel implementation will be shown in this section. The test
are conducted on the supercomputer LEONARDO (CINECA) equipped by: Intel Xeon Platinum 8358 CPU, 2.60GHz
(Ice Lake) and NVIDIA custom Ampere A100 GPU 64GB HBM2e, NVLink 3.0 (200GB/s) and, CUDA toolkit version
12.3 [24].

We conducted performance analyses across three distinct simulation scenarios by increasing the computational
complexity to confirm efficiency of the proposed approach. The experimental framework employed a set of parameters
among three simulation configurations. The first simulation utilized a 200 X 200 lattice with 10 cells and 100
Monte Carlo steps, representing a baseline case for performance comparison. The second configuration expanded to a
400 x 400 lattice containing 400 cells and 200 Monte Carlo steps, while the third and most demanding scenario
employed an 800 x 800 lattice with 80 cells and 400 Monte Carlo steps. Throughout all simulations, the
temperature parameter remained constant at 20 units, ensuring consistent stochastic behavior in the Monte Carlo
algorithm.

The model parameters were carefully calibrated to maintain biological relevance, with volume constraint coefficient
Ay = 50, surface constraint coefficient A = 0.5, chemotaxis coefficient A, = 100, and electric field coefficient
Ag = 50. The target volume for all cells was set to 500 lattice sites, a value chosen to ensure realistic cell sizes
relative to the lattice dimensions. Performance measurements highlight improvements achieved through GPU
parallelization. For the baseline 200 X 200 lattice simulation, execution time decreased from 64.6 seconds in sequential
C to just 6.1 seconds in our CUDA implementation. The improvements become more pronounced for the
intermediate 400 X 400 case, with execution times reducing from 18 minutes and 21 seconds to only 47.6 seconds.
The largest simulation (800 X 800) showed the best improvement, with execution time decreasing from 5 hours and 4
minutes to approximately 7 minutes and 18 seconds.

194 Luigi D’Onofrio et al. / Procedia Computer Science 267 (2025) 187196

Table 2: Component-wise execution times simulation in seconds (N = 200).

Module Sequential C | CUDA
Cell Initialization 0.23 0.45
Linear System Solution 52.40 4.76
Electric Field Calculation 0.04 0.001
Chemical Field Update 2.62 0.70
Chemical Field Normalization 0.02 0.02
Total MCS Time 55.91 6.11

Cell Configuration

Fig. 1: Visualization of cell configuration (left) and chemical concentration field (right) from a CUDA simulation, demonstrating preserved biological
accuracy in parallel implementation.

The baseline simulation achieved an increasing of performance in 9.145 X, while the intermediate case
demonstrated a 20.439 X improvement. The largest simulation exhibited the most significant gains with an
acceleration factor of 39.338 X. This scaling behavior with problem size highlights the effectiveness of our parallel
implementation for large-scale simulations. Detailed analysis of individual computational components reveals
varying degrees of performance improvement. For the baseline simulation, the linear system solution phase showed
the most dramatic enhancement, reducing from 52.39 seconds in sequential C to 4.76 seconds in CUDA,

representing an 11% speedup for this critical component. The chemical field update process similarly improved from

2.62 seconds to 0.70 seconds. Notably, the cell initialization phase showed marginally slower performance in CUDA
(0.000455 seconds versus 0.000234 seconds in sequential C), because of the overhead of initial GPU memory
allocation and transfer, though this cost becomes not useful in the context of total simulation time.

Let s¢PU (t) € R™ denote the complete system state vector computed by the CPU implementation at time step t,
and sPU(t) € R™ denote the corresponding state vector from the GPU implementation, where m involves all
system variables. More precisely, let gF*V represent the i-th component of the CPU solution and gffV the
corresponding GPU component. The numerical distance between implementations is quantified by the difference:

8; = qffY — qfPY. We define error metrics as:

—t
CPU
i

16 lle,= mlaX|5i|. Il €¢; o= max

Table 3 presents the complete numerical comparison for a representative simulation with lattice size N = 200 x 200,
N eys = 400, and t = 100 Monte Carlo steps under deterministic conditions.

The numerical comparison in Table 3 shows that gF*Y and gF*Y exhibit differences &;, computed with same fixed
seed, that are strictly bounded by machine precision limits. The observed differences arise from fundamental aspects of

floating-point arithmetic in parallel computing environments. Here, xgl) and x§2) denote the x—coordinates the center of

mass of cell, 1 and cell 2.

Luigi D’Onofrio et al. / Procedia Computer Science 267 (2025) 187-196 195

Table 3: CPU vs GPU comparison with exact floating-point values.

Quantity CPU Solution GPU Solution Difference
g’ g™ 8 =qi"" — ¢

Cell center xgl) (lattice units) 127.4568 127.4568 0

Cell center x§2) (lattice units) 156.7890 156.7890 —11x107*

Cell volume V) (sites) 487 487 0

Cell surface area S™) (sites) 94 94 0

Total energy Hpeq —2027.4804 —2027.4804 —-1.1x 10715

Chemical conc. c(64, 64) 0.6789 0.6789 1.1x 1071

Electric potential ¢(128, 96) -0.6789 -0.6789 2.2x 10716

Global Error Metrics:

Maximum absolute error: || § |l 1.1 x 10715

Maximum relative error: || €,¢; Iloo 2.4 x 10715

Machine precision bound: €,,4cpine 2.2x 10716

The biological accuracy of our parallel implementation was validated through visual inspection of simulation results.
Figure 1 exhibits a characteristic snapshot from a simulation, showing both cell configuration and chemical concentration
fields. The cell patterns exhibit appropriate clustering and morphology consistent with biological expectations, while
the chemical field shows the expected diffusion patterns and gradient formations. These qualitative observations confirm
that the significant performance improvements were achieved without compromising the biological fidelity of the
simulation. These results demonstrate that our GPU-parallel implementation not only accelerates existing feasible
simulations but also enables the practical execution of previously intractable problem sizes. The achieved speedups,
ranging from 9X to 39x, represent a significant advance in computational capability for CPM simulations, particularly
beneficial for studying complex biological phenomena requiring larger domains or extended simulation times.

5. Conclusions

In this paper, we presented a GPU-parallel implementation of an Extended Cellular Potts Model for simulating
angiogenesis, incorporating both chemotaxis and electric field effects. Our approach demonstrates how traditionally

sequential biological simulations can be effectively transformed into parallel implementations. Through the use of
CUDA, we achieved significant performance gains, showing up to 39% speedup compared to CPU implementations.

The parallel implementation successfully handles the computational complexity of large-scale matrices and complex

energy calculations inherent in the CPM simulation. Key improvements were realized through efficient thread block
configurations, optimized memory access patterns, and the strategic use of cuDSS for sparse linear system solutions.
The implementation maintains a clear separation between host and device operations, with careful management of
data transfers and computational workflows. This architectural decision, combined with the use of specialized CUDA
libraries, enables the simulation of previously intractable system sizes while preserving the stochastic nature of the
Monte Carlo algorithm. These results open the possibility to predict and diagnosing tumor progression almost in a real
time. Moreover, future directions include to integrate machine and deep learning models to further improve predictive
capabilities by allowing more precise simulations.

Acknowledgment

We would like to thank EuroHPC and ISCRA for granting us access to the LEONARDO supercomputer, hosted
by CINECA (Italy), which provided the computational resources used in this work. De Luca P. and Marcellino L.
are member of the Gruppo Nazionale Calcolo Scientifico-Istituto Nazionale di Alta Matematica (GNCS-INdAM).
D’Onoftrio L. author was supported by GNAMPA and by the European Union - NextGenerationEU within the framework
of PNRR Mission 4 - ”PRIN 2022” - grant number 2022BCFHN?2 - Advanced theoretical aspects in PDEs and their
applications CUP 153D23002300006.

196

Luigi D’Onofrio et al. / Procedia Computer Science 267 (2025) 187196

References

(1]
(2]
B3]
(4]
[5]
(6]
(7

(8]
91
[10]
[11]

[12]
[13]

[14]

A. Ciaramella, E. Di Nardo, D. Terracciano, L. Conte, F. Febbraio, and A. Cimmino, ”’A new biomarker panel of ultraconserved long non-coding
RNAs for bladder cancer prognosis by a machine learning based methodology,” BMC Bioinformatics, vol. 23, 2023.

P. De Luca and L. Marcellino, ”Conservation Law Analysis in Numerical Schema for a Tumor Angiogenesis PDE System,” Mathematics, vol.
13, no. 1, pp. 28, 2025.

E. Di Nardo, A. Petrosino, and I. Ullah, ”EmoP3D: A brain like pyramidal deep neural network for emotion recognition,” Lecture Notes in
Computer Science, vol. 11131 LNCS, pp. 607-616, 2019.

A. La Ferlita, Y. Qi, E. Di Nardo, O. el Moctar, T. E. Schellin, and A. Ciaramella, ”A Comparative Study to Estimate Fuel Consumption: A
Simplified Physical Approach against a Data-Driven Model,” Journal of Marine Science and Engineering, vol. 11, no. 4, 2023.

A. Ciaramella, E. Di Nardo and G. Vettigli, "Recursive Learning Framework for Structured Data Agglomeration,” 2024 International Joint
Conference on Neural Networks (IICNN), Yokohama, Japan, 2024, pp. 1-6.

S. Cuomo, P. De Michele, E. Di Nardo, and L. Marcellino, ”Parallel Implementation of a Machine Learning Algorithm on GPU,” International
Journal of Parallel Programming, vol. 46, no. 5, pp. 923-942, 2018.

Conte, D., De Luca, P., Galletti, A., Giunta, G., Marcellino, L., Pagano, G., & Paternoster, B. (2022, July). First experiences on parallelizing peer
methods for numerical solution of a vegetation model. In International Conference on Computational Science and Its Applications (pp. 384-394).
Cham: Springer International Publishing.

Cardone, A., De Luca, P., Galletti, A., & Marcellino, L. (2023). Solving Time-Fractional reaction—diffusion systems through a tensor-based
parallel algorithm. Physica A: Statistical Mechanics and its Applications, 611, 128472.

De Luca, P., Galletti, A., Ghehsareh, H. R., Marcellino, L., & Raei, M. (2020). A GPU-CUDA framework for solving a two-dimensional inverse
anomalous diffusion problem. In Parallel Computing: Technology Trends (pp. 311-320). IOS Press.

P. De Luca, A. Galletti, G. Giunta, and L. Marcellino, ”Accelerated Gaussian convolution in a data assimilation scenario,” in International
Conference on Computational Science, pp. 199-211, 2020.

V. Bevilacqua, A. Di Marino, E. Di Nardo, A. Ciaramella, I. De Falco, and G. Sannino, ”Cross-domain Super-Resolution in Medical Imaging,”
2024.

Anderson, A.R.A., Chaplain, M.A.J., Rejniak, K.A., “Single-Cell-Based Models in Biology and Medicine”, Springer, Basel, 2007.

Glazier, J.A., Graner, F., “Simulation of the differential adhesion driven rearrangement of biological cells”, Physical Review E, 47(3):2128-2154,
1993.

De Luca, P., Galletti, A., Marcellino, L. (2025). Towards a Parallel Code for Cellular Behavior in Vitro Prediction. In: Sergeyev, Y.D., Kvasov,
D.E., Astorino, A. (eds) Numerical Computations: Theory and Algorithms. NUMTA 2023. Lecture Notes in Computer Science, vol 14478.
Springer, Cham. https://doi.org/10.1007/978-3-031-81247-7 6

Nickolls, J., Buck, I., Garland, M., Skadron, K., “Scalable Parallel Programming with CUDA”, Queue, 6(2):40-53, 2008.

] Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A.,

& Sorensen, D. (1999). LAPACK Users’ Guide (3rd ed.). Society for Industrial and Applied Mathematics. https://doi.org/10.1137/1.
9780898719604

Davis, T. A. (2004). Algorithm 832: UMFPACK V4.3—an unsymmetric-pattern multifrontal method. ACM Transactions on Mathematical
Software, 30(2), 196-199. https://doi.org/10.1145/992200.992206

NVIDIA Corporation, “CUDA C++ Programming Guide”, Version 12.3, 2023.

1 Bell, N., Garland, M., “Implementing sparse matrix-vector multiplication on throughput-oriented processors”, In Proceedings of the Conference

on High Performance Computing Networking, Storage and Analysis, ACM, 2009.

Anderson, A.R.A., Weaver, A.M., Cummings, P.T., Quaranta, V., “Tumor morphology and phenotypic evolution driven by selective pressure
from the microenvironment”, Cell, 127(5):905-915, 2013.

NVIDIA Corporation, “CUDA Direct Sparse Solver (cuDSS) Library Guide”, Version 1.0.0, 2023.

NVIDIA Corporation, “CUB Library Documentation”, Version 2.1.0, 2023.

NVIDIA Corporation, “cuRAND Library Programming Guide”, Version 10.3, 2023.

CINECA Supercomputing Centre, SuperComputing Applications and Innovation Department. (2024). “LEONARDO: A Pan-European Pre-
Exascale Supercomputer for HPC and Al applications.”, Journal of large-scale research facilities, 8, A186. https://doi.org/10.17815/
jlsrf-8-186

] Kirk, D.B., Hwu, W.W., “Programming Massively Parallel Processors: A Hands-on Approach”, Morgan Kaufmann, 2016.
1 Harris, M., Luebke, D., “GPU Architecture and CUDA Programming Overview”, In GPU Computing Gems Jade Edition, Morgan Kaufmann,

2018.

Sanders, J., Kandrot, E., “CUDA by Example: An Introduction to General-Purpose GPU Programming”, Addison-Wesley Professional, 2010.
Owens, J.D., Houston, M., Luebke, D., Green, S., Stone, J.E., Phillips, J.C., “GPU Computing”, Proceedings of the IEEE, 96(5):879-899, 2008.
Cuomo, S., Farina, R., Galletti, A., & Marcellino, L. (2014, September). An error estimate of Gaussian Recursive Filter in 3Dvar problem. In
2014 Federated Conference on Computer Science and Information Systems (pp. 587-595). IEEE.

Available online at www.sciencedirect.com

ScienceDirect Procedia

Computer Science

CrossMark

Procedia Computer Science 267 (2025) 197-206

www.elsevier.com/locate/procedia

Proceedings of the Third EuroHPC user day

Investigation of novel epigenetic signals through combinatorial
crosstalk between histone isoforms

Hatice Doseme®, Seyit Kale®*
“Izmir Biomedicine and Genome Center, Dokuz Eyliil University Health Campus, Balgova, Izmir 35330, Tiirkiye
b Izmir International Biomedicine and Genome Institute, Dokuz Eyliil University Health Campus, Bal¢ova, Izmir 35330, Tiirkiye

‘Faculty of Medicine, Department of Biophysics, Izmir Katip Celebi University, Cigli, Izmir 35620, Tiirkiye

Abstract

Our genomic material is packed into a fiber known as chromatin. The smallest repeating architectural unit of chromatin
is a disc-shaped nucleoprotein called the nucleosome. Nucleosomes are dynamic entities whose conformation, structural
stability, and DNA binding properties can be altered through epigenetic mechanisms, i.e., chemical alterations that do
not involve changes in DNA sequence. These alterations involve post-translational modifications and full replacement
of structural components of the protein components of the nucleosome, also known as histones. While the crosstalk
between histone post-translational modifications has been extensively studied as key epigenetic regulators, the potential
crosstalk between histone variants, in other words isoforms, remains largely unexplored. Some of these variants exhibit
significant sequence differences from their canonical counterparts, and their potential crosstalk could be implicated in
novel functional purposes. We employ atomistic molecular simulations to examine how different combinations of these
variants could come together and alter the structural and dynamic properties of chromatin. This in silico approach offers
a cost-effective and rapid alternative to traditional wet-lab experiments, which is particularly crucial in the field of
chromatin and epigenetics due to the challenging nature of stably reconstituting nucleosomes. We report unique variant
combinations that induce large-scale alterations in the structure, dynamics, and the DNA affinity of nucleosomes,
suggestive of potential roles in the context of DNA-templated processes in health and in disease.

© 2025 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY 4.0 license (https://creativecommons.org/licenses/by/4.0)
Peer-review under responsibility of the scientific committee of the Proceedings of the Third EuroHPC user day

Keywords: nucleosome; molecular dynamics; computational biophysics

* Corresponding author. ORCID: https://orcid.org/0000-0001-7903-8543
E-mail address: seyit.kale@ibg.edu.tr

1877-0509 © 2025 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY 4.0 license (https://creativecommons.org/licenses/by/4.0)
Peer-review under responsibility of the scientific committee of the Proceedings of the Third EuroHPC user day
10.1016/j.procs.2025.08.246

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2025.08.246&domain=pdf

198 Hatice Doseme et al. / Procedia Computer Science 267 (2025) 197-206

1. Introduction

Our genomic material is packed into a fiber known as chromatin whose smallest repeating architectural unit is
a disc-shaped nucleoprotein known as the nucleosome [1]. Nucleosomes are dynamic entities whose conformation,
stability, and DNA-binding properties can be altered through multiple mechanisms, such as incorporating different
histone variants and post-translational modifications (PTMs). A nucleosome is composed of ~147bp of DNA wrapped
around a core octamer of protein components known as histones (Fig. 1A). These histones are known as H3, H4, H2A,
and H2B [1].

While the intricate interplay between the nucleosome and its interactors orchestrates all DNA-templated
processes, a key question remains: how do specific histone isoforms contribute to this complex choreography? Our
current understanding on nucleosomes based on three-decades of structural studies points to the fact that while the average
architecture of nucleosomes is largely the same, their functional properties could be very diverse. This diversity could be
imprinted in dynamics which could be fundamental to various complex functions such as transcription, replication, DNA-
repair, and cell fate alteration [2].

Histone diversity is most pronounced in the two evolutionarily youngest histones, H2A and H2B [3] where
certain pairs show preferential pairing, resulting in a wide range of alternative combinations and raising the diversity of
potential nucleosome configurations (Fig. 1B). Furthermore, the H2A:H2B dimer becomes a unique functional unit that
can be recognized and replaced by chaperones and chromatin remodelers [3]. DNA can be compacted and arranged in
the nucleus with the help of the H2A:H2B dimers which anchor DNA around the nucleosome core [26]. The dimer unit
can assemble independently, and it can remain stable even while the nucleosome unwinds along the DNA termini. This
complex interaction highlights how flexible and adaptive chromatin architecture is, offering a dynamic foundation for
controlling gene expression and cellular identity in a variety of biological situations [4]. Furthermore, the H2A:H2B
dimer is stable during nucleosome unwinding, can assemble independently, and can be identified and replaced by
chaperones or remodelers as a single unit. The main H2A variants are H2A. X, H2A.Z, macroH2A, H2A.B, H2A.J,
TSH2A.1 and H2A.L. H2B variants are TSH2B, H2B.W1, subH2B and H2B.E [27].

Recent work using cutting-edge techniques like atomistic simulations and detailed structural analyses is
revealing a more dynamic and potentially asymmetric crosstalk between DNA and histone proteins [5]. We have observed
H2A variants acting as intrinsic DNA unwinders, and this behavior is further amplified when combined with CENP-A,
the centromere-specific isoform of histone H3. CENP-A presence confers the nucleosome a more flexible and open
conformation which is critical for the mitotic fidelity [28] and the assembly of the inner kinetochore [30]. Thus, the
simpler interaction of various kinetochore protein components, especially the CCAN (Constitutive Centromere-
Associated Network), facilitates the proper establishment of the inner kinetochore [28]. Among these isoforms, H2A.Bbd
and H2A.B are particularly intriguing because the DNA unwinding can also be coupled with opening of nucleosome
gyres away from each other. These dynamic behaviors can be understandably difficult to capture via structural studies
alone, highlighting the importance of high-performance computational approaches in fields such as chromatin and
epigenetics where wet-lab experiments can be challenging and expensive.

1.1 Widom 601 and Widom 601L. DNA Sequences

The 147-base pair long DNA sequence known as Widom 601 was developed through plasmid selection with
the goal of finding the sequence with the highest affinity for the histone core octamer [6]. This property ensures that
nucleosomes can be stably reconstituted in various settings, making it a frequently used sequence in the structural studies
of chromatin. The Widom 601 sequence is non-palindromic and one half of this sequence binds the nucleosome more
strongly than the other half as inferred from single molecule pulling experiments [31,32]. With respect to the sense
strand of the sequence, the “strong” half precedes the “weak” half of the Widom 601 sequence. More recently, a
palindromic version of this sequence, known as Widom 601L, has been developed where both halves carry the same

sequence of the original Widom 601 sequence’s “strong” half. This new sequence has been shown to confer structural
and dynamic implications in the way linker histone H1 binds the nucleosome [28].

1.2. Histone-DNA interactions

There are several hundred water-mediated interactions and more than 120 direct protein-DNA interactions in
the nucleosome. Direct protein-DNA interactions are found at specific locations on the octamer surface, particularly near
regions facing the DNA minor grooves. Histone interfaces with DNA are formed by salt linkages, hydrogen bonds
between sidechain basically charged groups and hydroxyls, and main-chain amides with the DNA backbone phosphates

Hatice Doseme et al. / Procedia Computer Science 267 (2025) 197-206 199

[7]. Different combinations of these local interactions contribute to sequence and pattern specific recognition of DNA by
histone core octamers. Despite their propensity to favor certain DNA sequences over others, nucleosomes can bind to
almost any sequence, in part thanks to the flexibility of water-mediated connections. The DNA inside the nucleosome
core is distorted by the strength and placement of DNA-binding sites around the octamer surface [8].

Fig. 1. A. Front (left) and side (right) views of the crystal structure of the nucleosome core particle consisting of H2A, H2B, H3, and H4 core histones,
and DNA. B. Schematic representation of behavior alteration by the exchange of histone isoform pairs. Note the schematic representation of the
conformational changes in DNA termini.

1.3. Histone variants

The macromolecular construction known as eukaryotic chromatin is extremely dynamic. Chromatin
remodeling complexes that introduce PTMs to the core histones can alter the location, composition, and structure of
nucleosome core particles. Histone variants can also be incorporated to alter the higher order three-dimensional form of
the chromatin fiber [10][11]. Sequence alignment of between CENP-A and the canonical H2A suggests approximately
50% sequence conservation. In comparison, H2A isoforms H2A.B and H2A.Bbd differ from their canonical counterparts
in 3% and 9%, respectively.

1.3.1. Isoforms of H2A

The highest variety among core histone isoforms is found in the H2A histone family. These variations are
particularly pronounced in their distinct C-terminal sequences and in the way they are positioned on chromosomes.
Examples of these include the globally dispersed H2A.Z and H2A.X, as well as the vertebrate-specific H2A.B, and
H2A Bbd, and macroH2A. H2A.Z contributes to gene activation by preventing the spread of yeast gene silencing. The
truncated C-terminal tail of H2A.Bbd, which is linked to active genes and lacking from inactive X chromosomes, causes
nucleosomes to become unstable. The precise process of silencing macroH2A, which is concentrated on inactive X
chromosomes, is unknown, however, it has a sizable non-histone domain that may have enzymatic activity. At DNA
breaks, phosphorylation of H2A.X, identified by a particular C-terminal pattern, facilitates the recruitment of DNA repair
proteins [10].

+ H2A.Bbd
Evidence points to the promotion of elevated gene activity by H2A.Bbd-containing nucleosomes. Compared to
canonical nucleosomes, these particles are less stable and wrap lesser DNA at their termini, which may increase
DNA accessibility. Supporting this behavior, H2A.Bbd nucleosome arrays exhibit increased transcription rates
in in vitro studies. Finally, H2A.Bbd is shown to have quicker nucleosome exchange in living cells, an indicator
of active transcription [14].

200 Hatice Doseme et al. / Procedia Computer Science 267 (2025) 197-206

« H2AB
The mammalian-specific histone variant H2A.B is particularly prevalent in testes and is implicated in the
production of sperm and embryos as well as development of various tumors. This variant's presence at replication
forks of actively transcribed genes, and DNA repair sites suggests that it could be involved in DNA damage
response, RNA processing, gene regulation, and cell division. Therefore, in contrast to normal H2A
nucleosomes, H2A .B-containing nucleosomes probably use novel regulatory mechanisms [13].

1.3.2. Isoforms of H3

Histone H3, a crucial part of eukaryotic chromatin, aids in the synthesis of nucleosomes through its long N-
terminal tail and globular domain. Among all histone proteins, H3 notably experiences the greatest post-
translational modifications. In humans and other eukaryotes, the CENP-A protein, encoded by the CENP-A
gene, plays a crucial role in defining kinetochore location on chromosomes by acting as a variant of histone H3
[15].

+ CENP-A
CENP-A is essential for centromere identification because it identifies the precise spot on each chromosome
where the kinetochore assembles. Where sister chromatids join during mitosis is ultimately determined by this
core particle [28]. CENP-A containing nucleosomes constitute a constant part of centromeres and is frequently
linked to changes in normal histone proteins. CENPA is essentially a modified form of histone H3 that takes
the place of normal H3. With extensive sequence diversity and no common histone modification sites on its
N-terminal tail, it differs greatly from conventional H3 [16].

2. Materials and Methods

We retrieved the atomic coordinates of five nucleosome structures from the Protein Data Bank (PDB) and AlphaFold [9].
These structures are: 1- Canonical Nucleosome (PDB ID: 3LZ0 [17]), 2- H2A.Bbd:CENP-A-containing nucleosome
(AlphaFold and PDB ID: 6TEM [16]), 3-H2A .B:CENP-A-containing nucleosome (PDB IDs: 6V2K [12], 6TEM [16]),
4-H2A.B:CENP-A-containing nucleosome and 5-Widom601L-H2A.B:CENP-A nucleosome (PDB IDs: 8AAG [29],
6M4H [13], and 6TEM [16]) (Fig. 2). Each nucleosome structure was simulated as three independent replicates. In each
complex, we elongated the nucleosomal DNA ends such that in the final constructs there are symmetrically positioned
149 base pairs of DNA. To ensure that every complex has the same original Widom 601 DNA sequence, we modified
mutated single base pairs using the Web 3DNA web server. We used PyMOL and SuperLooper2 to correct missing flexible
protein loops. Each structure was solvated in a cubic water box in the presence of 161.5 mM NaCl. The physiological salt
concentrations that are replicated in wet-lab investigations using PBS solution are reflected in the selection of the NaCl
content. Subroutines of the GROMACS software, version 2024.2 [18], were used to introduce the ions. We described the
biological material and the solvent environment using CHARMM36m [19][20] force field and the OPC water model [21],
respectively. Experimental agreement in our previous research utilizing the nucleosome core particle supports the choice
of this force field and water model combination. We collected production trajectories for each complex using GROMACS
version 2024.2 [18]. Each system was first energy minimized by combining the conjugate gradient and steepest descent
methods. Following energy minimization, the systems were equilibrated for 1 ns at 100 K and 310 K in the NVT ensemble,
followed by the NPT ensemble at 310K and 1 atm production trajectories phase for all four nucleosomal systems using
an integration timestep of 2 fs and to a total of 500 ns. Three combinations of histone variants were chosen for statistical
validation, and they were rerun in two copies, each 500 ns long, using different initial random number seeds. The
Parrinello-Rahman barostat [22][24] and the velocity-rescaling thermostat [23] are used to maintain constant pressure
and temperature, respectively. To predict protein-protein binding affinities, we used a heuristic regression model known
as Prodigy which uses a contact-based model that examines surface characteristics and intermolecular interactions [25].
While maintaining the original physical model of Prodigy, we modified the computation pipeline such that affinity
calculation is computed for all recorded frames of a trajectory. This allowed us to improve the statistical reliability of the
prediction while preserving the underlying model. To supplement computed affinities, we also counted the number of
proximal non-hydrogen atom pairs to assess relative binding strengths. A distance threshold of 5 A between non-hydrogen
atoms is considered a proximal contact. PyMOL, VMD, and Python scripts are used to perform all analyses. To assess
gaping motion within the nucleosomes inter-gyre separation analysis is performed by calculating distance between the
mass centers of opposing nucleosomal local DNA segments. Each DNA segment is 10 or 20 base pairs long. The
computation of the posterior, i.e., bottom, gyre opening involved the distance between the mass center of base pairs —45

Hatice Doseme et al. / Procedia Computer Science 267 (2025) 197-206 201

to —35 with the mass center of base pairs +35 to +45. The computation of the strong side opening involved the distance
between the mass center of base pairs —65 to —45 with the mass center of base pairs +15 to +35. The computation of the
weak side opening involved the distance between the mass center of base pairs —35 to —15 with the mass center of base
pairs +45 to +65. Base pair indices follow the sense strand and span from —74 to +74.

Fig. 2. Representative snapshots of three simulations with initial (time = 0, black DNA), midpoint (time = 250 nanoseconds, dark gray DNA), and final
(time = 500 nanoseconds, light gray DNA) states of the H2A.B:CENP-A-containing nucleosome (A, starting PDB IDs: 6V2K [12], 6TEM [16]),
H2A.B:CENP-A-containing nucleosome (B, starting PDB IDs: 6M4H [13], 6TEM [16]), and H2A.Bbd:CENP-A-containing nucleosome (C, AlphaFold
and starting PDB ID: 6TEM [16]). These structures have a Widom601 DNA sequence (A, B, and C). D. Representative snapshots of the H2A.B:CENP-
A containing nucleosome with Widom601L DNA sequence. Starting PDB IDs for this setup are SAAG, 6M4H, and 6TEM.

3. RESULTS
3.1. H2A.B:CENP-A-containing nucleosome exhibits strong tetramer-dimer stability

As a measure of core particle stability, we investigated the interactions between the core tetramer units (i.e.,
H3 and H4, or their isoforms) and the core dimer units (i.e., H2A and H2B, or their isoforms). Contact analysis of the
nucleosome structures containing canonical histone and histone variant combinations, along with their replicas, revealed
consistent structural results. Root Mean Square Deviation (RMSD) analysis for the canonical nucleosome replicates
(both histone core and DNA) suggested that the simulations reach equilibrium sufficiently well over the course of the
simulation timescales (Supplementary Fig. 1).

We found that the strongest interaction was observed between the tetramer-dimer proteins within the
H2A.B:CENP-A nucleosome structure (Fig. 3A). This observation is supported by distance analysis, where the
H2A.B:CENP-A combination displayed the shortest distances, reflecting a strong interaction between the protein
components (Fig. 3B). Binding affinity calculations showed that the average binding affinity for the canonical
nucleosome was approximately —25 kcal/mol. The H2A .B:CENP-A nucleosome exhibited the closest binding affinity
to this value, further supporting a robust interaction between the tetramer-dimer histones (Fig. 3C). These findings
suggest that there is minimal separation between the histone proteins in the H2A.B:CENP-A nucleosome, indicating
that the protein-protein interactions within this combination are strong and stable (Supplementary Fig. 2).

202 Hatice Doseme et al. / Procedia Computer Science 267 (2025) 197-206

Tetramer-Dimer Interactions

450 A
+ 400
c
3
O 350+
-t
(o)
© 300+
c
o
O 250
200+
150 -
Tetramer-Dimer Distance
22 B Il Canonical Nucleosome 1st
I Canonical Nucleosome 2nd
214 I Canonical Nucleosome 3rd
— I H2A.B:CENP-A 1st (6M4H)
“S [H2A.B:CENP-A 2nd (6M4H)
Y20 BN H2A.B:CENP-A 3rd (6M4H)
% 0 H2A.Bbd:CENP-A 1st
Z 19 I H2A.Bbd:CENP-A 2nd
o I H2A.Bbd:CENP-A 3rd
[0 H2A.B:CENP-A 1st (6V2K)
18 I H2A.B:CENP-A 2nd (6V2K)
[H2A.B:CENP-A 3rd (6V2K)
171
Tetramer-Dimer Affinity
-12.54
—-15.04
T -17.54
o
E —-20.04
©
o
£ —22.54
>
=
£ —=25.01
=
<
—-27.54
—30.04

Fig. 3. Average contacts (A) and distances (B) between the heavy atoms of the tetramer and dimer structures. C. Computed tetramer-dimer affinities
of H2A:H3 histone variant combinations.

3.2. Chimeric nucleosomes exhibit inter-gyre gaping motion

Chimeric nucleosomes containing H2A.B or H2A.Bbd in conjunction with CENP-A can undergo large-scale
conformational changes as inferred from our structural analyses of the molecular dynamics trajectories. While it is well-
known that DNA termini can spontaneously open and close within multi-millisecond timescales [33] there is evidence
of a slower collective motion within nucleosomes whereby DNA halves, or “gyres”, can spontanecously separate from
each other and later return back [34]. These motions are known as breathing and gaping, respectively, and they are
generally not exhibited by the canonical nucleosome in significant amplitudes [2]. The chimeric nucleosomes
considered in this study exhibit both types of motions in noticeable and varying degrees.

Hatice Doseme et al. / Procedia Computer Science 267 (2025) 197-206 203

Our findings demonstrate that the DNA gyres in these chimeric nucleosomes exhibit noticeable gaping motion,
either sideways (on the “weak” side or the “strong” side of the Widom 601 nucleosome) or posterior (from the bottom,
opposite the dyad). This behavior, which is virtually absent in the canonical nucleosomes, suggests that the histone
variant combinations can introduce a special type of flexibility to the global nucleosome. These conformational changes
imply that these isoforms may support less understood chromatin functions compared to the traditional physiological
roles of chromatin such as transcriptional activation, silencing, or DNA repair (Fig. 4).

A Inter-gyre separation (strong end)
we_Canonical Nucleosome 1st
© 0.4 wem=_Canonical Nucleosome 2nd
g w==_Canonical Nucleosome 3rd
o = H2A.B:CENP-A 1st (6M4H)
= 0.3 H2A.B:CENP-A 2nd (6M4H)
3 —— H2A.B:CENP-A 3rd (6M4H)
o H2A.Bbd:CENP-A 1st
o 0.24 = H2A.Bbd:CENP-A 2nd
g™ —— H2A.Bbd:CENP-A 3rd
S H2A.B:CENP-A 1st (6V2K)
o == H2A.B:CENP-A 2nd (6V2K)
© 0.1 H2A.B:CENP-A 3rd (6V2K)
o
0.0+ . \
35 40 45 50 55 60
Distance (A)
B
Inter-gyre separation (posterior)
wem=_Canonical Nucleosome 1st
w m=m=_Canonical Nucleosome 2nd
© 0.4 === Canonical Nucleosome 3rd
g = H2A.B:CENP-A 1st (6M4H)
= | H2A.B:CENP-A 2nd (6M4H)
2 0.3 —— H2A.B:CENP-A 3rd (6M4H)
o A\ H2A.Bbd:CENP-A 1st
o == H2A.Bbd:CENP-A 2nd
g 0.2 = H2A.Bbd:CENP-A 3rd
=1 H2A.B:CENP-A 1st (6V2K)
o == H2A.B:CENP-A 2nd (6V2K)
g 0.1 //_ H2A.B:CENP-A 3rd (6V2K)
0.0 - / . = - -
225 25.0 27.5 30.0 32.5 35.0 37.5 40.0
Distance (A)
Inter-gyre separation (weak end)
0.5 me=_Canonical Nucleosome 1st
o we=_Canonical Nucleosome 2nd
k‘.:J 0.44 === Canonical Nucleosome 3rd
Q : == H2A.B:CENP-A 1st (6M4H)
= H2A.B:CENP-A 2nd (6M4H)
a 0.3 === H2A.B:CENP-A 3rd (6M4H)
1% (H2A.Bbd:CENP-A 1st
o == H2A.Bbd:CENP-A 2nd
g 0.24 = H2A.Bbd:CENP-A 3rd
) H2A.B:CENP-A 1st (6V2K)
o = H2A.B:CENP-A 2nd (6V2K)
g 0.14 H2A.B:CENP-A 3rd (6V2K)
Y
0.0 T lé y T T T
20 30 4 50 60 70

0
Distance (A)

Fig. 4. Nucleosome inter-gyre separations at three sides: left side (A), from below (B), and right side (C) in nucleosome combinations containing
various H2A:H3 histone variant combinations.

3.3. Chimeric nucleosomes exhibit symmetrical and asymmetrical opening of DNA termini

The chimeric nucleosomes containing H2A isoforms in combination with the CENP-A nucleosome also
exhibit both symmetrical and asymmetrical opening of DNA ends of the Widom sequence. When examining the
canonical nucleosome structures formed by various H2A:CENP-A combinations, the greatest degree of DNA arm
opening was observed in the H2A.Bbd:CENPA complex in the form of large-scale symmetrical opening to the extent
of several superhelical turns (Fig. SA-B-C). This suggests that this core octamer has the lowest DNA affinity of the
chimeric combinations we studied here. In contrast, H2A.B presence leads to a similar degree of DNA end opening
albeit asymmetrically, i.e., on one end only (Fig. SD-E-F). This degree of DNA termini opening is not seen in the
control canonical nucleosome simulation. Chimeric nucleosomes containing CENP-A and H2A.B were simulated using
the palindromic Widom 601L DNA sequence. Our findings were further supported by the observation of both
symmetrical and asymmetrical unwrapping of the DNA arms in these nucleosomes, which is consistent with our
previous result using the canonical Widom 601 DNA sequence (Supplementary Fig. 3).

204 Hatice Doseme et al. / Procedia Computer Science 267 (2025) 197-206

,
<

=

Distance (A)

-150 -100 -50 0 50 100 150 -150 -100 -50 0 50 100 150
Distance (A)

Distance (A)

H2A B:CENP-A (6M4H)

-150 -100 -50 0 50 100 150 -150 -100 -50 0 50 100
Distance (A) Distance (A)

Fig. 5. Traces of unfolding DNA in different nucleosomes. A-B. H2A.Bbd:CENP-A-containing (purple) versus the canonical nucleosome (orange). C.
H2A.Bbd:CENP-A-containing (purple) nucleosome with phosphate groups represented as spheres. D-E. H2A.B:CENP-A-containing versus the
canonical nucleosome. F. H2A .B:CENP-A-containing nucleosome with phosphate groups represented as spheres. Traces are computed over base-pair
mass centers.

4. Discussion, Future Remarks and Conclusion

In this study, we used atomistic molecular dynamics simulations to study the potential effects of combining
select isoforms of H2A and the centromere-specific H3 isoform, CENP-A, on nucleosome structure and DNA
accessibility. Some of these histone isoform combinations improve chromatin accessibility or core octamer stability in
pronounced ways which could be implicated in fundamental physiological processes such as transcription, DNA repair,
and chromatin remodeling. These findings imply that these specific combinations of histone variants might be an
understudied topic of chromatin regulation. It is yet to be elucidated whether such histone isoform combinations could
arise spontaneously in nature. Finding allosteric variant combinations and examining their effects on chromatin dynamics
and cellular functions should be the focus of future research. Furthermore, research should look at how these combinations
respond to different physiological conditions and whether they serve as chromatin-associated protein regulatory switches.
Gaining knowledge of the entire range of these variant combinations and their functional roles could deepen our
understanding of epigenetic mechanisms and offer fresh perspectives on the dynamic and structural regulation of the
genome.

Acknowledgments

This work was supported by the EMBO Installation Grant no 5056 (awarded to S.K., available by partial funds
provided by TUBITAK). MD trajectories are generated and analyzed using the high-performance computing resources
provided by the Izmir Biomedicine and Genome Center, TUBITAK ULAKBIM High Performance and Grid Computing
Center (TRUBA resources), and the Spanish National Supercomputer MareNostrumS5. Access to MareNostrum5 was
provided by the EuroHPC-AI and Data-Intensive Applications Access Call (EHPC-AI-2024A01-088, awarded to S.K.).
The numerical analyses reported in this paper were partially performed at Izmir Biomedicine and Genome Center.
Financial support by TUBITAK does not mean that the content of the publication has been approved in a scientific
sense by TUBITAK.

Hatice Doseme et al. / Procedia Computer Science 267 (2025) 197-206 205

Data Availability

Supplementary Figures and the data utilized in this study, including molecular dynamics input, topology and
parameter files can be accessed on Zenodo (under https://doi.org/10.5281/zenodo.15809079, doi: 10.5281/
zenodo.15809079).

Supplementary Figure 1: RMSDs of histone core proteins (A), and nucleosomal DNA (B) over the 500 ns long
trajectories.

Supplementary Figure 2: Average contacts (A) and distances (B) between the heavy atoms of the tetramer and dimer
structures. (C) Computed tetramer-dimer affinities of histone variant combinations.

Supplementary Figure 3: Traces of unfolding DNA in different nucleosomes. A-B. H2A.B:CENP-A-containing
(purple) with Widom601L DNA versus the canonical nucleosome (orange). C. H2A.B:CENP-A-containing (purple)
nucleosome with phosphate groups represented as spheres. D-E. H2A.B:CENP-A-containing versus the canonical
nucleosome. F. H2A.B:CENP-A-containing nucleosome with phosphate groups represented as spheres. Traces are
computed over base-pair mass centers.

References

[1] Luger, K., Mé Der, A. W., Richmond, R. K., Sargent, D. F., & Richmond, T. J. (1997). Crystal structure of the
nucleosome core particle at 2.8 A ° resolution. In Nature © Macmillan Publishers Ltd (Vol. 389).

[2] Shaytan, A. K., Armeev, G. A., Goncearenco, A., Zhurkin, V. B., Landsman, D., & Panchenko, A. R. (2016).
Coupling between Histone Conformations and DNA Geometry in Nucleosomes on a Microsecond Timescale: Atomistic
Insights into Nucleosome Functions. Journal of Molecular Biology, 428(1), 221-237.
https://doi.org/10.1016/j.jmb.2015.12.004

[3] Shaytan, A. K., Landsman, D., & Panchenko, A. R. (2015). Nucleosome adaptability conferred by sequence and
structural variations in histone H2A-H2B dimers. In Current Opinion in Structural Biology (Vol. 32, pp. 48-57).
Elsevier Ltd. https://doi.org/10.1016/j.sbi.2015.02.004

[4] Luger, K., Dechassa, M. L., & Tremethick, D. J. (2012). New insights into nucleosome and chromatin structure: An
ordered state or a disordered affair? In Nature Reviews Molecular Cell Biology (Vol. 13, Issue 7, pp. 436-447).
https://doi.org/10.1038/nrm3382

[5] Boopathi, R., Danev, R., Khoshouei, M., Kale, S., Nahata, S., Ramos, L., Angelov, D., Dimitrov, S., Hamiche, A.,
Petosa, C., & Bednar, J. (2020). Phase-plate cryo-EM structure of the Widom 601 CENP-A nucleosome core particle
reveals differential flexibility of the DNA ends. Nucleic Acids Research, 48(10), 5735-5748.
https://doi.org/10.1093/NAR/GKAA246

[6] Lowary, P. T., & Widom, J. (n.d.). New DNA Sequence Rules for High Affinity Binding to Histone Octamer and
Sequence-directed Nucleosome Positioning.

[7] Segal, E., Fondufe-Mittendorf, Y., Chen, L., Thastrom, A., Field, Y., Moore, 1. K., Wang, J. P. Z., & Widom, J.
(2006). A genomic code for nucleosome positioning. Nature, 442(7104), 772—778. https://doi.org/10.1038/nature04979
[8] Davey, C. A., Sargent, D. F., Luger, K., Maeder, A. W., & Richmond, T. J. (2002). Solvent mediated interactions
in the structure of the nucleosome core particle at 1.9 A resolution. Journal of Molecular Biology, 319(5), 1097-1113.
https://doi.org/10.1016/S0022-2836(02)00386-8

[9] Jumper, J., Evans, R., Pritzel, A. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596,
583-589 (2021). https://doi.org/10.1038/s41586-021-03819-2

[10] Marifio-Ramirez, L., Kann, M. G., Shoemaker, B. A., & Landsman, D. (2007). Histone structure and nucleosome
stability NIH Public Access.

[11] Zhou, B. R., Feng, H., Kale, S., Fox, T., Khant, H., de Val, N., Ghirlando, R., Panchenko, A. R., & Bai, Y. (2021).
Distinct Structures and Dynamics of Chromatosomes with Different Human Linker Histone Isoforms. Molecular
cell, 81(1), 166—182.e6. https://doi.org/10.1016/j.molcel.2020.10.038

[12] Zhou, M., Dai, L., Li, C., Shi, L., Huang, Y., Guo, Z., Wu, F., Zhu, P., & Zhou, Z. (2021). Structural basis of
nucleosome dynamics modulation by histone variants H2A.B and H2A.Z.2.2. The EMBO Journal, 40(1).
https://doi.org/10.15252/embj.2020105907

[13] Hirano, R., Arimura, Y., Kujirai, T., Shibata, M., Okuda, A., Morishima, K., Inoue, R., Sugiyama, M., &
Kurumizaka, H. (2021). Histone variant H2A.B-H2B dimers are spontaneously exchanged with canonical H2A-H2B in
the nucleosome. Communications Biology, 4(1). https://doi.org/10.1038/s42003-021-01707-z

206 Hatice Doseme et al. / Procedia Computer Science 267 (2025) 197-206

[14] Bao, Y., Konesky, K., Park, Y. J., Rosu, S., Dyer, P. N., Rangasamy, D., Tremethick, D. J., Laybourn, P. J., &
Luger, K. (2004). Nucleosomes containing the histone variant H2A.Bbd organize only 118 base pairs of DNA. EMBO
Journal, 23(16), 3314-3324. https://doi.org/10.1038/sj.emboj.7600316

[15] Rosenfeld, J. A., Wang, Z., Schones, D. E., Zhao, K., DeSalle, R., & Zhang, M. Q. (2009). Determination of
enriched histone modifications in non-genic portions of the human genome. BMC Genomics, 10.
https://doi.org/10.1186/1471-2164-10-143

[16] Boopathi, R., Danev, R., Khoshouei, M., Kale, S., Nahata, S., Ramos, L., Angelov, D., Dimitrov, S., Hamiche, A.,
Petosa, C., & Bednar, J. (2021). Phase-plate cryo-EM structure of the Widom 601 CENP-A nucleosome core particle
reveals differential flexibility of the DNA ends. Nucleic Acids Research, 48(10), 5735-5748.
https://doi.org/10.1093/NAR/GKAA246

[17] Vasudevan, D., Chua, E. Y. D., & Davey, C. A. (2010). Crystal Structures of Nucleosome Core Particles Containing
the “601” Strong Positioning Sequence. Journal of Molecular Biology, 403(1), 1-10.
https://doi.org/10.1016/j.jmb.2010.08.039

[18] Van der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A.E., Berendsen, H.J.C., (2005). GROMACS: fast,
flexible, and free. J. Comput. Chem., 26, 1701-1718.

[19] Best, R.B., Zhu, X., Shim, J., Lopes, P.E.M., Mittal, J., Feig, M., et al., (2012). Optimization of the additive
CHARMM allatom protein force field targeting improved sampling of the backbone phi, psi and side-chain chi(1) and
chi(2) dihedral angles. J. Chem Theory Comput., 8, 3257 -3273.

[20] Huang, J., Rauscher, S., Nawrocki, G., Ran, T., Feig, M., de Groot, B.L., et al., (2017). CHARMM36m: an
improved force field for folded and intrinsically disordered proteins. Nature Methods, 14, 71-73.

[21] Izadi, S., Anandakrishnan, R., Onufriev, A.V., (2014). Building water models: a different approach. J. Phys. Chem.
Letters, 5, 3863-3871.

[22] Dogan, D., Arslan, M., Ulugay, T., Kalyoncu, S., Dimitrov, S., and Kale, S. (2021). CENP-A Nucleosome is a
Sensitive Allosteric Scaffold for DNA and Chromatin Factors. J Mol Biol 433. 10.1016/j.jmb.2020.166789.

[23] Bussi G, Donadio D, Parrinello M. Canonical sampling through velocity rescaling.J Chem Phys.
2007;126(1):014101. doi:10.1063/1.2408420

[24] Parrinello, M., Rahman, A., (1981). Polymorphic transitions in single-crystals - a new molecular-dynamics method.
J.Appl. Phys., 52, 7182-7190.

[25] Xue LC, Rodrigues JP, Kastritis PL, Bonvin AM, Vangone A. PRODIGY: a web server for predicting the binding
affinity of protein-protein complexes. Bioinformatics. 2016;32(23):3676-3678. doi:10.1093/bioinformatics/btw5

[26] Hirano, R., Arimura, Y., Kujirai, T., Shibata, M., Okuda, A., Morishima, K., Inoue, R., Sugiyama, M., &
Kurumizaka, H. (2021). Histone variant H2A.B-H2B dimers are spontaneously exchanged with canonical H2A-H2B in
the nucleosome. Communications biology, 4(1), 191. https://doi.org/10.1038/s42003-021-01707-z

[27] Shaytan, A. K., Landsman, D., & Panchenko, A. R. (2015). Nucleosome adaptability conferred by sequence and
structural variations in histone H2A-H2B dimers. Current opinion in structural biology, 32, 48-57.
https://doi.org/10.1016/j.sbi.2015.02.004

[28] Kale, S., Boopathi, R., Belotti, E., Lone, I. N., Graies, M., Schréder, M., Petrova, M., Papin, C., Bednar, J.,
Ugrinova, 1., Hamiche, A., & Dimitrov, S. (2023). The CENP-A nucleosome: where and when it happens during the
inner kinetochore's assembly. Trends in biochemical sciences, 48(10), 849—
859.https://doi.org/10.1016/.tibs.2023.07.010

[29] Louro, J. A., Boopathi, R., Beinsteiner, B., Mohideen Patel, A. K., Cheng, T. C., Angelov, D., Hamiche, A., Bendar,
J.,Kale, S., Klaholz, B. P., & Dimitrov,S. (2023). Nucleosome dyad determines the H1 C-terminus collapse on distinct
DNA arms. Structure (London, England : 1993), 31(2), 201-212.¢5. https://doi.org/10.1016/j.str.2022.12.005

[30] Roulland, Y., Ouararhni, K., Naidenov, M., Ramos, L., Shuaib, M., Syed, S. H., Lone, I. N., Boopathi, R., Fontaine,
E., Papai, G., Tachiwana, H.,Gautier,T., Skoufias, D., Padmanabhan, K., Bednar, J., Kurumizaka, H., Schultz, P.,
Angelov, D., Hamiche, A., & Dimitrov, S. (2016). The Flexible Ends of CENP-A Nucleosome Are Required for Mitotic
Fidelity. Molecular cell, 63(4), 674—685. https://doi.org/10.1016/j.molcel.2016.06.023

[31] Ngo, T. T., Zhang, Q., Zhou, R., Yodh, J. G., & Ha, T. (2015). Asymmetric unwrapping of nucleosomes under
tension directed by DNA local flexibility. Cell, 160(6), 1135—1144. https://doi.org/10.1016/j.cell.2015.02.001

[32] Gansen, A., Felekyan, S., Kithnemuth, R., Lehmann, K., Toth, K., Seidel, C. A. M., & Langowski, J. (2018). High
precision FRET studies reveal reversible transitions in nucleosomes between microseconds and minutes. Nature
communications, 9(1), 4628. https://doi.org/10.1038/s41467-018-06758-1

[33] Li, G., Levitus, M., Bustamante, C., & Widom, J. (2005). Rapid spontaneous accessibility of nucleosomal
DNA. Nature structural & molecular biology, 12(1), 46-53. https://doi.org/10.1038/nsmb869

[34] Ngo, T. T., & Ha, T. (2015). Nucleosomes undergo slow spontaneous gaping. Nucleic acids research, 43(8), 3964—
3971. https://doi.org/10.1093/nar/gkv276

Available online at www.sciencedirect.com

ScienceDirect Procedia

Computer Science

CrossMark

Procedia Computer Science 267 (2025) 207-217

www.elsevier.com/locate/procedia

Proceedings of the Third EuroHPC user day

Transforming Computational Power into Environmental
Solutions: HPC-driven Research on Urethanase-mediated
Plastic Degradation

Pedro Paiva*®, Luis M. C. Teixeira*®, Pedro Ferreira®, Daniel E. Otzen®®, Pedro A.
Fernandes®’, Maria J. Ramos®>*

‘LAQV/REQUIMTE, Departamento de Quimica e Bioquimica, Faculdade de Ciéncias Universidade do Porto, Rua do Campo Alegre, s/n, 4169-
007 Porto, Portugal
*EnZync Center for Enzymatic Deconstruction of Thermoset Plastics
‘Interdisciplinary Nanoscience Centre (iNANO), Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 14, DK-
8000, Aarhus, Denmark

Abstract

The extensive accumulation of persistent synthetic polymers has made plastics a rapidly expanding global concern. In this context,
enzymatic degradation offers a viable and environmentally friendly alternative to the conventional plastic recycling methods. Here,
we discuss how multi-microsecond Molecular Dynamics (MD) simulations and hybrid Quantum Mechanics/Molecular Mechanics
(QM/MM) methods have allowed us to shed light on the conformational dynamics and catalytic mechanisms underlying the activity
of the polyurethane-degrading enzymes UMG-SP2 and UMG-SP3. Our findings emphasize the role of these computational
approaches for the identification of the rate-limiting step, stationary states’ geometries, and residue-specific electrostatic effects,
enabling subsequent mutagenesis studies to enhance the efficiency of these urethanases. The access to EuroHPC’s computing
resources was essential to this research, as it allowed the extensive sampling of enzyme:substrate dynamics over large simulation
timescales and the QM/MM-level resolution of the free-energy profile associated with the cleavage of the substrate’s urethane
bond. This work demonstrates the relevant role of HPC-driven research in advancing mechanistic insights and highlights how the
synergy between large-scale computational resources and enzymatic knowledge can enhance our understanding of plastic
biodegradation.

© 2025 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY 4.0 license (https://creativecommons.org/licenses/by/4.0)
Peer-review under responsibility of the scientific committee of the Proceedings of the Third EuroHPC user day

* Corresponding author. Tel.: +351 220 402 000
E-mail address: mjramos@fc.up.pt

1877-0509 © 2025 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY 4.0 license (https://creativecommons.org/licenses/by/4.0)
Peer-review under responsibility of the scientific committee of the Proceedings of the Third EuroHPC user day
10.1016/j.procs.2025.08.247

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2025.08.247&domain=pdf

208 Pedro Paiva et al. / Procedia Computer Science 267 (2025) 207-217

Keywords: Plastic degradation; Polyurethane; Enzyme catalysis; Urethanase; Molecular Dynamics; High-Performance Computing

1. Introduction
1.1. Plastics

Plastics are important polymeric materials used in a huge range of applications, including boat hulls, decks, tanks,
pipes, gratings, and bottles. However, their massively widespread use has resulted in significant global plastic
pollution. Moreover, plastic-derived microplastics are building up in our bodies, and we have no knowledge on the
long-term effects of this accumulation.[1-4]

Current plastic degradation methods pose significant environmental problems. Landfilling requires extensive space
and high costs for land acquisition and maintenance worldwide, while also posing long-term risks of soil and
groundwater contamination due to persistent organic pollutants released from plastic breakdown. Incineration
generates harmful by-products such as polychlorinated biphenyls, mercury, furans, and dioxins, releasing highly toxic
and carcinogenic fumes, which can cause severe threats to both the human health and the environment.[5-8]

Unsaturated polyesters add up to a significant portion of present plastic waste, and since plastics are generally
resistant to total degradation under natural conditions, the finding of plastic-degrading microorganisms offers a
promising solution. While enzymes capable of the depolymerisation of some plastics, such as Polyethylene
Terephthalate (PET), have been identified and extensively studied, those that efficiently depolymerize polyurethanes
(PU) have not yet been as fully researched or characterized.

Unfortunately, the breakdown of synthetic polymers by various microbes occurs at a relatively slow rate, which
makes the biodegradation process impractical for real-time industrial applications. Additionally, most studies have
focused on the biodegradability of individual bacterial strains, whereas in nature, bacteria typically work
synergistically in consortia, as has been observed in various studies.[9]

One promising approach to enhance plastic biodegradability is by increasing the efficiency of the enzymes
responsible for polymer breakdown. Recent advances in computational biology and bioinformatics have played a key
role in unravelling the molecular mechanisms involved in microbial plastic degradation.[10, 11]

1.2. Objectives

Certain microorganisms produce enzymes, such as hydrolases, lipases, and proteases among others, capable of
hydrolysing the structural backbone of plastic polymers, and enzyme engineering has become a valuable strategy,
providing a modern and targeted method to accelerate plastic degradation and address the escalating problem of plastic
waste.[12, 13]

Performing successful enzymatic mechanistic studies, which reveal the transition state structures of the rate-
limiting steps is highly impactful because understanding how to enhance enzyme efficiency relies on the detailed
structural knowledge of those critical rate-limiting steps. We have developed a method capable of predicting mutations
that enhance enzyme activity, that will be used when we have the transition-state structures of the rate-limiting steps
of the enzymatic mechanisms.[14]

Therefore, our end goal was to perform enzymatic catalysis studies conducive to the elucidation of the then-
unknown catalytic mechanisms of two newly discovered urethanases, i.e. thermoset unsaturated polyurethane (PU)-
degrading enzymes UMG-SP2 and UMG-SP3, the latter of which has since been characterised and published in the
PDB and the literature by the consortium En'Zync, of which we are members, funded by the Novo Nordisk Foundation
(https://inano.au.dk/about/research-centers-and-projects/enzync).[15]

Over the past three decades, theoretical calculations have gained increasing importance, mainly due to the
remarkable advancements in computational technology. The fundamental knowledge accumulated in establishing an
enzymatic mechanism holds the potential to contribute uniquely to experiments being conducted to outcompete
classical chemical recycling methods.

Pedro Paiva et al. / Procedia Computer Science 267 (2025) 207-217 209

1.3. Choice of computational methods

Hybrid Quantum Mechanics/Molecular Mechanics (QM/MM) molecular dynamics (MD) with enhanced sampling
is presently the most reliable approach for establishing enzymatic mechanisms.[14, 16, 17]

However, achieving accurate results requires a high-level theoretical QM method. Density functional theory (DFT)
is preferred due to its favourable balance between accuracy and computational cost. Higher-level methods would be
ideal, but they are impractical due to their excessive computational demands. PBE is one of the affordable density
functionals, in this context, used with a double-zeta polarized basis set; theoretical levels lower than this do not yield
robust results.[18]

The rest of the enzyme is described at the molecular mechanics level. An effective way to determine a reaction
mechanism is by using umbrella sampling to compute free energy profiles for the elementary steps of different
mechanistic hypotheses along the relevant reaction coordinates. We have recently shown that this approach is highly
effective for various enzyme reactions, provided that at least 10 ps per umbrella sampling window is performed.[17,
19] However, achieving this necessary level of calculations, requires approximately 0.5 million core hours per free
energy profile. Given that a complete mechanistic study typically involves two to three reaction steps with two possible
mechanistic pathways each, the total computational cost quickly escalates to several million core hours.

To begin with, the initial enzyme structure with adequate protonation states, solvated in water, with the substrate
correctly positioned, must be relaxed using classical MD. These simulations were performed using the open-source
software GROMACSJ[20, 21] due to its excellent computational efficiency and parallelization performance. Each
classical MD simulation lasted 400 ns with multiple replicas to ensure a thorough sampling of the conformational
space. Additionally, we used the CP2K[22] software, equally known for its high computational efficiency and strong
parallelization capabilities, in our QM/MM MD calculations.

1.4. Advances achieved through HPC access

The access to HPC resources is important to drive computational work. Nowadays, computational fields have been
established as relevant due to their capability and versatility. Moreover, the technological and scientific development
of computational methodologies promoted their reliability. Therefore, there is an increased demand for employing
these methods in several fields. The study of enzymes is no stranger to this fact. Indeed, the scientific community
recognized the importance of using computational methods to study these complex biological macromolecules. This
is particularly true for studying their dynamical behaviour, as simulations allow for a more in-depth atomistic analysis.
Nevertheless, this type of analysis requires statistical significance. To achieve this, there is a need for considerable
sampling, allowing the system to explore conformational space. Consequently, computational resources are typically
the bottleneck of these works. Thus, access to HPC resources can significantly aid in overcoming this hurdle, allowing
for greater exploration and, consequently, a deeper understanding of the given system.

On the other hand, the knowledge of enzymatic mechanisms with atomic detail is one of the most relevant targets
in biochemistry. However, in the literature, reaction mechanisms are often described incorrectly by hypothesis or by
similarity to other established reaction mechanisms. Hybrid QM/MM simulations, using DFT at the QM level as well
as good functionals and basis sets, can achieve excellent levels of sampling when running the corresponding
calculations in an HPC, resulting in very accurate and detailed reaction mechanisms.

Herein, we demonstrate the importance of HPC resources and their impact on enzymatic studies. For that, we
showcased how computational methodologies aided in understanding UMG-SP2 and UMG-SP3 dynamic behaviour
and catalytic mechanism.

2. Understanding the Dynamical Behaviours of UMG-SP2 and UMG-SP3
The usefulness of HPC resources was highlighted throughout the studies that we conducted on UMG-SP2 and

UMG-SP3. Studying structural features and stability requires simulating the respective systems for a significant
amount of time. By leveraging the petascale capabilities of the EuroHPC supercomputer MeluXina, we successfully

210 Pedro Paiva et al. / Procedia Computer Science 267 (2025) 207-217

carried out MD simulations for UMG-SP2 and UMG-SP3, collectively exceeding 56 ps of simulation time. These
calculations utilized over 1.2 million CPU core-hours on MeluXina, whose nodes are equipped with dual EPYC 7H12
AMD CPUs, each featuring 64 cores running at 2.6 GHz for a total of 128 cores per node, and 512 GB of RAM.
Multithreading was disabled for all GROMACS runs, as our benchmarks indicated that using one thread per physical
core provided the most efficient configuration for our system. Our simulations confirmed dynamical behaviours
observed experimentally. In addition, they allowed us to sample the conformational space of the enzyme:substrate
complexes, revealing important interactions, and validating the stability of the modelled systems.

Concerning UMG-SP2, several structures have been resolved by X-ray crystallography.[23] This allowed us to
study the stability of structural features exhibited by each state. In all of them, we identified a loop (named L3 loop),
which was present in all structures and played an important role as a gating mechanism for substrate recognition. The
loop encompassed Lys224, which changed its orientation upon substrate binding. In the absence of a ligand, Lys224
adopted an inward arrangement, with its side chain facing the active site. On the other hand, when a ligand was bound
to the enzyme, Lys224 opted for an outward orientation, with its side chain facing the solvent. Interestingly, the same
observations were made regarding UMG-SP3. Once again, multiple structures have been resolved by X-ray
crystallography.[15] The striking difference between these structures was identified as the orientation of Arg209
(equivalent to UMG-SP2’s Lys224), which changed based on the absence or presence of a ligand. In line with UMG-
SP2, the absence of a ligand rendered an inward arrangement (Figure 1A), while its presence promoted an outward
arrangement (Figure 1B). Our simulations confirmed the stability of these structural features and revealed interactions
that stabilized the orientation of Lys224 (UMG-SP2) and Arg209 (UMG-SP3). In the inward orientation, the ligand
established several hydrogen bond interactions with the backbone of the enzyme and nearby residues. In addition, this
orientation resulted in the residue being inserted into a pocket that contained bulky residues (such as Trp and His),
reducing its freedom of movement. The outward orientation was stabilized by several electrostatic and m-cation
interactions. Based on this, it was proposed that L3 was responsible for substrate recognition, with the transition to an
outward arrangement flagging the binding of a substrate. To confirm this, we transferred the inhibitor, present in the
crystallographic UMG-SP3-inhibitor complex, to the ligand-free structure. Accordingly, we observed that Arg209
reoriented to the outward arrangement, confirming that the switch in orientation was triggered by the presence of a
ligand (Figure 1C).

To better understand the role of L3 loop and its impact on catalysis, both enzymes were subjected to a mutagenesis
study, combining both experimental and computational methodologies. Regarding UMG-SP2, four residues of L3
were targeted (Alal41, Lys224, Asp226, and GIn399) to study its influence on the hydrolytic activity of UMG-SP2.
Our MD simulations revealed that the tested mutations should favour catalysis through different contributions: 1)
increase of the L3 loop flexibility due to size reduction and polarity change; ii) rearrangement of L3, promoting a
stable interaction with L4, providing direct access to the active site; and iii) increase of the L3 flexibility due to charge
removal. Ultimately, we expected that a more mobile L3 would improve catalysis. The same conclusions were
withdrawn regarding the UMG-SP3 study. Once again, four L3 residues were targeted (Arg204, Arg209, Gly210, and
Glu211). Our simulations revealed that most mutations promoted a more flexible L3. This was either due to a loss of
stabilizing interactions because of charge removal or size decrease, or due to repulsion caused by charge replacement.
Based on the substrate recognition mechanism, we proposed that a more flexible L3 should render an easily activated
UMG-SP3, enhancing catalysis. Indeed, experimental activity assays revealed that most of these tested mutants
exhibited higher activity when compared to the wild-fype. Through the simulation of each mutated system, we were
able to predict the productivity of a given mutation and provide an explanation. Therefore, in line with the UMG-SP2
study, we proved the utility of employing computational methods and combining them with experimental assays.

Pedro Paiva et al. / Procedia Computer Science 267 (2025) 207-217 211

A) B)
) Glu/lga\('

Trp325 Yf
Arg209
g ’f
Glu211
Arg209

N
\ ~ %

Y) \

¢ Val307 75'Tyr201 Asplge,\f\
His200

\.’*\,

’ \\

Trp8s ! Leu308 - k

v

Serl51 N3
< bl .

Fig. 1. UMG-SP3 active site structural arrangement of the ligand-free (A), inhibitor-bound (B), and altered (C) structure. In all three structures, the
catalytic residues (Lys76, Ser151 and Serl175), Arg209 and L3 loop (lime) are highlighted. Additionally, the interacting residues that stabilize the
inward (A) and outward (B) arrangement of Arg209 are also shown. For the altered structure (C), the positioning of the inward (orange sphere) and
of the outward (blue sphere) arrangement are highlighted. Furthermore, the conformation of Arg209 and L3 at the inhibitor-bound structure (black)
is shown.

Besides studying the dynamical behaviour of structural features, computational simulations are also relevant for
validating computationally modelled complexes. This is particularly relevant when we want to study the catalytic
mechanism of a given enzyme and there is no resolved enzyme:substrate structure. Accordingly, to study the
mechanism of UMG-SP2, we had to model the substrate (DUE-MDA), within the active site, using Molecular
Docking.[24] With the use of well-established distance restrictions, the search algorithm was able to correctly position
the reaction’s key atoms in a favourable orientation. Next, we simulated the modelled UMG-SP2:DUE-MDA complex
system to allow the enzyme and the substrate to adapt to their surrounding environment, and to validate the stability
of the model. The simulation confirmed that the enzyme’s overall fold remained stable. As expected, we observed that
DUE-MDA’s termini exhibited considerable flexibility, although the substrate remained in the active site throughout

212 Pedro Paiva et al. / Procedia Computer Science 267 (2025) 207-217

the simulation. Moreover, the reaction’s key atoms maintained a catalytically favourable orientation, validating our
model.

3. Mechanistic insights into UMG-SP2 urethanase

Our previous MD simulations were instrumental in characterizing the dynamic behaviours of the UMG-SP2 and
UMG-SP3 enzymes. These simulations also provided valuable insights into the enzyme-PU substrate interactions and
offered a deeper understanding of the enhanced depolymerization activity observed in mutant UMG-SP2 and UMG-
SP3 structures. Leveraging this knowledge, we constructed a QM/MM model of the UMG-SP2:DUE-MDA complex
(Figure 2) to investigate the catalytic mechanism of UMG-SP2 involved in urethane/carbamate bond degradation.[25]
While UMG-SP2 shares the same catalytic triad as other enzymes in the Amidase Signature family,[26-28] and despite
previous research on the Ser-Seris-Lys mechanism,[29] the atomistic and energetic details of this process vary across
family members. To our knowledge, this was the first study to disclose the catalytic mechanism of urethane bond
cleavage by amidase signature enzymes, as no prior work had addressed this reaction pathway in atomic detail.

We selected four complementary properties to study the catalysis: 1.the free-energy profiles of each step obtained
from QM/MM calculations, which allow to identify the rate-limiting step of the urethane bond cleavage catalysed by
UMG-SP2; 2.the optimised transition-state structures, which possess a single imaginary frequency associated with
the bond-breaking and bond-forming events in each step; 3.the stabilised, by 1le187/Gly188, classical oxyanion-hole;
4. the electrostatic energy contribution of individual residues to the energy barrier upon systematic in-silico deletion
(149 mutations). Together, these properties capture the thermodynamics, structure and electrostatics of bond-breaking
and bond-forming events, enabling a complete depiction of both acylation and deacylation stages.

—J Ser185

Leu140
G[y184 /

Ser67 Ser190 & '
Ser166,, el © Gly188

y1
Gly165 @ Cly189

Fig. 2. (Left) The QM/MM model used to study the catalytic machinery of UMG-SP2 (9929 atoms, including solvent). The active site cavity is
shown as a bright orange surface (the catalytic triad residues are colored in light blue). The DUE-MDA substrate is shown as orange sticks. Water
molecules are represented in red transparent spheres (hydrogen atoms are not shown). (Right) QM region, composed of 126 atoms, shown in ball-
and-stick representation. The DUE-MDA substrate is colored in orange. The Ser190nuc-Ser166.is-Lys91 catalytic triad’s carbon atoms are colored
in light blue.

Pedro Paiva et al. / Procedia Computer Science 267 (2025) 207-217 213

Our results revealed that the enzymatic cleavage of the urethane bond by UMG-SP2 proceeded through a two-stage
mechanism typical of serine hydrolases: Stage 1 — acylation, and Stage 2 — deacylation.

In the acylation stage, the Ser190..—Ser166.:—Lys91 catalytic triad adopted a geometry that facilitated an efficient
proton relay, activating Ser190.. for nucleophilic attack. The activated serine then concertedly attacked the carbonyl
carbon of the substrate’s target urethane bond, forming a tetrahedral intermediate that collapsed via cleavage of the
ester side of the urethane bond. This reaction released an alcohol-leaving group and yielded an acyl-enzyme complex.
We identified this bond cleavage as the rate-limiting step of the reaction, with an associated activation Gibbs energy
of 20.8 kcal-mol™! (Figure 3).

In Stage 2, a water molecule (Watcat) that occupied the vacant space left by the alcohol-leaving group hydrolysed
the acyl-enzyme intermediate, releasing a highly unstable carbamic acid product, which is known to spontaneously
decompose into an amine and CO-.[30, 31] This final step regenerated the enzyme’s catalytic triad and completed the
reaction cycle. Unlike in Stage 1, we did not observe a stable tetrahedral intermediate during deacylation. Instead, this
geometry appeared only transiently, rapidly decaying into the final product. The hydrolysis step itself involved a
concerted reaction combining multiple asynchronous elementary steps, including the activation of Watca by Ser166.:s
and the nucleophilic attack by the activated Watcat on the carbonyl carbon of the acylated Ser190uuc.

lle187
® - Urethane-bond cleavage 4 i

(?) Gly188 (ester side) % \
k@b 20.8 kcal'-mol™ f :

Ser166, ‘ - Gly189

Lys91

acyl-Ser190_

Reactant State Rate-limiting transition state (TS3)

Fig. 3. Representation of the reactant state (left) and the transition state (TS3, right) of the rate-limiting step of the urethane bond cleavage reaction.
The DUE-MDA substrate is colored in orange, and the Ser190nuc-Ser166.;s-Lys91 catalytic triad’s carbon atoms are colored in light blue.

We computed the full Gibbs free-energy profile of each step at the B3LYP/6-311+G(2d,2p)-D3(BJ):
ff14SB//B3LYP/6-31G(d)-D3(BJ):ff14SB level of theory, identifying all key stationary states. The breakdown of the
tetrahedral intermediate formed during the acylation stage (i.e., the cleavage of the urethane bond by its ester moiety)
emerged as the highest energy barrier in the cycle, suggesting it as the rate-determining step (Figure 3). While it
appears to govern the turnover rate, we acknowledge that real-world factors such as product release and solvent
diffusion could also influence the overall reaction energetics. However, the calculated energy barriers fell within the
experimental range reported for other hydrolases,[32] corroborating the robustness of our model and supporting the
enzyme’s potential for industrial use under mild conditions.

Throughout the reaction, the oxyanion hole, formed by the backbone amides of Ile187 and Gly188, played an
important stabilizing role, particularly in stationary states exhibiting a tetrahedral geometry. We also found that the
catalytic Ser166.is not only participated in proton shuttling processes, directly contributing to the activation of the
nucleophilic Ser190..c, but also appeared to selectively stabilize the ester moiety of the urethane bond, pointing to a
possible role in substrate recognition. These interactions were conserved across catalytically competent conformations
observed in MD simulations, which underscores their functional relevance in enabling UMG-SP2 to form efficient
enzyme-substrate complexes.

214 Pedro Paiva et al. / Procedia Computer Science 267 (2025) 207-217

Building on this mechanistic understanding, we next sought to identify which residues most strongly influenced
the rate-limiting transition state (TS3, Figure 3). To do so, we systematically removed 149 individual residues from
the MM layer and evaluated their impact on the activation barrier through single-point energy calculations. It is
noteworthy that this approach did not account for possible conformational rearrangements following residue removal
and, as such, operated under the assumption that these modifications do not induce significant structural
rearrangements that could compromise the enzyme’s catalytic efficiency. Despite this limitation, this method proved
highly informative in finding residues with significant electrostatic influence over the rate-limiting TS3.

Our results identified several detrimental residues, i.e., those that raised the activation energy when present. These
were primarily positively charged residues located near the nucleophilic Ser190..c, which negatively impacted the
necessary redistribution of electron density during catalysis. In contrast, nearby negatively charged residues tended to
stabilize TS3, lowering the activation energy. Despite being far from the active site, some destabilizing residues
exerted a strong electrostatic influence, emphasizing the important role of long-range interactions in enzyme catalysis.
By demonstrating that eliminating or replacing destabilizing residues close to the active site could improve catalytic
efficiency—more precisely, by reducing the energetic cost of the rate-limiting step—these results made a strong basis
for further rational mutagenesis research. On the other hand, the identified stabilizing residues could serve as anchor
points to introduce mutations aimed at enhancing active site polarization.

We developed a mechanistic basis that extends beyond this single enzyme to other members of the amidase
signature superfamily by unveiling the complete catalytic cycle of UMG-SP2 at the atomic level. Our work provided
detailed insights into the transition-state energetics, substrate stabilization, and active site electrostatics, which are
essential for guiding future enzyme engineering efforts. Furthermore, the gathered results provided the groundwork
for ongoing QM/MM MD studies into the catalytic mechanism of UMG-SP3, a close homolog of UMG-SP2. These
simulations, which require accurate quantum-level assessments of the active site region in a dynamic enzyme
environment, are computationally demanding. They have so far consumed over 3.5 million CPU core-hours on the
petascale EuroHPC supercomputer MeluXina, evidencing the significant resources required to portray the phenomena
behind enzyme catalysis at this resolution. These follow-up studies will help determine whether the structural
differences observed in the MD simulations of UMG-SP3 translate into distinct mechanistic or energetic features.

In summary, our research elucidated the catalytic mechanism of UMG-SP2 and provided a roadmap for improving
its performance through structure-based enzyme engineering. These insights advance the current understanding of
enzymatic urethane bond cleavage and offer concrete strategies for enhancing urethanase activity in biotechnological
applications.

4. Conclusion

Here we present our investigation of the conformational dynamics and catalytic capabilities of the recently
discovered urethanases UMG-SP2 and UMG-SP3. Using multi-microsecond MD simulations across multiple replicas
in combination with hybrid QM/MM calculations, we extensively sampled the enzyme—substrate conformational
landscape.

We built the QM/MM models from high-resolution crystal structures of active urethanases (UMG-SP2, PDB code:
8WDW; UMG-SP3, PDB code: 9FW1) in which the substrate analogue DUE-MDA, a substrate analog that
constituted a fraction analog of a typical polyether-polyurethane polymer, was docked into the active site. The QM
region comprised the catalytic triad, the oxyanion hole stabilizing residues, and the urethane moiety of the substrate
up to four covalent bonds from the scissile urethane bond. Multiple replicas of classical MD confirmed that the
enzyme—substrate complex remained stable and catalytically competent, with a persistent nucleophile-carbonyl
distance around 3.2 + 0.2 A. [25] These criteria ensured that all structural and electronic variables relevant to urethane
bond cleavage were explicitly represented in the model.

This allowed us to characterize, for the first time, the catalytic mechanism of urethane-bond hydrolysis by an
amidase-signature enzyme, identify the key transition states that govern turnover, and map residue-specific
contributions to catalytic efficiency.

Pedro Paiva et al. / Procedia Computer Science 267 (2025) 207-217 215

Our findings demonstrate that hydrolysis of the urethane bond by UMG-SP2 proceeds through the canonical
two-step serine-hydrolase cycle, with cleavage of the ester side of the urethane bond constituting the rate-limiting
barrier. Electrostatic analysis of the corresponding transition state revealed a small cluster of destabilizing cationic
residues near the nucleophilic Ser190, suggesting straightforward mutational routes to lower the energy barrier. These
insights now boost ongoing QM/MM-MD studies on UMG-SP3 that once again exploit the computational power of
EuroHPC’s petascale supercomputer MeluXina. Our extensive MD data also uncovered a concerted gating motion
centered on the L3 loop. Arg209 (UMG-SP3) and Lys224 (UMG-SP2) switch between inward and outward
orientations in response to ligand binding, thereby steering the substrate towards the catalytic triad. /n silico guided
mutagenesis of residues of this loop produced variants with up to a three-fold increase in catalytic efficiency,
emphasizing the practical value of deep conformational sampling.

The quality of our results relied on the extensive conformational sampling performed: a total of 56 ps of classical
MD vyielded converged active-site fluctuations. We also assessed the sensitivity of the QM/MM values to the choice
of the electronic structure method. Specifically, the QM energies of the stationary points in the UMG-SP2 mechanism
were calculated with four methods (B3LYP, PWPB95, DSD PBEB95 and SCS-MP2). The rate-limiting activation
free energy varied by no more than 2.3 kcal mol™! (ranging from 20.8-23.1 kcal mol™), which falls well within the
expected intrinsic error of hybrid QM/MM approaches. This variation reflects a systematic error inherent to the choice
of functional, as QM calculations yield deterministic values without statistical uncertainties. The computed activation
barrier lies within the typical range for hydrolases, and the reaction proceeded to produce the experimentally observed
products. All intermediates and transition states exhibited a single imaginary frequency, and continuous intrinsic
reaction coordinate paths confirmed their identities. Together, these factors underscore the statistical robustness and
reliability of our results.

Achieving this level of detail was attainable only through access to EuroHPC resources. Simulating complex
enzyme—substrate systems over microsecond timescales and computing DFT-level free-energy profiles required
hundreds of parallel CPU cores and millions of core-hours. Without these resources, we could neither achieve
statistically meaningful sampling nor describe the chemistry at a quantum-mechanical level robustly. EuroHPC access
proved indispensable not merely for speeding up calculations but for making this research possible at all.

Our results illustrate how the synergy between advanced simulation methodologies and state-of-the-art HPC
infrastructure is improving enzyme research.[15, 23, 25, 33] HPC-powered computational enzymology is no longer
just a supporting tool but can be a driver of discovery by guiding experiments, elucidating mechanistic pathways, and
delivering tangible biotechnological solutions.

The forthcoming EuroHPC exascale platforms will permit explicit sampling of polymer matrices decorated with
multiple enzymes, routine use of higher-level electronic-structure methods, and seamless integration with more robust
Al and data-driven algorithms. These capabilities will further accelerate the design, optimization, and deployment of
enzymatic solutions to global challenges like plastic pollution.

Acknowledgments

The authors would like to thank the EnZync consortium and the financial support received by the Novo Nordisk
Fonden, under project NNF220C0072891 (Challenge Programme 2022 - Recycling or a Sustainable Society). PP,
LMCT, PF, PAF, and MJR also acknowledge the financial support of FCT/MCTES (LA/P/0008/2020 DOI
10.54499/L.A/P/0008/2020, UIDP/50006/2020 DOI 10.54499/UIDP/50006/2020 and UIDB/50006/2020 DOI
10.54499/UIDB/50006/2020), through national funds. PP, LMCT, PF, PAF, and MJR would further like to thank the
European High-Performance Computing Joint Undertaking (EuroHPC JU) that granted access to MeluXina, the
petascale EuroHPC supercomputer located in Bissen, Luxembourg, under proposal EHPC-REG2023R03-163. PF
thanks FCT for funding (Ref. CEECINST/00136/2021/CP2820/CT0002 DOI
10.54499/CEECINST/00136/2021/CP2820/CT0002. LMCT would also like to thank FCT/MECI for funding his PhD
project through the grant 2024.05090.BD.

216 Pedro Paiva et al. / Procedia Computer Science 267 (2025) 207-217

References

[1] Geyer R, Jambeck JR, Law KL. 2017. Production, use, and fate of all plastics ever made. Sci Adv.3(7):e1700782.

[2] Hartmann NB, Huffer T, Thompson RC, Hassellov M, Verschoor A, Daugaard AE, Rist S, Karlsson T, Brennholt N, Cole M, et al. 2019. Are
We Speaking the Same Language? Recommendations for a Definition and Categorization Framework for Plastic Debris. Environ Sci
Technol.53(3):1039-1047.

[3] Lamb JB, Willis BL, Fiorenza EA, Couch CS, Howard R, Rader DN, True JD, Kelly LA, Ahmad A, Jompa J, et al. 2018. Plastic waste associated
with disease on coral reefs. Science.359(6374):460-462.

[4] Worm B, Lotze HK, Jubinville I, Wilcox C, Jambeck J. 2017. Plastic as a Persistent Marine Pollutant. Annual Review of Environment and
Resources.42(Volume 42, 2017):1-26.

[5] Hopewell J, Dvorak R, Kosior E. 2009. Plastics recycling: challenges and opportunities. Philosophical Transactions of the Royal Society of
London Series B: Biological Sciences.364(1526):2115-2126.

[6] Kawaguchi H, Ogino C, Kondo A. 2017. Microbial conversion of biomass into bio-based polymers. Bioresource Technology.245(Pt B):1664-
1673.

[7] Nagarajan R, Thirumalaisamy S, Lakshumanan E. 2012. Impact of leachate on groundwater pollution due to non-engineered municipal solid
waste landfill sites of erode city, Tamil Nadu, India. Iranian J Environ Health Sci Eng.9(1):35.

[8] Roy PK, Titus S, Surekha P, Tulsi E, Deshmukh C, Rajagopal C. 2008. Degradation of abiotically aged LDPE films containing pro-oxidant by
bacterial consortium. Polymer Degradation and Stability.93(10):1917-1922.

[9] Huerta Lwanga E, Thapa B, Yang X, Gertsen H, Salanki T, Geissen V, Garbeva P. 2018. Decay of low-density polyethylene by bacteria
extracted from earthworm's guts: A potential for soil restoration. Science of the Total Environment.624:753-757.

[10] Mohanan N, Montazer Z, Sharma PK, Levin DB. 2020. Microbial and Enzymatic Degradation of Synthetic Plastics. Frontiers in
Microbiology.11:580709.

[11] Skariyachan S, Taskeen N, Kishore AP, Krishna BV. 2022. Recent advances in plastic degradation - From microbial consortia-based methods
to data sciences and computational biology driven approaches. Journal of Hazardous materials.426:128086.

[12] Krueger MC, Harms H, Schlosser D. 2015. Prospects for microbiological solutions to environmental pollution with plastics. Appl Microbiol
Biotechnol.99(21):8857-8874.

[13] Tokiwa Y, Calabia BP, Ugwu CU, Aiba S. 2009. Biodegradability of plastics. International Journal of Molecular Sciences.10(9):3722-3742.

[14] Pinto AV, Ferreira P, Neves RPP, Fernandes PA, Ramos MJ, Magalhdes AL. 2021. Reaction Mechanism of MHETase, a PET Degrading
Enzyme. ACS Catalysis.11(16):10416-10428.

[15] Rotilio L, Bayer T, Meinert H, Teixeira LMC, Johansen MB, Sommerfeldt A, Petersen AR, Sandahl A, Keller MB, Holck J, et al. 2025.
Structural and Functional Characterization of an Amidase Targeting a Polyurethane for Sustainable Recycling. Angewandte Chemie
International Edition.64(7):€202419535.

[16] Jerves C, Neves RPP, Ramos MJ, da Silva S, Fernandes PA. 2021. Reaction Mechanism of the PET Degrading Enzyme PETase Studied with
DFT/MM Molecular Dynamics Simulations. ACS Catalysis.11(18):11626-11638.

[17] Neves RPP, Cunha AV, Fernandes PA, Ramos MJ. 2022. Towards the Accurate Thermodynamic Characterization of Enzyme Reaction
Mechanisms. Chemphyschem.23(13):¢202200159.

[18] Sousa SF, Ribeiro AJM, Neves RPP, Bras NF, Cerqueira NMFSA, Fernandes PA, Ramos MJ. 2017. Application of quantum
mechanics/molecular mechanics methods in the study of enzymatic reaction mechanisms. Wiley interdisciplinary reviews:
Computational molecular science.7(2):e1281-n/a.

[19] Coimbra JTS, Neves RPP, Cunha AV, Ramos MJ, Fernandes PA. 2022. Different Enzyme Conformations Induce Different Mechanistic Traits
in HIV-1 Protease. Chemistry.28(42):¢202201066.

[20] Abraham MJ, Murtola T, Schulz R, Pall S, Smith JC, Hess B, Lindahl E. 2015. GROMACS: High performance molecular simulations through
multi-level parallelism from laptops to supercomputers. SoftwareX.1-2:19-25.

[21] Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ. 2005. GROMACS: fast, flexible, and free. Journal of
Computational Chemistry.26(16):1701-1718.

[22] Kuhne TD, Tannuzzi M, Del Ben M, Rybkin VV, Seewald P, Stein F, Laino T, Khaliullin RZ, Schutt O, Schiffmann F, et al. 2020. CP2K: An
electronic structure and molecular dynamics software package - Quickstep: Efficient and accurate electronic structure calculations.
Journal of Chemical Physics.152(19):194103.

[23] Li Z, Han X, Cong L, Singh P, Paiva P, Branson Y, Li W, Chen Y, Jaradat DsMM, Lennartz F, et al. 2025. Structure-Guided Engineering of
a Versatile Urethanase Improves Its Polyurethane Depolymerization Activity. Advanced Science.n/a(n/a):2416019.

[24] Jones G, Willett P, Glen RC, Leach AR, Taylor R. 1997. Development and validation of a genetic algorithm for flexible docking. Journal of
Molecular Biology.267(3):727-748.

[25] Paiva P, Teixeira LMC, Wei R, Liu W, Weber G, Morth JP, Westh P, Petersen AR, Johansen MB, Sommerfeldt A, et al. 2025. Unveiling the
enzymatic pathway of UMG-SP2 urethanase: insights into polyurethane degradation at the atomic level. Chemical Science (Royal
Society of Chemistry: 2010).16(5):2437-2452.

[26] Neu D, Lehmann T, Elleuche S, Pollmann S. 2007. Arabidopsis amidase 1, a member of the amidase signature family. The FEBS
Journal.274(13):3440-3451.

[27] Neumann S, Granzin J, Kula MR, Labahn J. 2002. Crystallization and preliminary X-ray data of the recombinant peptide amidase from
Stenotrophomonas maltophilia. Acta Crystallographica Section D: Biological Crystallography.58(Pt 2):333-335.

[28] Shin S, Lee TH, Ha NC, Koo HM, Kim SY, Lee HS, Kim YS, Oh BH. 2002. Structure of malonamidase E2 reveals a novel Ser-cisSer-Lys
catalytic triad in a new serine hydrolase fold that is prevalent in nature. EMBO Journal.21(11):2509-2516.

[29] Cerqueira NMFSA, Moorthy H, Fernandes PA, Ramos MJ. 2017. The mechanism of the Ser-(cis)Ser-Lys catalytic triad of peptide amidases.
Physical Chemistry Chemical Physics.19(19):12343-12354.

[30] Ouellette RJ, Rawn JD. 15 - Synthetic Polymers. In: Ouellette RJ, Rawn JD, editors. Principles of Organic Chemistry. Boston: Elsevier; 2015.
p. 397-419.

[31] Remko M, Rode BM. 1995. Ab initio study of decomposition of carbamic acid and its thio and sila derivatives. Journal of Molecular Structure:

Pedro Paiva et al. / Procedia Computer Science 267 (2025) 207-217 217

THEOCHEM.339(1):125-131.

[32] Sousa SF, Calixto AR, Ferreira P, Ramos MJ, Lim C, Fernandes PA. 2020. Activation Free Energy, Substrate Binding Free Energy, and
Enzyme Efficiency Fall in a Very Narrow Range of Values for Most Enzymes. ACS Catalysis.10(15):8444-8453.

[33] Teixeira LMC, Paiva P, Ferreira P, Rotilio L, Morth JP, Otzen DE, Fernandes PA, Ramos MJ. 2025. Bridging Experiment and Theory: A
Computational Exploration of UMG-SP3 Dynamics. Pure and Applied Chemistry (Submitted to an IUPAC special issue).

Available online at www.sciencedirect.com

ScienceDirect Procedia

Computer Science

CrossMark

Procedia Computer Science 267 (2025) 218-226

www.elsevier.com/locate/procedia
Proceedings of the Third EuroHPC user day
Quantum Emulators: CPU, single GPU and multiple GPUs
performance comparison
Mathilde Chenu®*

“Joint Research Centre of the European Commission

Abstract

Digital quantum computing promises new pathways for problem solving. However, currently available gate-based quantum com-
puters still suffer from short decoherence timings and noisy results. In the meantime, quantum emulators can offer a way to test
and refine quantum algorithms. They reproduce classically the behavior of quantum computers at the cost of large memory require-
ments: the memory needed doubles with each additional qubits emulated. Emulators can be set-up on a large range of machines,
from laptops to supercomputers. In this paper, we compare the capabilities of quantum emulators built on the EuroHPC Karolina
server using one CPU, one GPU or multiple GPUs in a single node. In terms of the number of qubits emulated, we show that while
only 20+ qubits can be emulated using a single CPU, a single GPU brings this number to 30+. We also compare the timing per-
formances, both for randomly generated quantum circuits and for Shor’s factorization algorithm. For randomly generated circuits
with same depth and width, the emulators using a GPU and eight GPUs respectively are up to 20 and 180 times faster than the
CPU-based emulator. For Shor’s algorithm which can have more than a million gates, the emulators using a GPU and eight GPUs
respectively are up to 11 and 20 times faster than the CPU-based emulator. This benchmark of different types of quantum emulators
on the Karolina server helps to choose the right parameters and make the most of the Karolina resources for future scientific work
involving quantum emulation.

© 2025 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY 4.0 license (https://creativecommons.org/licenses/by/4.0)
Peer-review under responsibility of the scientific committee of the Proceedings of the Third EuroHPC user day

Keywords: Quantum computing ; Quantum emulators ; Factorization ; Shor’s algorithm ; Cryptography ;

1. Introduction

Quantum technologies are rapidly developing and in particular quantum computers. Quantum computers can be of
different types:

¢ Analog quantum simulators are measurable quantum systems used to simulate quantum physics phenomena;
¢ Quantum annealers are quantum systems used to find local minimums in optimization problems;

* Corresponding author.
E-mail address: mathilde.chenu@ec.europa.eu

1877-0509 © 2025 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY 4.0 license (https://creativecommons.org/licenses/by/4.0)
Peer-review under responsibility of the scientific committee of the Proceedings of the Third EuroHPC user day
10.1016/j.procs.2025.08.248

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2025.08.248&domain=pdf

Mathilde Chenu / Procedia Computer Science 267 (2025) 218-226 219

e Digital quantum computers are quantum systems used to perform mathematical operations on qubits through
gates [1].

We will focus on digital quantum computers for the rest of the paper.

Digital quantum computers are rapidly developing with quantum machines having an increasing number of usable
qubits. For example, the IBM machines provided 20 superconducting qubits in 2019, 133 in 2024 and plan to offer
200 by 2029 [2]. However, these qubits are noisy, meaning that they lose the information they carry over time. Gates
are also imperfect meaning that the operation is implemented with a certain error. When the error rate is sufficiently
low, the correct output can still be approximated from the noise-affected result, but after a certain amount of error the
information is lost. Research is ongoing to find more stable qubit types and include error correction and mitigation
measures during the computation to increase the accuracy of the results [3] [4].

In the meantime, quantum emulators are classical tools used to mimic the states of a digital quantum computer
on a classical machine, at the cost of large memory and timing requirements. The memory needed to emulate qubits
doubles with each additional qubit. However, these emulators provide perfect qubits representation, which won’t be
affected by the noise. Such emulators are very useful to test quantum algorithms at a small scale, and observe their
behavior in a noise-free environment or tweak their parameters. Noise-models can also be added to test the efficiency
of error-correcting codes for qubits [5].

Note that emulators are sometimes also called simulators, particularly by computer scientists. For physicists how-
ever, the term quantum simulator refers to a type of quantum computers simulating quantum systems. This is the
reason why they usually use the term ’emulators’ to describe the classical software tools mimicking the behavior
of quantum computers. To avoid confusion, we will systematically use the term emulator for classical machines,
reserving the term simulator for analog quantum simulators.

The capabilities of emulators can rapidly reach their limits, even with very large resources. For example, in [6]
the authors showed that 2048 GPUs from the Julich supercomputer where necessary to emulate 40 qubits. However,
emulators can be built with less resources. They won’t provide as many simulated qubits as 2048 GPUs, but can
nonetheless be useful to develop and improve quantum algorithms at a small scale.

In this work we realize a performance comparison between different emulators types, using a single CPU, a single
GPU, and up to the 8 GPUs of one node. To compare the performances, we test the emulators on two types of quantum
circuits: first on randomly generated circuits with number of qubits and depth equal, then using purposeful and longer
algorithm, the Shor’s factorization algorithm in our case [7]. Shor’s algorithm is particularly relevant in the context
of quantum computing. It can solve two of the most prominent cryptographic problems in polynomial time using
a quantum computer, namely the factorization and discrete logarithm problem, when the best classical algorithms
require subexponential and exponential time respectively. It is therefore a particularly studied algorithm.

We answer the following questions:

o How many qubits can be emulated using a CPU, a GPU, and up to 8 GPUs in one node?
e How are the timing performances comparing for these three emulators for randomly generated circuits?
e How are the timing performances comparing for these three emulators for Shor’s algorithm?

The paper is organized as follows. We start by describing how the emulators were set-up, before presenting the per-

formance results for randomly generated circuits. We then introduce the Shor’s algorithm, describe the performances
of the emulator on Shor’s circuit, and conclude.

2. Setting-up the emulator

To benchmark the capabilities of a quantum emulator, we used the European High-Performance Computing Joint
Undertaking server Karolina hosted in Czechia, using one node equipped with eight NVIDIA A100 GPUs and with

220 Mathilde Chenu / Procedia Computer Science 267 (2025) 218-226

320GB HBM2 memory. To set-up the emulator, we used Python 3.14, along with Qiskit 1.4', Qiskit AerSimulator’
and qiskit-aer-gpu module instead.

An important parameter to define when preparing the emulator is the value given to the blocking-qubits in the
AerSimulator, which sets the largest size of the memory chunk used when parallelizing. This value should be set such
that sizeo f(complex) x 2(blocking-qubits+4) i smaller than the size of the smallest memory space in bytes. In our case for
the Karolina’s compute nodes with GPU accelerators, the size of a complex number is 32 bytes, and the size of the
smallest memory space is 40960 MiB. This means that the maximal value for blocking qubits should be 26. However,
the maximal value is not necessarily the optimal one.

Figure | illustrates what happens when the value is set too low, at 15 on the left, or too high, at 26 on the right.
When the value is too low, the cost of parallelization (synchronization and communication between the processes) is
greater than the benefit, making the computation with eight GPUs slower than with only one. When the value is too
high, the benefit is delayed to a higher number of qubits emulated.

time | g 4gpu timed _o 1GPU
G} | 4 sGPUs B] 4+ sapus
10'
10—1 4
10° 4
10—] 4
1072 4
1072 4
—————T—T—T——T T T T T T
10 11 12 13 14 15 16 17 18 19 20 10 1112 1314 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
of simulated qubits # of simulated qubits

Fig. 1. Comparison of blocking qubits values: Time in seconds spent to run randomly generated quantum circuits of depth n for n qubits with
blocking qubit parameter set to 15 (left), and 26 (right), with a quantum emulator on Karolina server using one GPU (ThrustGPU, NVIDIA A100)
and 8 GPUs (NVIDIA A100 with 320GB HBM2 memory).

By evaluating randomly generated circuits with decreasing blocking qubits value starting from 26 and compar-
ing the timing performances with one GPU and eight GPUS, we find that the optimal value for blocking qubits
is in fact 23. In this case, the use of the eight GPUs of one node is optimal, meaning that the use of eight GPUs does
not slow down the computation compared with one GPU when emulating less than 23 qubits, but does speed-up the
computations when emulating circuits on 23 qubits and more.

3. Performances comparison with randomly generated square circuits
3.1. Methodology

For our performance comparison experiments on the quantum emulators, we start by studying the performances
on randomly generated circuits using the Quantum Volume function. The Quantum Volume function takes a integer n
as input, and outputs randomly generated circuits of depth n using n qubits. Since the circuits generated through the
Quantum Volume function are relatively short, the limiting factor in this case will be the memory available to store the
information of each qubits, and not the timing needed to run the circuit. Nonetheless, studying the emulation timing
is useful to compare different hardware.

! Note that Qiskit 2.0 was released in March 2025, after our experiments.
2 AerSimulator is an emulator and not a quantum simulator, despite its name. Computer scientists often use the term simulator for emulators.

Mathilde Chenu / Procedia Computer Science 267 (2025) 218-226 221

We compare the timing results to run the Quantum Volume function for increasing n until reaching the hardware
memory capacities limits using one CPU (AMD EPYC 7763, 64-core, 2.45 GHz), one GPU (NVIDIA A100) and one
node of eight GPUs (NVIDIA A100 with 320GB HBM?2 memory).

3.2. Results

Number of qubits. The first step of our experiment with randomly generated circuits is to determine how many qubits
can be emulated with the emulators based on one CPU, one GPU and one node with 8 GPUs. When using one CPU
we have been able to emulate circuits having 25 qubits. By using a single GPU, our experiment shows that up to 31
qubits can be emulated before the limit of the memory capacity is reached. When using one node with 8 GPUs and
320GB of HBM2 memory, up to 35 qubits can be emulated.

Timing comparisons. The second step is to compare the timing performances of the emulators when emulating ran-
domly generated circuits of the same size with one CPU, one GPU and eight GPUs. It appears, unsurprisingly, that
the time needed to emulate a circuit grows exponentially with the number of qubits and the size of the circuit. We
observe that the computation with one GPU is 5 times faster than the computation with one CPU for 15 qubits, but the
ratio grows to 20 for 25 qubits. Besides, using eight GPUs can be as much as 8 times faster than using a single GPU
when emulating 31 qubits. In both cases, it appears that the gain in terms of timings grows with the number of qubits
emulated.

The results are summarized on Figure 2 and Figure 3, where the number of qubits and depth of the circuits are on
the x-axis, and the time spent in quantum computing is represented in seconds in logarithmic scale on the y-axis. For
the results on Figure 2, the blocking qubits value was set to 26, the maximal possible value, which explains why
one GPU and eight GPUs produce the same timing results. For the results on Figure 3, the blocking qubits value
was set to 23, the optimal value found, which is why one GPU and eight GPUs produce the same timing results until
emulation for 23 qubits and afterwards the eight GPUs start producing faster timings.

i
o 1~ 1cru
10! 4 —&— 1GPU

—4— B8 GPUs
loC i
101 4
102 4

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
of simulated qubits

Fig. 2. Comparison CPU, GPU and GPUs: Time in seconds spent to run a randomly generated quantum circuits of n qubits and depth n with
blocking_qubits set at 26, with a quantum emulator on Karolina server using one CPU (AMD EPYC 7763, 64-core, 2.45 GHz), one GPU
(ThrustGPU, NVIDIA A100) or on node of eight GPUs (NVIDIA A100 with 320GB HBM2 memory).

These results show that 30+ qubits can already be emulated with one GPU, meaning that emulators can be built
even with limited resources and without the need for a supercomputer. It also highlights the benefits of using several
high quality GPUs for quantum emulation, which leads to both faster computation, but also to emulate a higher

222 Mathilde Chenu / Procedia Computer Science 267 (2025) 218-226

time
(s) 3 -8 1GPU
—— 8GPUs
101]
loC 4
10-1
102 4

T T
10111213141516171819202122232425262728293031323334
of simulated qubits

Fig. 3. Comparison GPU and GPUs: Time in seconds spent to run randomly generated quantum circuits of depth n with n qubits, blocking_qubits
set at 23, with a quantum emulator on Karolina server one GPU (ThrustGPU, NVIDIA A100) and 8 GPUs (NVIDIA A100 with 320GB HBM2
memory).

number of qubits. Our results also provide a benchmark of the capabilities of the GPU accelerated compute nodes of
the Karolina server for quantum emulation.

4. Performances comparison with Shor’s algorithm
4.1. Description of Shor’s algorithm

Cryptography is particularly impacted by the arrival of quantum computers. Shor’s algorithm is one of the most
important quantum attacks, as it can solve the factorization problem, which is the corner stone of the security of RSA
algorithm [9]. In the context of RSA, the factorization problem is the following: given a known integer N such that
N = pq, with p and g two unknown primes, find p or g. This factorization problem can be solved efficiently with
Shor’s algorithm as described in Algorithm 1. Note that only the QuantumPeriodFinding part requires a quantum
computer, the rest of the algorithm is computed classically. Several easy cases can be discarded immediately. As even
numbers are easily recognizable from their last digit, we can easily discard the case where p or ¢ is equal to 2. In
addition, there exist a classical algorithm to determine in linear time if N is a prime power, that is if N = p” with r an
integer [8]. For these reasons, we assume from now on that p # ¢ and that p and ¢ are odd primes.

We provide a brief explanation of the soundness of the algorithm. When ged(a, N) = 1, then a belongs to the
multiplicative group of integers modulo N, and there exist a smallest integer 7 such thata” = 1 mod N. Let us assume
that r is even (otherwise we simply start the procedure again with a different a). Thena" -1 = (a%=1)(a? +1). Besides,
by definition, N divides a” — 1. It follows that N divides (a? — 1)(a? + 1). Since N = pgq with p and ¢ primes, three
cases are possible:

o N divides (a? -1,
e or N divides (aZ + 1), ‘
e or pdivides (a2 + 1) and ¢ divides (a2 — 1).

Mathilde Chenu / Procedia Computer Science 267 (2025) 218-226 223

Algorithm 1: Shor’s algorithm
Data: Integer N such that N = pq, p # g, with p and g odd primes
Result: p and g
found « False ;
while found = False do
find a random a coprime with N;
if gcd(a, N) # 1 then
found « True ;
p < ged@a, N) ;
N

q< 55

| return (p, q);

else
r «— QuantumPeriodFinding(a, N);
if r is even then
d « ged(a: + 1,N);
if d # N then
found « True ;
ped;
q< 5
return (p, q);

The first option contradicts the fact that the order of a is 7, hence we can discard it. With the second option, ged(a? +
1,N) = N, but this does not give us a factor of N, meaning that the algorithm needs to restart with another a. In the
third case, ged(az + 1, N) = p and ged(a? — 1, N) = g, and we have found the factors of N.

We now briefly describe the QuantumPeriodFinding quantum algorithm. It uses the following unitary operator:

lak mod N) 0<k<N,
Ulky =
k) N<k<2"

Let r be the order of @ mod N. Then U” is the identity, which means that the eigenstates and associated eigenvalues
of U are respectively |y;) = % Sizh e 27Nk mod Ny and w; = e 2™/" for 0 < j<r— 1.
Note that the sum of the eigenstates is equal to |1).

1 1 -
— >l = ¢ MUk gk mod Ny
Vr j=0 r =0 k=0
1 r—1 (r-1
== Z [Z e_z’”(jk/’)] ld* mod N)
=y j=0
1 r—1 1 r—=1 (r-1 N
==) IhH+- [Z e_z’”(fk/r)] la* mod N)
r r 4
Jj=0 k=1 \j=0

224 Mathilde Chenu / Procedia Computer Science 267 (2025) 218-226

We now use the quantum phase estimation as a subroutine. Let U be a unitary operator and ¢ an eigenstate such that
Uly) = wly) , with w = €*”. The phase estimation algorithm takes as input U and ¢ and returns with high-probability
the phase 6 of the eigenvalue w.

We cannot run the quantum phase estimation on the eigenstates directly as r is unknown. However, we can apply it
on [1), which is equivalent to applying it to % ;;(1)|1// ;7. We can then obtain f for one of the j, all j being equiprobable.
Using the (classical) continued-fraction decomposition algorithm, we can retrieve the value r from the output of the
phase estimation algorithm.

More details about the Shor’s algorithm, and in particular its quantum part, can be found in [10].

4.2. Methodology

We choose to implement the Shor’s algorithm for any integer, meaning that our circuit construction is generic and
adaptable to any integer size. While this naturally leads to longer timings, it is also closer to how Shor’s algorithm
would be used in practice when attacking cryptography public keys. To build our code, we updated and refined the
implementations of Ignazio Pedone https://github.com/ignaziopedone/shor-analysis/blob/main/RSA/
Shor_library.py and https://github.com/ttlion/ShorAlgQiskit. The code is available upon request.

Two approaches are possible when building generic implementations of the Shor’s algorithm. The first approach
is a more concise circuit requiring 4n + 1 qubits to factorize a n-bit integer. A sequential version has more gates, but
requires only 2n + 2 qubits. As the limitation in the case of quantum emulators is the number of qubits that can be
emulated, we favor the second sequential version of the algorithm for our experiment. The algorithm is run entirely,
both classical and quantum parts, to verify the correctness of the result. However we only measure the time spent in
quantum computing when running on emulators based on a CPU, one GPU and one node of eight GPUS. We reuse the
optimal parameter found when setting-up the emulator, that is, we set blocking qubits to 23. We run the quantum
part of the generic Shor’s factorization algorithm, that is the quantum period finding algorithm, for increasing integers
N selected such that N is the product of two primes.

4.3. Results

The detailed results of the experiment are presented on Table 1, with the integers factorized N, their factorization,
their bit-length n = log, N, the number of qubits necessary to run Shor’s algorithm which is (2n + 2), and the time
needed to run ten shots of the quantum algorithm using one CPU (AMD EPYC 7763, 64-core, 2.45 GHz), one GPU
(NVIDIA A100), and 8 GPUs (NVIDIA A100 with 320GB HBM2 memory).

For efficiency reasons, we used only the experiments running in less than one hour and a half, or 5400 seconds.
This limit was reached after factorizing N = 707 for CPU experiments, and after factorizing N = 3649 for the
experiment with one and eight GPUs. In theory, larger integers could be factorized using the CPU, GPU and GPUs-
based emulators.

All circuits provided the correct answer with high probability in the noise-free environment with 10 shots for each
experiment.’

From these results we can conclude that:

e The three quantum emulators (CPU, GPU and GPUs) can successfully run quantum circuits with depth larger
than one million gates, and provide the correct results. In comparison, quantum computers running circuits with
the similar depth are very likely to return the wrong output due to the decoherence noise. For this reason, the
emulator remains useful to study the behavior of quantum circuits in an ideal noise-free environment, despite
the availability of quantum computers.

e The time needed to factorize integer grows exponentially with the bit-length of the integer factorized on a
quantum emulator. It is the time rather than the memory that limits the usefulness of the quantum emulator in
the case of Shor’s algorithm. In theory, 34 emulated qubits would be able to factorize a sixteen-bit number, but
in at least eight hours.

3 Shor’s algorithm is probabilistic and needs to be run several times as several parameters a might need to be tried.

Mathilde Chenu / Procedia Computer Science 267 (2025) 218-226 225

Integer and Length Number of Circuit Timing CPU Timing GPU Timing GPUs

factorization (in bits) qubits needed depth (in secondes) (in secondes) (in secondes)
15=3x5 4 10 6608 0.34468 0.79939 1.4782
21 =3x7 5 12 12944 1.1485 0.80006 0.72214
55=5x11 6 14 24439 2.8531 1.7354 1.5057
111 =3 x37 7 16 48803 14.248 3.7407 3.3093
221 =13x17 8 18 114576 70.323 11.679 8.8438
391 =17%x23 9 20 333348 416.43 44.002 31.723
707 =7 x 101 10 22 1148566 2428 .4 206.20 131.35
1763 = 41 x 43 11 24 4330884 - 967.47 583.79
3649 = 41 x 89 12 26 16959474 - 4761.0 2645.5

Table 1. Shor’s algorithm performances: integers factorized and their bit-length, the number of qubits and circuit-depth needed to run Shor’s
factorization algorithm, and the time in seconds spent in quantum computing with a quantum emulator on Karolina server using CPU (AMD EPYC
7763, 64-core, 2.45 GHz), one GPU (ThrustGPU, NVIDIA A100), and 8 GPUs (NVIDIA A100 with 320GB HBM2 memory)

e Using one GPU is up to 11 times faster compared to using one CPU. Using eight GPUs is up to 18 times faster
than using a CPU, and almost up to twice as fast as one GPU. The larger the number of qubits used, the greater
the gain. The speed-up obtained for random circuits short circuits is higher than for longer specific circuits like

Shor’s.

To highlight the exponential growth of the time needed to factories an integer with respect to its bit-length, Figure 4
summaries the results of Table 1 with the integers factorized on the x-axis, and the time needed to run ten shots of the
quantum period finding algorithm on the y-axis with a logarithmic scale.

time 3

)

1000 3
100 5

104

0.1+ T T T T T T T
15 21 55 111 221 391 707 1763 3649

Integer factorised

Fig. 4. Shor’s algorithm performances: Time in seconds spent to run the quantum part of Shor’s factorization algorithm (10 shots) for increasing
integers with a quantum emulator on Karolina server using CPU (AMD EPYC 7763, 64-core, 2.45 GHz), one GPU (ThrustGPU, NVIDIA A100),

and 8 GPUs (NVIDIA A100 with 320GB HBM2 memory)

226 Mathilde Chenu / Procedia Computer Science 267 (2025) 218-226

5. Conclusion

In this work, we successfully set up quantum emulators using one CPU, one GPU or one node with eight GPUs on
EuroHPC’s Karolina server and compared their performances.

While a CPU is sufficient to emulate 25+ qubits, using a single GPU allows to emulate 30+ qubits, and a node of
eight GPUs reaches 35 qubits.

When tested on randomly generated circuits of depth 7 using n qubits for increasing integers n, a single NVIDIA
A100 GPU produces an emulator already up to 20 times faster than the CPU-based emulator. An emulator using eight
NVIDIA A100 GPUs within one node is 8§ times faster than a single GPU emulator, and 160 times faster than the
CPU-based emulator.

The benefit of using GPUs also translates from randomly generated quantum algorithms to the specific case of
Shor’s algorithm, which can have millions of gates, although in smaller proportions. We observe that the emulator
with eight GPUs is up to 18 times faster than the CPU-based emulator, and almost twice as fast as the GPU-based
emulator.

Our experiment quantify the benefit in term of speed and number of qubits emulated when using one or eight
high quality GPUs compared to one CPU, highlighting the benefits of high quality GPUs hardware when emulating
quantum computers with EuroHPC’s Karolina server. This benchmark of different types of quantum emulators on the
Karolina server will help to make the right choice of parameters and make the most of the computing resources for
future scientific work involving quantum emulation.

Acknowledgements

We would like to thank the EuroHPC Joint Undertaking for providing us with access to the Karolina server, and
for their supportive team. We are also grateful to Dr. Mario Chizzini from the Joint Research Centre for his gener-
ous assistance in clarifying numerous paradoxes in quantum physics. Last but not least, we would like to thank the
anonymous reviewers for their valuable comments and feedback.

References

[1] Dowling, Jonathan, and Milburn, Gerard. (2003) Quantum technology: the second quantum revolution.” Phil. Trans. R. Soc. A.

[2] IBM. (2024) ”Quantum roadmap to anticipate the future of quantum-centric supercomputing.” https: //www. ibm. com/ quantum/blog/
1bm-quantum-roadmap-2025

[3] Ryutaroh Matsumoto, and Manabu Hagiwara. (2021) ” A Survey of Quantum Error Correction.” IEICE TRANSACTIONS on Fundamentals

[4] Zhenyu Cai, Ryan Babbush, Simon C. Benjamin, Suguru Endo, William J. Huggins, Ying Li, Jarrod R. McClean, and Thomas E. OBrien.(2023)
”Quantum error mitigation.” Rev. Mod. Phys. 95

[5] Alessio Cicero, Mohammad Ali Maleki, Muhammad Waqar Azhar, Anton Frisk Kockum, and Pedro Trancoso. (2024) ”’Simulation of Quantum
Computers: Review and Acceleration Opportunities.” Arxiv https: // arziv. org/ abs/2410. 12660

[6] Dennis Willsch, Madita Willsch, Fengping Jin, Hans De Raedt, and Kristel Michielsen. (2023) ” Large-Scale Simulation of Shors Quantum
Factoring Algorithm.” Mathematical Perspectives on Quantum Computing and Communication

[7] Peter Shor. (1994) Polynomial time algorithms for discrete logarithms and factoring on a quantum computer.” Algorithmic Number Theory,
ANTS

[8] Daniel Bernstein. (1998) "Detecting perfect powers in essentially linear time.” Math. Comput.

[9] Ronald Rivest, Adi Shamir, and Leonard Adleman. (1978) ”A Method for Obtaining Digital Signatures and Public-key Cryptosystems.”
Commun. ACM

[10] Ray LaPierre. (2021) "Introduction to Quantum Computing.” Springer

Available online at www.sciencedirect.com

ScienceDirect Procedia

Computer Science

CrossMark

Procedia Computer Science 267 (2025) 227-236

www.elsevier.com/locate/procedia
Proceedings of the Third EuroHPC user day

Improving the scalability of a high-order atmospheric dynamics
solver based on the deal.ITI library

Giuseppe Orlando®*, Tommaso Benacchio®™*, Luca Bonaventura®

4CMAP. CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91120 Palaiseau, France
bWeather Research, Danish Meteorological Institute, Sankt Kjelds Plads 11, 2100 Copenhagen, Denmark
“Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy

Abstract

We present recent advances on the massively parallel performance of a numerical scheme for atmosphere dynamics applications
based on the deal . IT library. The implicit-explicit discontinuous finite element scheme is based on a matrix-free approach, mean-
ing that no global sparse matrix is built and only the action of the linear operators on a vector is actually implemented. Following a
profiling analysis, we focus on the performance optimization of the numerical method and describe the impact of different precon-
ditioning and solving techniques in this framework. Moreover, we show how the use of the latest version of the deal.IT library
and of suitable execution flags can improve the parallel performance.

© 2025 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY 4.0 license (https://creativecommons.org/licenses/by/4.0)
Peer-review under responsibility of the scientific committee of the Proceedings of the Third EuroHPC user day

Keywords: Numerical Weather Prediction; Non-conforming meshes; Flows over orography; IMEX schemes; deal.II

1. Introduction

Efficient numerical simulations of atmospheric flows are key to viable weather and climate forecasts and several
related practical applications. Medium-range global numerical weather predictions (NWP) up to ten days ahead are
typically required to complete within a one-hour operational threshold in the forecast cycles of meteorological centres.
In addition, the computational meshes employed for these forecasts are being refined to head towards the km-scale,
while experimental limited-area suites already reach the hectometric scale [10]. Hence, in the current context of
increasing demand of computational resources driven by increasingly high spatial resolutions, massively parallel
model scalability is a fundamental requirement.

In this work, we present recent advances in the parallel performance of a Implicit-Explicit Discontinuous Galerkin
(IMEX-DG) solver [13] employed for atmosphere dynamics applications [14, 15, 16], following up on earlier analyses
by the authors [17]. The implementation is carried out in the framework of the deal.IT library [1, 2, 3]. First, we

* Corresponding author.
E-mail address: giuseppe.orlando@polytechnique.edu, tbo@dmi.dk

1877-0509 © 2025 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY 4.0 license (https://creativecommons.org/licenses/by/4.0)
Peer-review under responsibility of the scientific committee of the Proceedings of the Third EuroHPC user day
10.1016/j.procs.2025.08.249

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2025.08.249&domain=pdf

228 Giuseppe Orlando et al. / Procedia Computer Science 267 (2025) 227-236

show how the use of suitable preconditioning techniques can significantly improve the performance of the elliptic
pressure solver. More specifically, we measure the impact of a novel preconditioning technique for the linear system
associated with the pressure field that exploits the numerical formulation of the problem. Next, we assess the impact
of activating execution flags and of using the most recent version of the library (9.6.2, [1]). Finally, we present the
result of employing a different strategy for the solution of a linear system.

The paper is structured as follows. In Section 2, we briefly review the model equations and the relevant details of the
numerical methodology used in this work. The profiling and parallel performance analysis in numerical experiments
with a three-dimensional benchmark of atmospheric flow are presented in Section 3. Finally, some conclusions are
reported in Section 4.

2. The model equations and some details of the numerical method

The compressible Euler equations of gas dynamics represent the most comprehensive mathematical model for at-
mospheric flows [20]. Considering for simplicity the dry, non-rotating case, the mathematical model reads as follows:

ap B

LV pw =0

6(gtu)+V~(pu®u)+Vp=pg (1
D0 1 [(ph + poou] = pg v,

where ¢ € (0, T] is the temporal coordinate, supplied with suitable initial and boundary conditions on the computa-
tional domain. Here ® denotes the tensor product, T is the final time, p is the density, u is the fluid velocity, and p is
the pressure. Moreover, g = —gk is the acceleration of gravity, with g = 9.81 ms~2 and k being the upward pointing
unit vector in the standard Cartesian frame of reference. Finally, E denotes the total energy per unit of mass, 4 is the
specific enthalpy and k = 1/2[u]? is the specific kinetic energy. System (1) is complemented by the equation of state
of ideal gases, given by pe = y—il p, where e denotes the specific internal energy e = E — k and the isentropic exponent
v is taken equal to 1.4.

The time discretization is based on an Implicit-Explicit IMEX) Runge-Kutta (RK) method [6], which is a widely
employed approach for ODE systems that include both stiff and non-stiff components. IMEX-RK schemes are repre-
sented compactly by the companion Butcher tableaux:

c| A ¢ | A
b7 Ly

with A = {a;,,},b = {b;},e ={c;}, ,m = 1...s, denoting the coefficients of the explicit method, A= {Zz,m},f) = {B;},
and ¢ = {¢;}, ,m = 1... s denoting the coefficients of the implicit method, and s representing the number of stages of
the method. We refer, e.g., to [6, 19] for a detailed analysis of the order and coupling conditions of the two companion
schemes. A generic IMEX-RK [stage with time step At for the Euler equations reads therefore as follows:

-1
p(l) — pn _ Z apAt V- (p(m) u(m))

m=1
pPu? + @AtV p = m® (2)
POED + ayar V- (K0 u) = 20,

where we have set

-1 =1
m® = p"w" =" @AV (0™ u™ eu™) - 3" a,ArV p™ 3)
m=1 m=1
-1 -1
&0 = p"E" = 3 At V- (Ap™ u)) = 3" a AL V- (K7 u™) 4)

m=1 m=1

Giuseppe Orlando et al. / Procedia Computer Science 267 (2025) 227-236 229

Notice that, substituting formally o u” into the energy equation and taking into account the definitions pE = pe + pk
and & = e + p/p, the following nonlinear Helmholtz-type equation for the pressure is obtained:

(O]
o0 [e(p®.p0) + k0] - 22 AL V- [(e(p(l),P(l)) + %) vp

0
+ayAt V- [(e(p(l), P+ %)m@] =P 5

which is solved through a fixed point procedure. We refer to [12, 13, 18] for further references and details on the
theoretical properties of the method.

The spatial discretization is based on a Discontinuous Galerkin (DG) method [5], which combines high-order
accuracy and flexibility in a highly data-local framework. In particular, this method is particularly well suited for mesh
adaptive approaches [14, 15]. The shape functions correspond to the products of Lagrange interpolation polynomials
for the support points of (+ 1)-order Gauss-Lobatto quadrature rule in each coordinate direction, with » denoting the
polynomial degree. The discrete formulation of method (2) can therefore be expressed as

AOUY £ BOPO = FO (6)
CcOyY® 4+ popv = G(l), 7)

where UY represents the vector of degrees of freedom of the velocity field, while P? is the vector of the degrees of
freedom of the pressure field. We refer to [12, 14, 17] for the detailed expression of all the matrices and vectors. We
report only the expression of the matrix A%’ that will be useful for the discussion in Section 3:

A=) pr Dp; - pidx, ®)

KeTy

where 74, represents the computational mesh, ¢; denotes the basis function of the space of polynomial functions
employed to discretize the velocity, and dx is the spatial element of integration. Formally, from (6) one can derive

v = A(t))‘l (F - BOPO), ©)
and obtain
DOPD 4+ C® (A(l))_1 (F(l) _ B(l)P(l)) =G9, (10)

The above system is then solved following the fixed point procedure described in [13]. In Sections 3.1 and 3.3 we
describe the impact of using different preconditioning and solving techniques for system (10).

3. Numerical results

In this Section, we show results of simulations of an idealized three-dimensional test case of atmospheric flow
over orography [11, 15] using the numerical method described in the previous Section and focusing on its scalability.
The simulations have been run using up to 1024 2x AMD EPYC Rome 7H12 64c 2.6GHz CPUs at MeluXina HPC
facility! and OpenMPI 4.1.5 has been employed. The compiler is GCC version 12.3 and the Vectorization level is 256
bits.

! https://docs.1xp.1lu/

230 Giuseppe Orlando et al. / Procedia Computer Science 267 (2025) 227-236

We consider a three-dimensional configuration of a flow over a bell-shaped hill, already studied in [11, 14, 15].
The computational domain is (0, 60) x (0, 40) x (0, 16) km. The mountain profile is defined as follows:

x—xc2 y_y027
1+() +()} s (11)
ac ac

1

W

h(x,y) = h,

with A, = 400m,a., = 1km,x, = 30km, and y. = 20km. The buoyancy frequency is N = 0.01 s, whereas the
background velocity is # = 10ms~!. The final time is Ty = 1h. The initial conditions read as follows [4]:

1/r 1y 2
8 Pref N*z p N%z
P = DPre 1-=T [1 —exp (——):|} N P = Pre (_) exXp (__ 5 (]2)
f{ N2 Pref 8 / Pref 8
where p,.; = 10° Pa and Pref = R”T’”{/., with T,,r = 293.15K. Finally, we set I' = 77_1 We refer to [15] for the

implementation of boundary conditions. Unless differently stated, we consider a) a uniform mesh composed of
N = 120 x 80 x 32 = 307200 elements with polynomial degree r = 4, leading to about 38.5 million unknowns
for each scalar variable and a resolution of 125 m; and b) a non-conforming mesh composed of N,; = 204816
elements, yielding around 25.6 millions of unknowns for each scalar variable and a maximum resolution of 62.5m. A
non-conforming mesh is characterized by neighbouring cells with different resolution on both the horizontal and the
vertical direction [15, 17] and its use provides sizeable computational savings [15, 17]. The following optimization
flags are employed throughout the runs:

-02 -funroll-loops -funroll-all-loops -fstrict-aliasing -Wno-unused-local-typedefs

which are the standard ones in the Release mode of deal.II (see https://www.dealii.org/developer/
users/cmake_user.html). Unfortunately, due to limitations on computational resources, the scaling analyses
reported in this Section could only be performed once for each of the different configurations.

3.1. Impact of preconditioning technique

The preconditioned conjugate gradient method with a geometric multigrid preconditioner is employed to solve
the symmetric positive definite linear systems, while the GMRES solver with a Jacobi preconditioner is employed
for the solution of non-symmetric linear systems. A matrix-free approach is employed [2], meaning that no global
sparse matrix is built and only the action of the linear operators on a vector is actually implemented. This strategy is
very efficient for high-order discretization methods [7]. However, it leads to some difficulties in the preconditioning,
since the matrix is not available and standard techniques as ILU cannot be employed. For symmetric positive-definite
systems, an efficient preconditioning technique compatible with the matrix-free approach is based on the so-called
Chebyshev polynomial that relies on an estimate of the eigenvalues of the matrix so as to damp the eigenvalue range
[9].

The approach based on the eigenvalue estimate cannot be directly employed for the solution of (10) because it
requires symmetry and positive definiteness of the preconditioned matrix [21]. Moreover, the entries of the matrices
A1, DD and C? are not readily available because of the matrix-free approach. In a matrix-free framework, a
matrix representation of the operator can be obtained by applying the operator on all unit vectors. Apparently, this is
a very inefficient procedure because it requires to perform n operator evaluations for a n X n matrix. In practice, the
integration is so efficient that the computation completes without significant overhead . However, using this procedure

2 https://www.dealii.org/current/doxygen/deal.II/step_37.html

Giuseppe Orlando et al. / Procedia Computer Science 267 (2025) 227-236 231

for the computation of (A?)~!, D, and C" turns out to be very inefficient because it requires the evaluation of three
operators as well as the solution of a linear system at each operator evaluation to compute (A”)~!. Hence, the simplest
solution consists in considering only the contribution provided by D, which takes into account the internal energy.
For low Mach number flows, as those considered in this work, this approximation can be considered reliable since
velocities are typically low and the internal energy is therefore dominant with respect to the kinetic energy. This is the
strategy adopted, e.g., in [15], and we refer to it as internal energy preconditioner.

We consider here a novel alternative approach that can be easily implemented in a matrix-free framework and
consists of defining an operator that takes into account the underlying nonlinear Helhmholtz-type equation (5) when
solving (10). More specifically, we consider the volumetric contribution of the weak form associated to a DG dis-
cretization of (5). Hence, the preconditioner is the inverse of the diagonal part of the matrix S whose entries are

()
<2\ 2 o o), P RS
fKa”At (e(p 0)+E)V‘P] V ¥,dx. (13)

$§ = Z fK p"e (W), p") Widx + Z

KeTy KeTy

where ¥; denotes the basis function of the space of polynomial functions employed to discretize the pressure. Matrix
S® is the sum of two contributions: a first one that considers the internal energy and that coincides with matrix D®,
and a second one that considers the contribution due to specific enthalpy and takes into account the underlying elliptic
character of (5). The pressure p” in (13) in the fixed point procedure is evaluated at the previous fixed point iteration.
We refer to this strategy as Helmholtz preconditioner.

An analysis of time to solution using the two preconditioning techniques reveals that, when using a uniform mesh,
the use of the Helmholtz preconditioner gives a relatively modest computational time saving - about 18% with 128
cores (1 node) - that decreases for higher core counts (Figure 1). A more sizeable computational time saving is estab-
lished for the non-conforming mesh which amounts to 60% employing 128 cores and to 46% employing 2048 cores
(Figure 1). Hence, strategy Helmholtz preconditioner provides a significant advantage in terms of time-to-solution,
in particular for non-conforming meshes. In the following, we will restrict our attention only to this preconditioning
technique and to experiments using the non-conforming mesh.

-e-Helmholtz preconditioner 14 -e-Helmholtz preconditioner
-+Internal energy preconditioner

-+Internal energy preconditioner

Time (x 10%)s]
Time (x 109)[s]

S 0 o000
> 0o ~Nwo=

200 400 600 800 1000 1200 1400 1600 1800 2000 0 200 400 600 800 1000 1200 1400 1600 1800 2000
Number of cores Number of cores

Fig. 1: Analysis of preconditioning technique, wall-clock time in the numerical solution of problem (2), flow over a 3D hill test case. Left: uniform
mesh. Right: non-conforming mesh. The black lines show the results with the Helmholtz preconditioner approach, whereas the red lines show the
results with internal energy preconditioner approach.

3.2. Impact of execution flags and version
Next, we analyze the impact of some execution flags and of the use of the deal.II 9.6.2 version [1] instead of

the deal.II 9.5.2 version [2]. Thanks to the support of EPICURE team at MeluXina, it has been shown that the
execution flags

232 Giuseppe Orlando et al. / Procedia Computer Science 267 (2025) 227-236

export DEAL_II_NUM_THREADS="$SLURM_CPUS_PER_TASK" export OMP_NUM_THREADS="$SLURM_CPUS_PER_TASK"

improve the parallel performance of the solver in terms of both strong scaling and wall-clock time (Figure 2).
However, an even more sizeable improvement in the parallel performance is obtained using the deal.II 9.6.2
version, leading to a computational time saving of around 28% compared to using the 9.5.2 version in a run with 2048
cores (i.e. 16 nodes). For the results in the following Section 3.3, deal.II 9.6.2 version with the optimal execution
flags is therefore employed.

16 16
2 deal195.2
14 18 --deal.ll 9.5.2 + optimal execution options
8
7
12 o
5
10 z ‘
s % s
-1 -
g8 X 2
-
%) o
6 £
=
. 03
0.7
2 . - - Ideal speedup 0.5
--deal.ll 9.5.2
. ~deal.ll 9.5.2 + optimal execution options 03
[¢] 200 400 600 800 1000 1200 1400 1600 1800 2000 o 200 400 600 800 1000 1200 1400 1600 1800 2000
Number of cores Number of cores

Fig. 2: Performance impact of using different execution flags in the numerical solution of problem (2), flow over a 3D hill test case. Left: strong
scaling. Right: WT time. The results are obtained with the non-conforming mesh. The black lines show the results with the standard execution
flags, whereas the red lines show the results with optimal execution flags.

16
9 ~-deal.l1 9.5.2
14 18 ~-deal.ll 9.6.2 + optimal execution options
8
12 :
5
10 % 4
& £
S < 3
T s o
X
& ‘i
6 E
=
))
0.7
2 - - |deal speedup 0.5
-e-deal.ll 9.5.2
N --deal.ll 9.6.2 + optimal execution options
0.3
0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 200 400 600 800 1000 1200 1400 1600 1800 2000
Number of cores Number of cores

Fig. 3: Performance impact of using different deal.II versions in the numerical solution of problem (2), flow over a 3D hill test case. Left: strong
scaling. Right: WT time. The results are obtained with the non-conforming mesh. The black lines show the results obtained using the deal.II
9.6.2 version and with optimal execution flags, whereas the red lines show the results obtained using the deal.II 9.5.2 version with standard
execution flags.

3.3. Fast evaluation of block-diagonal operators

Finally, we have investigated the distribution of the computational time spent in the different part of the algorithms.
A profiling analysis show that, as expected, the vast majority of execution time is spent in solving problem (10)
to compute the pressure field (Figure 4). The results are obtained using the non-conforming mesh, but analogous
considerations hold for the uniform mesh (not shown). Apart from the computational time spent in computing the
pressure field, one can immediately notice an increasing relative cost of computing the velocity field (orange bar in
Figure 4) which ranges from about 3.6% with 128 cores to about 13% with 2048 cores. This part of the algorithm
consists in computing (A?)~! (we refer to [13, 14] for all the details), hence solving a linear system. However, this

Giuseppe Orlando et al. / Procedia Computer Science 267 (2025) 227-236 233

operation is repeated several times in the fixed point loop because of the matrix-free approach, which explains the
increasing computational burden.

The matrix A? (8) is a simple block-diagonal operator. Efficient techniques to evaluate and to invert block-diagonal
operators in a DG framework were presented in [7]. However, they require the use of the same number of quadrature
points and degrees of freedom along each coordinate direction, since this yields, after a change of basis, diagonal
blocks in the algebraic structure of the the block-diagonal operator [7]. More specifically, as explained in [7, 8],
the block-diagonal operator is inverted as S~7J~!S~!. Here J is a diagonal matrix, whose entries are equal to the
determinant of the Jacobian times the quadrature weight, while S is a square matrix with basis functions in the row
and quadrature points in columns, i.e. S;; = ¢;(X;). The matrix S is then constructed as the Kronecker product (tensor
product) of small one-dimensional matrices that can be inverted efficiently at each stage. In a nodal DG framework
with nodes located at r + 1 on the quadrature points of a Gauss-Legendre-Lobatto formula, as the one considered here,
this means that it is possible to employ a Gauss-Legendre formula with » + 1 quadrature points along each coordinate
direction for the numerical integration.

The main drawback of this approach is that an aliasing error is introduced. Since numerical integration based on
the Gauss-Legendre formula with r + 1 quadrature points integrates exactly polynomials up to degree 2r + 1, the
strategy presented in [7] does not introduce aliasing errors for classical mass matrices that consist of the product of
two basis function. However, the matrix A’ (8) is a modified mass matrix and consists of the product between three
polynomials. Hence, an aliasing error is introduced for » > 1. The numerical integration for the results shown so far
is based on the so-called consistent integration or over-integration (see [16] for further details). More specifically, a
Gauss-Legendre formula with 27 + 1 quadrature points along each coordinate direction is employed. Notice that the
choice to consider a polynomial representation for density, velocity, and pressure avoids any polynomial division in
the case of the ideal gas law and therefore all the integrals can be computed without aliasing errors thanks to the
aforementioned consistent integration. Hence, the choice of the numerical quadrature formula is related to the need to

integrate all the terms so as to avoid aliasing errors.
BFP: pressure solve
BFP: velocity update
FUpdate density
B QOutput results
EOthers

128 cores 256 cores 512 cores 1024 cores 2048 cores
Number of cores

120

100

80

60

40

Percentage of total run time

20

Fig. 4: Distribution of the computational time spent in various blocks of the algorithm for the solution of problem (2), flow over a 3D hill test case
as a function of number of cores.

The strategy presented in [7] is already available in the deal . IT library, but it was not considered in our previous
work in order to avoid aliasing errors, as mentioned above. In this work we show the impact of this strategy on the
numerical results and on the parallel performance. First, we analyze the impact of the use of the fast evaluation of
block-diagonal operators in terms of accuracy. We consider a uniform mesh composed of N,; = 60 x40 X 16 = 38400
elements, i.e. a resolution of 250 m with a final time 7y = 1h. An excellent agreement is established between the
two numerical strategies to solve the linear systems (Figure 5). A computational time saving of around the 20%

234 Giuseppe Orlando et al. / Procedia Computer Science 267 (2025) 227-236

is established using the fast evaluation of the block diagonal operators. Hence, this first test suggests that the fast
evaluation of block-diagonal operators provides similar results in terms of accuracy in spite of the aliasing error. We
aim to further investigate this matter in future work.

10 = \ \ 30

™~ (\ \ —Consistent integration
[\ \ ; .
9 (— \\ | \ \ ‘[\ { 28 Fast evaluation block-diagonal operators
8 NV WA 26
; —Consistent integration \\ N ~\\ \ \Z* w)
_ Fast evaluation N\ N\ At 28
6 block-diagonal operators "\ (™ A\ N\ :) 2

2z [km]
y [km]
3

10
45 50 20 25 30 35 40 45 50

x [km]

Fig. 5: Flow over 3D hill test case, computed vertical velocity at 7y = 1 h. Left: x — z slice at y = 20 km. Right: x —y slice at z = 20 km. Continuous
black lines show the results with the consistent integration, whereas dashed red lines report the results with the fast evaluation of block-diagonal
operators.

Finally, we show the impact of the fast evaluation of the block-diagonal operators on the parallel performance. One
can easily notice how the computational time spent in computing the velocity field is significantly reduced (orange
bars in Figure 6). More specifically, the percentage with respect to the run time is reduced to around 0.52% with 2048
cores. The strong scaling (Figure 7, top-left) when using the fast evaluation of the block-diagonal operators (red line)
is apparently worse than when using consistent integration (black line) because the evaluation of the block-diagonal
operators is so efficient that a small amount of time is required even for a relatively small number of cores (Figure
7, bottom-left). This consideration is further confirmed by the sizeable advantage in time-to-solution - 53% with 128
cores, about 47% with 2048 cores - brought by the fast evaluation of the block-diagonal operators (Figure 7, top-
right). Moreover, one can easily notice that most of the computational time is required to solve (10) to compute the
the pressure field (Figure 7, bottom-right).

100
90 - i
80 - —
(]
£
s 70~ |
S
% 60 BFP: pressure solve
° BFP: velocity update
% S0 [MUpdate density
o B QOutput results
3 40 - mOthers 7
3
o 30
[]
o
20
10
0

Consistent integration Fast evaluation block-diagonal
Configuration

Fig. 6: Distribution of the computational time spent in various blocks of the algorithm for the solution of problem (2), flow over a 3D hill test case
with 2048 cores. Left: consistent numerical integration. Right: fast evaluation of block-diagonal operators.

Giuseppe Orlando et al. / Procedia Computer Science 267 (2025) 227-236 235

—+Consistent integration
-e-Fast evaluation block-diagonal operators

>
w oo

Speedup
®
Time (x 10%)[s]

2 2 - - Ideal speedup
-+-Consistent integration
-e-Fast evaluation block-diagonal operators
0 200 400 600 800 1000 1200 1400 1600 1800 2000) 200 400 600 800 1000 1200 1400 1600 1800 2000
Number of cores Number of cores

A A g o
S o o o

©
&
N o=

e o

Time of evaluation of block-diaognal operators [s]
5 & 38 &8 8
Time to solve pressure systems (x 104)[s]
o
o

o

0.1
200 400 600 800 1000 1200 1400 1600 1800 2000 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Number of cores Number of cores

o

Fig. 7: Parallel performance of the solver for problem (2), flow over a 3D hill test case with fast evaluation of block-diagonal operators. Top-left:
strong scaling. Top-right: wall-clock times. Bottom-left: wall-clock times of evaluation of block-diagonal operators. Bottom-right: wall-clock times
to solve linear systems for the pressure field (10). In the top panels, the black lines show the results with the fast evaluation of block-diagonal
operators, while the red lines report the results obtained employing the consistent integration.

4. Conclusions

This paper has reported the recent advances in the parallel performance of the IMEX-DG model for atmospheric
dynamics simulations presented in [13, 14] and follows the analysis presented in [17]. First, we have shown the
impact of the use of a suitable preconditioner, then the impact in the use of suitable execution flags and latest version
of deal.II, and, finally, the use of efficient matrix-free techniques for block-diagonal operators [7].

In future work, we aim to further analyze the theoretical properties of the preconditioner, to further investigate
the impact of the use of the direct inversion of the block-diagonal operator, and to exploit this technique to build a
more suitable algebraic/geometric preconditioner since (A”)™! can be readily evaluated. However, we point out that
no theoretical result is available about the convergence properties of matrix-free multigrid preconditioners for non-
symmetric linear systems arising from hyperbolic problems. Moreover, we plan to include more complex physical
phenomena, in particular moist air, and to develop a three-dimensional dynamical core in spherical geometry including
rotation so as to enable the testing on more realistic atmospheric flows. Finally, the data locality and high parallel
efficiency of the DG method as well as the matrix-free approach which performs several computations on the fly
makes the numerical method employed in this work particularly well-suited for a GPU implementation. Currently the
deal. IT library does not support discontinuous finite elements for GPU use. However, there is an ongoing effort of the
deal.II community to provide a more complete and efficient GPU infrastructure including support for discontinuous
finite elements. We aim to provide and test a GPU implementation once the library will be ready for this purpose.

236 Giuseppe Orlando et al. / Procedia Computer Science 267 (2025) 227-236

Acknowledgements

We would like to thank the two anonymous reviewers for their constructive suggestions and remarks, which have
contributed to improving the manuscript. The simulations have been run thanks to the computational resources made
available through the EuroHPC JU Benchmark And Development project EHPC-DEV-2024D10-054. We thank the
Application Support EPICURE Team and in particular W.A. Mainassara for the support and help. This work has been
partly supported by the ESCAPE-2 project, European Union’s Horizon 2020 Research and Innovation Programme
(Grant Agreement No. 800897).

References

[1] P. Africa, D. Arndt, W. Bangerth, B. Blais, M. Fehling, R. Gassmoller, T. Heister, L. Heltai, S. Kinnewig, M. Kronbichler, J. Thiele, B. Turcksin,
and V. Yushutin. The deal.Il library, Version 9.6. Journal of Numerical Mathematics, 32:369-380, 2024.
[2] D. Arndt, W. Bangerth, B. M., M. Feder, M. Fehling, J. Heinz, T. Heister, L. Heltai, M. Kronbichler, M. Maier, P. Munch, J.-P. Pelteret,
B. Turcksin, D. Wells, and S. Zampini. The deal.Il library, Version 9.5. Journal of Numerical Mathematics, 31:231-246, 2023.
[3] W. Bangerth, R. Hartmann, and G. Kanschat. deal.Il: a general-purpose object-oriented finite element library. ACM Transactions on Mathe-
matical Software, 33:24-51, 2007.
[4] T. Benacchio, W. O’Neill, and R. Klein. A blended soundproof-to-compressible numerical model for small-to mesoscale atmospheric dynam-
ics. Monthly Weather Review, 142:4416-4438, 2014.
[5] F. Giraldo. An Introduction to Element-Based Galerkin Methods on Tensor-Product Bases. Springer Nature, 2020.
[6] C. Kennedy and M. Carpenter. Additive Runge-Kutta schemes for convection-diffusion-reaction equations. Applied Numerical Mathematics,
44:139-181, 2003.
[71 M. Kronbichler and K. Kormann. Fast matrix-free evaluation of discontinuous Galerkin finite element operators. ACM Transactions on
Mathematical Software (TOMS), 45:1-40, 2019.
[8] M. Kronbichler, S. Schoeder, C. Miiller, and W. Wall. Comparison of implicit and explicit hybridizable discontinuous Galerkin methods for
the acoustic wave equation. International Journal for Numerical Methods in Engineering, 106:712-739, 2016.
[9] C.Lanczos. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. Journal of research of
the National Bureau of Standards, 45:255-282, 1950.
[10] H. Lean, N. Theeuwes, M. Baldauf, J. Barkmeijer, G. Bessardon, L. Blunn, J. Bojarova, 1. Boutle, P. A. Clark, M. Demuzere, et al. The
hectometric modelling challenge: Gaps in the current state of the art and ways forward towards the implementation of 100-m scale weather
and climate models. Quarterly Journal of the Royal Meteorological Society, 150:4671-4708, 2024.
[11] T. Melvin, T. Benacchio, B. Shipway, N. Wood, J. Thuburn, and C. Cotter. A mixed finite-element, finite-volume, semi-implicit discretization
for atmospheric dynamics: Cartesian geometry. Quarterly Journal of the Royal Meteorological Society, 145:2835-2853, 2019.
[12] G. Orlando and L. Bonaventura. Asymptotic-preserving IMEX schemes for the Euler equations of non-ideal gases. Journal of Computational
Physics, 529:113889, 2025.
[13] G. Orlando, P. Barbante, and L. Bonaventura. An efficient IMEX-DG solver for the compressible Navier-Stokes equations for non-ideal gases.
Journal of Computational Physics, 471:111653, 2022.
[14] G. Orlando, T. Benacchio, and L. Bonaventura. An IMEX-DG solver for atmospheric dynamics simulations with adaptive mesh refinement.
Journal of Computational and Applied Mathematics, 427:115124, 2023.
[15] G. Orlando, T. Benacchio, and L. Bonaventura. Robust and accurate simulations of flows over orography using non-conforming meshes.
Quarterly Journal of the Royal Meteorological Society, 150:4750—4770, 2024.
[16] G. Orlando, T. Benacchio, and L. Bonaventura. Impact of curved elements for flows over orography with a Discontinuous Galerkin scheme.
Journal of Computational Physics, 519:113445, 2024.
[17] G. Orlando, T. Benacchio, and L. Bonaventura. Efficient and scalable atmospheric dynamics simulations using non-conforming meshes.
Procedia Computer Science, 255:33—42, 2025. Proceedings of the Second EuroHPC user day.
[18] G. Orlando, S. Boscarino, and G. Russo. A quantitative comparison of high-order asymptotic-preserving and asymptotically-accurate IMEX
methods for the Euler equations with non-ideal gases, 2025.
[19] L. Pareschi and G. Russo. Implicit-explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation. Journal of Scientific
computing, 25:129-155, 2005.
[20] J. Steppeler, R. Hess, G. Doms, U. Schiittler, and L. Bonaventura. Review of numerical methods for nonhydrostatic weather prediction models.
Meteorology and Atmospheric Physics, 82:287-301, 2003.
[21] R. Varga. Matrix Iterative Analysis. Springer Science & Business Media, 2009.

Available online at www.sciencedirect.com

ScienceDirect Procedia

Computer Science

CrossMark

Procedia Computer Science 267 (2025) 237-245

www.elsevier.com/locate/procedia

Proceedings of the Third EuroHPC user day

Towards efficient high-resolution simulations of dust storm
formation over large areas in North Africa using HPC

Samira Karbasi*, Jose A. G. Orza

SCOLADb, Dept. of Applied Physics, Universidad Miguel Hernandez de Elche, Avda. de la Universidad, Elche 03202, Spain

Abstract

This study presents the results of scalability tests of the WRF-Chem model on the MareNostrum 5 GPP supercomputing system,
aimed at enabling high-resolution simulations of dust storm formation across large regions of North Africa. Simulations were
conducted with three nested domains, reaching a 2 km horizontal resolution in the innermost domain. Two large areas of different
size were evaluated. For the smaller domain, the optimal wall-clock time was achieved using approximately 2,000 cores,
resulting in a simulation-to-wall-clock time ratio of 2:1. However, parallel efficiency declined significantly beyond ~1,200 cores,
indicating limited scalability at higher core counts. In contrast, simulations over the larger domain maintained high efficiency
between 1,680 and 2,016 cores, even outperforming the 2,500-core configuration in normalized cost. These findings highlight the
importance of balancing runtime and resource efficiency. Future work should investigate which components of WRF-Chem
dominate computational cost to better exploit HPC resources and guide model optimization

© 2025 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY 4.0 license (https://creativecommons.org/licenses/by/4.0)
Peer-review under responsibility of the scientific committee of the Proceedings of the Third EuroHPC user day

Keywords: WRF-Chem; dust storms; scalability test; HPC

1. Introduction

Desert dust aerosols, created by wind erosion on arid and semi-arid surfaces worldwide, can reduce visibility to
near zero in the source regions and are regularly transported thousands of kilometers before being deposited on land
or in ocean waters. While suspended in the atmosphere, dust acrosols impact air quality and human health, affect
ecosystems, and play a significant role in Earth’s radiative balance and atmospheric processes [1]. They influence
the climate system through the scattering and absorption of solar and terrestrial radiation and by acting as cloud
condensation and ice nuclei, which affect cloud formation and precipitation. In addition, dust deposition contributes
to biogeochemical cycles by supplying essential nutrients to both terrestrial and marine environments. Dust
contributes more than two-thirds of the global aerosol mass in the atmosphere [2].

1877-0509 © 2025 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY 4.0 license (https://creativecommons.org/licenses/by/4.0)
Peer-review under responsibility of the scientific committee of the Proceedings of the Third EuroHPC user day
10.1016/j.procs.2025.08.250

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2025.08.250&domain=pdf

238 Samira Karbasi et al. / Procedia Computer Science 267 (2025) 237-245

Surface soil susceptibility to erosion and wind friction velocity govern dust deflation. Consequently, dust sources
are unevenly distributed across the globe. Over the past two decades, significant progress has been made in
characterizing the impacts of dust outbreaks across different world regions. Studies have examined their connections
to source dynamics, emission mechanisms, and diverse transport pathways. North African dust emissions are
primarily carried westward to the tropical North Atlantic within the Saharan Air Layer, yet a considerable fraction is
also transported northward into the Mediterranean basin and Europe (e.g. [3, 4, 5, 6, 7, 8, 9]).

The main meteorological features leading to dust emission have been identified in recent decades. These include
low-level jets, synoptic-scale circulations, convective systems and mountain-induced winds (e.g. [10, 11, 12, 13, 14,
15]). Those winds are typically embedded within broader-scale atmospheric circulations such as African Easterly
Waves, extratropical troughs, or subtropical highs, which modulate their frequency and intensity. Large-scale
atmospheric instabilities at the upper troposphere organize the environment and are the precursors of the instabilities
that cascade down to localized convective and orographic features at lower-levels (e.g. [16, 17]), so dust storm
formation involve a complex sequence of multi-scale meteorological interactions.

Mountains and elevated terrain play a crucial role in shaping local and regional wind systems, many of which can
contribute significantly to dust deflation and uplift. The interplay between complex terrain and atmospheric flow
results in the formation of diverse orographic wind systems. Despite their recognized importance, mesoscale
mountain-induced winds remain underrepresented in many dust emission and transport models. Their transient and
localized nature poses challenges for both observation and numerical simulation, especially in regions with sparse
in-situ monitoring. Advancing high-resolution modeling and incorporating satellite-derived topographic and
atmospheric data, as well as surface observations, are essential steps to accurately capture these processes.

The goal of this work is to present the scalability tests conducted on the MareNostrum 5 GPP system to enable
large-area, high-resolution simulations of dust storm formation across the Sahara Desert, with a focus on a selected
case study. There are prominent mountain ranges and elevated plateaus in the Sahara, such as the Hoggar, Tibesti
and Air Mountains. In addition, ranges in the edge of the Sahara like the Atlas Mountains are relevant for the
emission and transport of African dust. These orographic features give rise to a variety of terrain-influenced wind
systems, which significantly contributed to dust uplift across large areas of North Africa and facilitated long-range
transport to Europe during two consecutive major dust storm events in March 2022.

2. High-resolution WRF-Chem simulations
2.1. Model description

The Weather Research and Forecasting (WRF) model is a regional numerical weather prediction system designed
for both atmospheric research and operational forecasting applications. Its modular software architecture supports
parallel computing and provides system extensibility for diverse atmospheric modeling needs. WRF-Chem, a
comprehensive and online version of WRF coupled with atmospheric chemistry, enables the simultaneous
simulation of weather and atmospheric chemistry processes, including the transport, transformation, and removal of
trace gases and aerosols. The model supports two-way interactions, enabling atmospheric constituents to directly
influence meteorological fields and vice versa. Due to the integration of chemistry and feedback mechanisms, WRF-
Chem is significantly more computationally expensive than the standard WRF model. It was introduced by Grell et
al. in 2005 [18].

The model supports nested grid capabilities and is fully parallelized using domain decomposition with Message
Passing Interface (MPI), allowing efficient execution on HPC systems. Skamarock et al. [19] is the primary
reference for WRF’s numerical core, including time integration (third-order Runge-Kutta), grid staggering and
nested grid capabilities. Grell et al. [18] introduced the WRF-Chem model and presented the chemistry-dynamics
coupling and operator splitting. The use of mass conserving advection and other numerical features of WRF-Chem
is described in [20].

Samira Karbasi et al. / Procedia Computer Science 267 (2025) 237-245 239

40°N

35°N

30°N

25°N

20°N

15°N

10°W 0° 10°E 20°E 30°E

Fig. 1. WRF-Chem simulation domains, labeled 1, 2, and 3, with corresponding horizontal grid resolutions of 18, 6, and 2 km, respectively.
2.2. Model configuration

In this study, the WRF-Chem model (version 4.5.2) was configured with three nested domains at horizontal
resolution of 18, 6 and 2 km (Figure 1), and 38 vertical sigma levels extending from the surface up 50 hPa in the
stratosphere. The outermost domain spans from 10° to 45° N and 17°W to 35° E, encompassing North Africa, the
Mediterranean, southern Europe, and part of the eastern North Atlantic. The inner domains used in our initial
simulations cover different regions of the Sahara Desert, which include complex terrain features like the Atlas
Mountains and others like the Hoggar, Tibesti and Air Mountains in order to capture orographically driven wind
systems and associated dust uplift. For the scalability tests we considered two different configurations of the
innermost (third) domain: one covering the Atlas region, parts of the Sahara near the Atlas Mountains, and the
southern Iberian Peninsula; and another, larger domain encompassing the Hoggar, Tibesti, and Air regions.

The simulations ran for a 13-day period, from 00UTC on March 4 to 00UTC on March 17, 2022. A 10-day spin-
up phase was included to allow for the model’s dynamical and chemical fields (and particularly for aerosol
concentrations) to stabilize before the analysis period of March 14-18. We note that long spin-up periods are
important in aerosol simulations to allow for the buildup and proper distribution of emissions and chemical species
within the model domain. Details of the model configuration and numerical simulation settings are presented in
Table 1. The model was configured with micro-physics option by the Thompson scheme [21], the Mellor-Yamada-
Janjic (MYJ) planetary boundary layer (PBL) scheme, and the RRTMG scheme from the Rapid Radiative Transfer
Model (RRTM) for general circulation models (GCMs) to simulate the long-wave radiations [22, 23, 24], and the
Dudhia scheme for short-wave radiation [25]. The GOCART (Goddard Chemistry Aerosol Radiation and Transport)
dust emission scheme [26] was used to simulate dust emissions using wind-driven threshold friction velocity,
surface properties, and soil moisture. It includes emission, transport, and deposition processes to represent the
dynamics of dust aerosol.

WRF-Chem operates in parallel using domain decomposition, a method in which the spatial domain of the model
is split into rectangular subdomains (tiles), one per MPI process or task. Each MPI process handles physics,
dynamics, and chemistry computations of its assigned subdomain and includes halo or buffer zones that store the
boundary information of neighboring tiles to maintain consistency across subdomain boundaries. At each timestep,

240 Samira Karbasi et al. / Procedia Computer Science 267 (2025) 237-245

boundary data is exchanged between neighboring processes. Although WRF-Chem supports hybrid parallelism
using OpenMP in addition to MPI, which can improve performance on multi-core nodes, only pure MPI parallelism
was used in this work. The number of MPI tasks was varied in the scalability tests.

To increase the memory available for each MPI process, 6 cores per task were allocated. This is necessary
because memory is physically limited to 2GB per core on MareNostrum 5. Therefore, to provide more memory to a
single MPI process, the cpus-per-task parameter in the SLURM job script must be increased. In this case, the
application requires 12GB per process (then cpus-per-task was set at 6), particularly when using a smaller number of
nodes. This setting is maintained even in runs with larger node counts to maintain consistency in process distribution
and memory availability.

2.3. Other data used in the study

In addition to provide initial and boundary conditions for the simulations, meteorological ERAS reanalysis data
[27], produced by the European Centre for Medium-Range Weather Forecasts (ECMWF), were used for the large-
scale analysis of the dust storm events. ERAS provides hourly atmospheric data at approximately 0.25° spatial
resolution, available through the Copernicus Climate Data Store (https://cds.climate.copernicus.eu/).

Table 1. Overview of WRF model configuration.

Schemes Option number Variable namelist WREF_Chem Option
Microphysics 8 mp_physics Thompson scheme (Thompson, Field, Rasmussen
and Hall, 2008)
Radiation 1 ra_lw_physics RRTM (Mlawer et al., 1997)
1 ra_sw_physics Dudhia scheme (Dudhia, 1989)
Planetary boundary layer 2 bl _pbl_physics Mellor-Yamada-Janjic (Janjic, 1994)
Land surface 2 sf_surface physics Noah Land Surface Model (Chen and Dudhia,
2001)
Surface model 2 sf_sfclay physics Monin-Obukhov (Janjic) scheme (Monin and
Obukhov, 1954)
Cumulus parameterization 2 cu_physics Betts-Miller-Janjic scheme
Dust_module 300 chem opt GOCART (Chin et al., 2002)

Meteorology Initial and ERAS (0.25°)
boundary conditions

Chemical Initial and EDGAR v5.0 emissions inventory speciated for the MOZART chemical mechanism
boundary conditions (0.1° x 0.1°) (https://edgar.jrc.ec.europa.eu/)
WACCM (https://www.acom.ucar.edu/waccm/download.shtml)
Time period 20122_03-14_00:00 to 2022-03-19_00:00
Spatial resolution d01:18 km, d02: 6km, d03: 3km

The Dust RGB product from the Meteosat Second Generation (MSG) satellites was employed to monitor the
evolution of the dust plumes over North Africa and the Iberian Peninsula. It is a composite based on the combination
of three infrared channels from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) instrument [28].
While this product has limited spatial resolution, its high temporal resolution offers insight into the rapid evolution
of the dust plumes.

SYNOP and METAR surface observations, including meteorological data and reports of visibility reduction due
to airborne dust, were used to validate the WRF-Chem simulations. They are available in the Integrated Surface
Database (https://www.ncei.noaa.gov/).

3. Results
3.1. Model performance and scalability tests

After a number of performance tests on the smaller study domain (corresponding to the one in Figure 1, see also
Table 2), we selected a configuration of ntasks=420 and cpus-per-task=6. With this setup, each 5-day simulation

Samira Karbasi et al. / Procedia Computer Science 267 (2025) 237-245 241

period required slightly less than 72 hours (3 days) of wall-clock time. To perform the full 13-day simulation we
used the model’s restart capability, sequentially running in 5-day segments and continuing the simulation from the
generated restart files. The batch script used for these runs is provided in Figure 2.

The scalability tests were performed using simulations limited to 72 wall-clock hours and then extrapolated to a
reference runtime of 10 simulation days. This approach avoided the need to manage restart files while still providing
performance estimates which are not far to the required operational runs. The scalability tests were conducted by
varying the number of tasks while keeping the number of CPUs per task constant (cpus-per-task=6). The total
number of cores used is the product of these two parameters. As expected, wall-clock time decreased with an
increasing number of cores (see Figure 3), reaching a minimum approximately 2,000 cores (ntasks=336). Beyond
this point, performance slightly degraded, with wall-clock time increasing again when using 380 and 420 tasks. The
most efficient configuration achieved a simulation time that was twice the wall-clock time, indicating a favorable
balance between computational efficiency and resource usage.

#'!/bin/bash

#SBATCH -J wrf_exel

#5SBATCH --ntasks 420

#SBATCH --cpus-per-task=6
#SBATCH -t 72:00:00

#3BATCH --gqos=gp_resa

#5BATCH -o bt-wrf chemresl-%j.out
#SBATCH -e bt-wrf_chemresl-%j.err
#SBATCH --constraint=highmemn
#5BATCH -D .

#3BATCH --gqos=gp_resa

#5BATCH -A umh82

wodule purge && module load oneapi/2023.2 hdfS pnetcdf netcdf

export SRUN_CPUS_PER_TASK=4§ SLURM_CPUS_PER_TASK
srun ./wrf.exe

Fig. 2. SLURM batch script used to run the WRF-Chem simulation on MareNostrum 5.

Due to resource limitations, the scalability analysis for the larger simulation domain was more restricted. For this
larger domain, the wall-clock time continued to decrease with increasing number of cores as shown in Figure 3. It is
worth noting that wall-clock times using ntasks = 420 were very similar for both the smaller and larger domains,
highlighting the potential for further optimization in larger configurations.

A normalized performance metrics such as the Normalized Computational Cost (NCC), or cost per grid point, is
defined as

NCC _ Twall_clock' NC
Ngrid_cells

where Twan clock 1S the wall-clock time (hours) of the simulation, NC is the number of CPU cores used, and
Nerid_cells 18 the total number of horizontal grid points in the model domain(s). This metric facilitates a fair
comparison between simulations with different domain sizes and resolutions by normalizing the computational
effort per grid point. We consider the optimal configurations for the small and large study domains. These values are
listed in Table 2. As expected, the total computational cost is higher for simulations covering larger areas due to the
increased number of grid cells. However, they also exhibit higher normalized costs reflecting decreased parallel
efficiency and scalability at larger scales. Conversely, increasing spatial resolution (smaller grid spacing) raises the
total computational cost, but tends to lower the normalized cost, indicating a more efficient use of resources per grid
point, likely due to improved load balancing and reduced communication overhead relative to the computational
workload.

242 Samira Karbasi et al. / Procedia Computer Science 267 (2025) 237-245

300 ;
+ smaller domain
<«
\\\ larger domain

—_ 250 N "
:E— \\\ A\ /
o \ . ya
£ 200 = N /
- N \\ Pl
X N e o
g N S
< 150
L . *
© Y L7
= R

100 i -

———— *
2
50
500 1000 1500 2000 2500 3000

Number of cores

Fig. 3. Scalability plots for two simulation domains. Dashed lines are quadratic fits.

Table 2. Number of grid points and resolution for the nested domains in the two simulation domains considered in this study. The last row
shows the normalized computational cost (NCC) for the optimal configurations of the two domains, according to Fig. 3.

Smaller domain (Atlas Mnts.) Larger domain (Central Sahara)
do1 do2 do3 do1 do2 do3
x_grid_points 330 475 811 427 661 1306
y_grid_points 212 436 733 301 592 1015
z_grid_points 38 38 38 38 38 38
Horiz. resol. 18 km 6 km 2 km 18 km 6 km 2 km
NCC 2,38 0,80 0,28 5,86 1,98 0,69

We also analyzed parallel efficiency and strong scaling behavior by comparing performance across core counts
for two fixed domain sizes. These complementary metrics help to identify bottlenecks such as I/O limitations or
inter-process communication costs that may affect scalability at high core counts. This metric is defined as

Twall_clock_ref ' NCref
Twall_clock "NC

Parallel Ef ficiency =

where Twail_clock ref 18 the wall-clock time at the reference simulation, NCr is the number of CPU cores used in the
reference simulation, Twail_clock 1S the wall-clock time for other simulations where the number of CPU cores is NC. It
shows the efficiency degradation beyond 2016 cores (in the small system domain) and 2520 cores (in the large
system domain). In the small system, efficiency drops significantly as the number of cores decreases beyond 2016,
with only 46% efficient than the selected reference performance at 2520 cores. Best efficiency is around 1000 cores,
suggesting that scaling beyond 2000 cores is inefficient due to communication overheads and underutilized cores,
which in turn suggests the system size is small relative to the number of processors working in parallel. In turn, for
the large system efficiency is higher than one for fewer cores, suggesting that the reference case does not fully
utilize the resources or suffers from parallel overheads and that scaling is more balanced at lower core counts (1680-
2016), but increasing to approximately 2800 reduces also the efficiency to 56%.

Samira Karbasi et al. / Procedia Computer Science 267 (2025) 237-245 243

1,2
.,//’// . \\\\\\
1 St TS AN
§ * 7 ° TSsg AN
Q2 i N \
2 * ~ N
— N \
@ 038 SN
- N \
= \
Y + smaller domain N \\
© % \
o 0,6 B S5 A
W larger domain N &
*
014 T T T T
500 1000 1500 2000 2500 3000

Number of cores

Fig. 4. Parallel efficiency plots for two simulation domains. Dashed lines are quadratic fits.

3.2. Case study — Simulation results

On March 14 and 15, 2022, two major dust storms formed over North Africa, subsequently impacting the Iberian
Peninsula and much of western Europe. These events were preceded by upper-level dynamic disturbances, including
Rossby wave breaking, located to the east and west of North Africa (details will be provided elsewhere). These
features induced the penetration of strong and cold northerly/northeasterly winds into northeastern Africa and the
advection of cold and high potential vorticity air into northwest Africa. A west-to-east pressure gradient and a
cyclonic vortex over northwestern Africa drove easterly winds across the continent, interacting with the region’s
complex terrain to generate barrier flows and enhance near-surface wind speeds. The first dust storm formed early
on March 14 over the Atlas Mountains, associated with a sub-synoptic-scale lee cyclone that triggered intense dust
uplift, while the broader synoptic cyclonic circulation facilitated the northward transport to the Iberian Peninsula.
The second dust storm, on March 15, was driven by low-level convergence between the easterly flow and the
southwesterlies tied to the cyclonic system, resulting in strong northward dust advection and heavy dust loading
over Iberia. Snaphots of the spatial structure of the dust and wind fields simulated by WRF-Chem is illustrated in
Figures 5 and 6, offering a general overview of the model output. A more detailed understanding of the underlying
processes typically requires higher resolution maps and additional analysis using vertical cross sections.

RGBDust 2022-03<14..1600UTC
' e

Time: 2022-03-14_16:00:00
Y R R SN L NSRS

38N

36|~

3q0y

320y

Total Dust Load (g/m?

30N

28y

26°N 0 B d s 4 10 m/s

Fig. 5. First dust storm. Left: Modeled wind vectors and dust load for domain d03, with blue contours representing terrain elevation. Right: MSG
Dust RGB composite imagery, with dust depicted in pink/magenta tones and thick high-altitude clouds appearing in brown.

244 Samira Karbasi et al. / Procedia Computer Science 267 (2025) 237-245

RGBDUSE2072-03%15

= Time: 2022-03-15_13:00:00
N & o s==; v IS
WP« O\ 7 AR
11022 RREPP NS A
VA D\ §9\\\Q\‘\
== Y AN
350 é% = ".\ —
AL
1
300y / //t\
M
250y ﬂqﬂw
e
(R R AL
ol {1
da

Fig. 6. Same as Figure 5, but for the second dust storm one day later.
4. Conclusions

The WRF-Chem model demonstrated good scalability on the MareNostrum 5 GPP system for high-resolution
simulations of dust storm formation over relatively large geographic areas, using a 2 km horizontal resolution in the
innermost domain. For the smaller domain, although the configuration with the shortest wall-clock time was
observed with approximately 2,000 cores and resulted in a simulation time of twice the wall-clock time, parallel
efficiency degraded significantly beyond about 1,200 cores. This suggests that over-parallelization leads to
underutilized resources, and configurations using fewer cores (around 1,000) offer better efficiency for small-
domain simulations. In contrast, for the larger domain, scaling seems to level off at 2500 cores and parallel
efficiency remained high when using 1,680-2,016 cores, even outperforming the reference configuration of 2,520
cores in normalized efficiency. This indicates that optimal performance can be achieved with fewer cores,
improving resource utilization without scarifying runtime significantly.

These results emphasize the importance of balancing runtime and computational efficiency, encouraging future
work on high-resolution simulations over large domains, where core counts can be scaled more efficiently. While
this study did not include detailed code profiling due to the constraints of the benchmarking period, future work
should be done to profile WRF-Chem simulations to identify the most computationally intensive components of
WRF-Chem (likely chemistry, I/O) that limit scalability.

Acknowledgements

We thank two anonymous reviewers for their constructive comments and suggestions, which improved the
quality and clarity of this manuscript. This work was partially funded by the Spanish Government
MCIN/AEI/10.13039/501100011033 under Grant PID2020-115153RB-100 (rROSSETA Project). We acknowledge
EuroHPC JU for providing access to the MareNostrum5 supercomputing facility through EHPC-BEN-2024B07-017
and thank the BSC support team for their valuable assistance.

References

[1] Boucher, O. (2015) “Atmospheric aerosols: properties and climate impacts” Springer, ISBN: 9789401778008.

[2] Kinne, S., et al. (2006) “An AeroCom initial assessment — optical properties in aerosol component modules of global models” Atmospheric
Chemistry and Physics 6:1815-1834.

[3] Moulin, C., et al. (1998). “Satellite climatology of African dust transport in the Mediterranean atmosphere” Journal of Geophysical Research,
103 (D11): 13137-13144.

[4] Gkikas, A., Hatzianastassiou, N., and Mihalopoulos, N. (2009). “Aerosol events in the broader Mediterranean basin based on 7-year (2000—
2007) MODIS CO005 data” Annales Geophysicae, 27, 3509-3522.

Samira Karbasi et al. / Procedia Computer Science 267 (2025) 237-245 245

[5] Israelevich, P., Ganor, E., Alpert, P., Kishcha, P., & Stupp, A. (2012) “Predominant transport paths of Saharan dust over the Mediterranean
Sea to Europe” Journal of Geophysical Research 117, D02205.

[6] Querol, X., et al. (2009) “African dust contributions to mean ambient PM10 mass-levels across the Mediterranean Basin” Atmospheric
Environment 43: 4266-4277.

[7] Pey, J., Querol, X., Alastuey, A., Forastiere, F., and Stafoggia, M. (2013) “African dust outbreaks over the Mediterranean Basin during 2001—
2011: PM10 concentrations, phenomenology and trends, and its relation with synoptic and mesoscale meteorology” Atmospheric Chemistry
and Physics 13: 1395-1410.

[8] Varga, G., Ujvari, G., and Kovacks, I. (2014) “Spatiotemporal patterns of Saharan dust outbreaks in the Mediterranean Basin” Aeolian
Research 15: 151-160.

[9] Marinou, E., et al. (2017). “Three-dimensional evolution of Saharan dust transport towards Europe based on a 9-year EARLINET-optimized
CALIPSO dataset” Atmospheric Chemistry and Physics 17: 5893-5919.

[10] Knippertz, P., and Todd, M.C. (2012) “Mineral dust aerosols over the Sahara: meteorological controls on emission and transport and
implications for modeling” Reviews of Geophysics 50, RG1007.

[11] Schepanski, K., Tegen, 1., Laurent, B., Heinold, B., and Macke, A. (2007) “A new Saharan dust source activation frequency map derived
from MSG-SEVIRI IR channels” Geophysical Research Letters 34, L18803.

[12] Schepanski, K., et al. (2009) “Meteorological processes forcing Saharan dust emission inferred from MSG-SEVIRI observations of sub-daily
dust source activation” Journal of Geophysical Research 114, D10201.

[13] Fiedler, S., Schepanski, K., Knippertz, P., Heinold, B., and Tegen, 1. (2014) “How important are atmospheric depressions and mobile
cyclones for emitting mineral dust aerosol in North Africa?” Atmospheric Chemistry and Physics 14 (17): 8983-9000.

[14] Fiedler, S., Kaplan, M.L., and Knippertz, P. (2015) “The importance of Harmattan surges for the emission of North African dust aerosol”
Geophysical Research Letters 42: 9495-9504.

[15] Pokharel, A.K., Kaplan, M.L., and Fiedler, S. (2017) “Subtropical Dust Storms and Downslope Wind Events” Journal of Geophysical
Research: Atmospheres 122: 10191-10205.

[16] Orza, J.A.G., S. Dhital, S. Fiedler, and M.L. Kaplan (2020) “Large Scale Upper-level Precursors for Dust Storm Formation over North
Africa and Poleward Transport to the Iberian Peninsula. Part I: An Observational Analysis” Atmospheric Environment 237, 117688.

[17] Dhital, S., M.L. Kaplan, J.A.G. Orza, and S. Fiedler (2021) “Poleward Transport of African Dust to the Iberian Peninsula Organized by a
Barrier Jet and Hydraulic Jumps: Observations and High-Resolution Simulation Analyses” Atmospheric Environment 261, 118574.

[18] Grell, G.A., Steven E. Peckham, Rainer Schmitz, Stuart A. McKeen, Gregory Frost, William C. Skamarock, and Brian Eder (2005) “Fully
coupled ‘online’ chemistry within the WRF model” Atmospheric Environment 39: 6957-6975.

[19] Skamarock, W. C., et al. (2019) “A description of the Advanced Research WRF Version 4”. NCAR Technical Note NCAR/TN-556+STR.
https://doi.org/10.5065/1dth-6p97

[20] Fast, J. D., et al. (2006) “Evolution of ozone, particulates, and aerosol direct radiative forcing in the vicinity of Houston using a fully coupled
meteorology—chemistry model” Journal of Geophysical Research, 111 D21305.

[21] Thompson, G., Rasmussen, R. M., and Manning, K. (2004) “Explicit forecasts of winter precipitation using an improved bulk microphysics
scheme. Part I: Description and sensitivity analysis” Monthly Weather Review 132: 519-542.

[22] Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., and Clough, S. A. (1997) “Radiative transfer for inhomogeneous atmospheres:
RRTM, a validated correlated-k model for the longwave.” Journal of Geophysical Research 102 (D14): 16,663—16,682.

[23] Iacono, M. J., Mlawer, E. J., and Clough, S. A. (2000) “Impact of an improved longwave radiation model, RRTM, on the energy budget and
thermodynamic properties of the NCAR community climate model, CCM3.” Journal of Geophysical Research 105 (D11): 14873-14890.

[24] Zhao, J., Ma, X., Wu, S., and Sha, T. (2020) “Dust emission and transport in Northwest China: WRF-Chem simulation and comparisons
with multi-sensor observations.” Atmospheric Research 241: 104978.

[25] Dudhia, J. (1989) “Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional
model” Journal of Atmospheric Science 46: 3077-3107

[26] Chin, M., Ginoux, P., Kinne, S., Torres, O., Holben, B. N., Duncan, B. N., Martin, R. V., Logan, J. A., Higurashi, A., and Nakajima, T.
(2002) “Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and Sun photometer measurements.”
Journal of Atmospheric Sciences 59 (3): 461-483.

[27] Hersbach, H.B., et al. (2020) “The ERA5 Global Reanalysis” Quarterly Journal of the Royal Meteorological Society 146: 1999-2049.

[28] Lensky, I.M., and Rosenfeld, D. (2008) “Clouds-aerosols-precipitation satellite analysis tool (CAPSAT)”. Atmospheric Chemistry and
Physics 8 (22): 6739-6753.

Available online at www.sciencedirect.com

ScienceDirect Procedia

Computer Science

CrossMark

Procedia Computer Science 267 (2025) 246-255

www.elsevier.com/locate/procedia

Proceedings of the Third EuroHPC user day

Scalable Detection of Environmental Events on EuroHPC MeluXina

Jini Cheriyan®, Jaime Santos®"

“AiTecServ, Praga da Concordia n°62, 2870-471 Afonsoeiro, Montijo, Portugal

Abstract

This study explores the training and experimentation of Al-based environmental event detection models using large-scale datasets
on the EuroHPC supercomputer Meluxina. The primary objective is to assess the scalability, performance, and efficiency of
advanced deep learning-based image segmentation models for fire, smoke and water detection across diverse environmental
conditions. By leveraging high-performance computing (HPC), we trained and evaluated multiple architectures to enhance
detection accuracy, minimize training time, and improve model scalability. The experimental results demonstrate the advantages
of HPC-driven deep learning in handling large datasets, accelerating model convergence, and enhancing detection precision. These
advancements contribute to the development of efficient early warning systems, aiding in environmental protection and public
safety.

© 2025 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY 4.0 license (https://creativecommons.org/licenses/by/4.0)
Peer-review under responsibility of the scientific committee of the Proceedings of the Third EuroHPC user day

Keywords: Fire-smoke Detection; Water detection; Image Segmentation; HPC; Meluxina; Deep Learning; Large-Scale Training

1. Introduction

Wildfires and other natural disasters have become increasingly frequent and intense due to climate change [1],
posing significant threats to ecosystems, public safety, and infrastructure. Early detection and rapid response are
crucial for minimizing environmental degradation, economic losses, and associated health risks.

Conventional fire and flood detection systems—such as satellite imaging, ground-based sensors, and human
surveillance—have long played a vital role in environmental monitoring [2]. Satellite data offers broad coverage and,
in many cases, near-real-time availability. However, satellite-based monitoring may still face limitations in spatial
resolution for small or early-stage events, dependency on clear sky conditions in visible bands. These challenges

* Corresponding author.
E-mail addresses: jini.cheriyan@aitecserv.pt, jaime.santos@aitecserv.pt

1877-0509 © 2025 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY 4.0 license (https://creativecommons.org/licenses/by/4.0)
Peer-review under responsibility of the scientific committee of the Proceedings of the Third EuroHPC user day
10.1016/j.procs.2025.08.251

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2025.08.251&domain=pdf

Jini Cheriyan et al. / Procedia Computer Science 267 (2025) 246-255 247

highlight the need for complementary ground-based systems capable of localized, continuous, and high-resolution
observation.

Recent advancements in computer vision and deep learning have led to the emergence of Al-based systems that
offer real-time monitoring through camera feeds and image segmentation. Looking at the big picture, segmentation is
one of the high-level tasks that paves the way towards complete scene understanding [15]. These models are
particularly suited for localized deployments (e.g., urban, forested, or industrial environments) where rapid detection
of fire, smoke, or water anomalies is critical.

Nonetheless, real-world complexity continues to present challenges. Smoke can resemble clouds or mist; artificial
lighting can create false positives; and water detection is sensitive to surface reflections and color variability.
Additionally, environmental conditions, time of day, and object distance complicate feature extraction—especially
for small-scale or distant events.

Training segmentation models on diverse, large-scale datasets is essential for reliable generalization. However,
doing so demands significant computational power, often beyond the reach of standard infrastructure. To overcome
these barriers, this study utilizes the EuroHPC Meluxina supercomputer [5], [6], which enables large-batch, high-
resolution training on deep architectures using NVIDIA A100 GPUs.

To safeguard our proprietary technology, detailed specifications of the dataset and deep learning models are not
disclosed. However, the core experimental setup and all reported metrics reflect realistic deployment scenarios,
ensuring scientific and technical rigor.

The primary objectives of this research are:

e To train and experiment with state-of-the-art image segmentation models for fire and water detection using a large
dataset.

e To assess the performance and scalability of different segmentation models/architecture on the Meluxina
supercomputer.

e To analyze the computational benefits of using HPC resources for large-scale training and experimentation.

The remainder of this paper is organized as follows: Section 2 discusses the background and related work in fire,
water detection and HPC-based training. Section 3 outlines the methodology, including dataset preparation, model
selection, and HPC implementation on Meluxina. Section 4 presents the experimental results, evaluating model
performance, scalability, and computational efficiency. Finally, Section 5 provides a discussion on the effectiveness,
limitations, and potential future work.

2. Background and related work
2.1. Natural event detection techniques

Traditional environmental monitoring techniques have included satellite imagery, sensor networks, and manual
surveillance [7]. Satellites remain indispensable for large-scale wildfire and flood monitoring, offering multi-spectral
coverage and frequent revisits. Platforms such as MODIS, VIIRS, Sentinel-2 enable fire detection in visible, infrared,
and thermal bands—often overcoming limitations like cloud interference [8]. However, satellite data may still face
constraints in detecting small-scale or rapidly evolving local incidents with sufficient granularity and timeliness,
especially in areas lacking frequent overpasses or with low-cost coverage constraints. Ground-based sensor networks
provide localized and continuous monitoring but often require significant infrastructure investments and can be limited
in spatial reach. Thermal cameras are also commonly used for fire detection; however, their effectiveness diminishes
at long distances, as accuracy is highly dependent on temperature thresholds. Moreover, thermal imaging systems are
often more expensive compared to alternative detection methods, making large-scale deployment less feasible. To
complement these traditional approaches, recent developments in artificial intelligence (AI) have enabled real-time
detection systems that process live image and video streams. Deep learning-based segmentation models, in particular,
offer pixel-level classification that can distinguish between fire, smoke, water, and background across varied
environments. Compared to thresholding or edge detection, convolutional neural networks (CNNs) have shown
superior adaptability and accuracy in complex scenes [9], [10].

248 Jini Cheriyan et al. / Procedia Computer Science 267 (2025) 246-255

This study builds upon these advancements by evaluating segmentation model performance in an HPC setting,
aiming to scale up training and experimentation across diverse datasets.

2.2. Computational Challenges in AI-Based event Detection

Natural event detection using Al requires processing high-resolution imagery and video feeds, posing significant
computational challenges. Deep convolutional neural networks (CNNs) used in object detection and localization
contain millions to hundreds of millions of parameters, demanding extensive GPU memory and processing power
[11]. The key challenges include:

High Memory Demand: Large batch sizes and deep architectures require substantial GPU memory, leading to

bottlenecks in training and inference.

Training Efficiency: Optimizing model convergence while balancing computational costs remains a key

challenge, especially when dealing with large datasets.

Real-Time Processing Needs: Natural event detection requires low-latency inference, which adds to the

computational burden.

Scalability: Training on large datasets necessitates efficient distribution of workloads across multiple processors.

These challenges necessitate the use of high-performance computing (HPC) infrastructure to accelerate model
training and optimize inference speed [12].

2.3. Leveraging HPC for Large-Scale AI Model Training

High-Performance Computing (HPC) provides the computational power required to train complex deep learning
models efficiently. By leveraging distributed computing and parallel processing, HPC systems like EuroHPC
MeluXina address key limitations in Al-based fire detection, enabling:

Faster Training: HPC accelerates deep learning by distributing workloads across multiple GPUs, significantly
reducing training time.

Scalability & Distributed Computing: Large datasets can be processed efficiently by splitting computations
across multiple nodes.

Memory Optimization: HPC platforms support deep learning models with high memory requirements, enabling
the use of larger batch sizes.

Enhanced AI Capabilities: While resource constraints still exist, HPC enables training of complex architectures
with millions of parameters more efficiently than conventional systems.

Our study primarily utilized PyTorch, a widely adopted deep learning framework, due to its dynamic computation
graph, ease of debugging, and native support for distributed training [13].

HPC has been widely used in deep learning applications such as medical imaging and climate modeling. However,
its application to large-scale natural event detection remains underexplored. This study evaluates the effectiveness of
using MeluXina for Al-based event detection on a dataset of several thousands of images, assessing its performance,
scalability, and computational benefits.

2.4. Research Gap and Motivation

While HPC systems are increasingly used for deep learning, detailed studies on how they are leveraged for
optimizing large-scale image segmentation models remain relatively scarce in the public domain, partly due to limited
access to such infrastructures and the proprietary nature of many implementations. Traditional training methods often
struggle with high computational demands, extended training times, and scalability limitations, making it challenging
to experiment effectively with different model architectures, batch sizes, and other hyperparameters especially with
single GPU and memory limitation of GPU [16].

Jini Cheriyan et al. / Procedia Computer Science 267 (2025) 246-255 249

This research addresses these challenges by leveraging the EuroHPC Meluxina supercomputer to train and
experiment with fire and water detection models of varying complexity. By systematically evaluating scalability,
accuracy, memory efficiency, and training speed, we aim to establish a computational framework for deploying, large-
scale fire detection systems in environmental monitoring applications as also water detection systems to detect
ruptures; margins transposition or imminent floods.

3. Methodology
3.1. Data Collection and Preparation

For this study, a large and diverse dataset was curated to facilitate robust training and evaluation of image
segmentation models. The dataset was compiled by collecting publicly available images from various internet sources.
Care was taken to ensure diversity in environmental conditions fire-smoke and flood scenarios to improve the
generalization capability of the models. The dataset includes a diverse range of scenarios such as environmental
landscapes (e.g., forests, agricultural areas, and cities), urban settings (including buildings and vehicles), industrial
zones (like factories and infrastructure), indoor environments, and various non-hazardous backgrounds featuring fog,
clouds, light reflections, or clear conditions without the presence of any critical event.

Table 1 provides a few representative examples from the training dataset used in this study. These images illustrate
the diverse environmental conditions, lighting variations, and event types such as fire, smoke, water, and background.
While the dataset covers multiple hazard categories, two separate models were trained: a multi-class segmentation
model for detecting fire and smoke as distinct classes, and a binary segmentation model for identifying water presence
versus background (i.e., water/no-water). The examples in the table are not exhaustive but reflect key visual challenges
encountered in real-world scenarios, such as occlusions, low-contrast smoke, or reflections on water surfaces.

Table 1. Samples of training data

Image Sample Description

Night time scene and cloudy sky that resemble smoke

Landscape with flood/water and active wildfire

Forest scene in normal daylight with rain, Rainy urban night scene with reflections
and lens flares

These annotated examples highlight the complexity of differentiating fire, smoke, and background elements,
especially under variable lighting and atmospheric conditions.

3.2. Data Preprocessing

To prepare the dataset for model training, several steps were undertaken. Annotation: Each image was manually
annotated to create precise pixel-wise segmentation masks of events like fire smoke and water regions and; Class
Balance: To ensure reliable segmentation performance, the dataset was carefully curated to maintain a reasonable
balance across all the object classes: background, smoke, fire, water. Specifically:

e A conscious effort was made to include a sufficient number of event category samples, as these classes tend to be
underrepresented compared to background pixels. This strategy reduced the risk of false positives in real-world

250 Jini Cheriyan et al. / Procedia Computer Science 267 (2025) 246-255

deployment and helped the model learn finer distinctions between smoke and fire regions or between clear water
and muddy water.

e The dataset used for training and evaluation was well-balanced, containing a comparable number of annotated
examples for each class. These examples, referred to as instances, represent individual labeled regions within the
images that correspond to distinct target categories (e.g., fire or smoke). This balance ensured that the model learned
from all classes equally, reducing the risk of class imbalance and bias during training.

e To ensure consistency and optimize model performance, all input images were resized to a fixed resolution of
384x640 pixels during preprocessing. Although this may slightly reduce fine-grained spatial details in high-
resolution images, it significantly accelerates training keeping sufficient visual fidelity for pattern detection.

3.3. Model Selection

For large-scale detection using image segmentation, deep learning models with varying levels of complexity were
selected. These models differ in network depth, number of parameters, and computational efficiency, enabling a
comparative analysis of segmentation accuracy, training speed, and hardware resource utilization.

3.3.1. High-Accuracy Segmentation Models with Multiple Variants (Models 1—4)

More complex segmentation models were used to assess the impact of network depth and computational cost on

segmentation performance.

e Model 1 (Moderate, ~27M parameters): Balancing computational efficiency and segmentation accuracy.

e Model 2 (Moderate-High complexity, ~46M parameters): Capturing detailed feature representations with higher
memory demands.

e Model 3 (High complexity, ~72M parameters): Deepest architecture, optimized for robust faint smoke detection,
particularly at long distances.

e Model 4 (Very high complexity,>100M parameters): Designed with an advanced architecture comprising over
100 million parameters, this model is tailored for maximum segmentation precision in highly complex scenarios.
Its increased depth and representational power make it particularly effective in challenging environments with
fine-grained features, such as low-contrast smoke or partially obscured fire and evolution of water.

This approach enabled a comparative study of segmentation accuracy versus computational requirements, providing
insights into scalability, memory efficiency, and performance trade-offs. By evaluating models with parameter sizes
ranging from ~27M to ~72M, different training complexities, and inference speeds, this study aimed to determine the
most computationally viable approach for large-scale event detection.

3.3.2. Model Training and Experimentation

The model training process followed a progressive and iterative approach, starting from limited data and
computational resources and scaling up to large-scale experiments. This section presents the evolution of
experimentation, the role of data scaling, and the impact of high-performance computing infrastructure on deep
learning model development.

3.4. Initial Experimentation and Dataset Constraints

Our experimentation began with a relatively small dataset consisting of a few thousand images, each containing
instances of fire, smoke and water under various conditions. However, early results revealed significant limitations -
particularly in detecting small-scale fires, faint smoke, small amount of water and different colors of water in
challenging environmental scenarios. The shallow architecture often struggled to generalize across diverse
backgrounds, and segmentation performance remained suboptimal, especially for smoke detection.

To address the performance gap, we progressively expanded the dataset to several thousands of images, carefully
curating balanced instances of events across diverse scenes (indoor, outdoor, urban, forested). This enriched dataset

Jini Cheriyan et al. / Procedia Computer Science 267 (2025) 246-255 251

significantly improved model learning and robustness. However, training deeper models on this large-scale dataset
presented computational challenges, especially when aiming for larger batch sizes on standard hardware.

3.5. Leveraging EuroHPC Meluxina for Advanced Training

Access to the EuroHPC Meluxina supercomputing infrastructure played a pivotal role in overcoming traditional
computational limitations, enabling the training of complex image segmentation models at scale. Meluxina’s multi-
GPU architecture, high memory bandwidth, and distributed processing capabilities allowed for:

o Efficient training of high-parameter models without memory bottlenecks,
e Exploration of larger batch sizes for performance benchmarking,
e Faster convergence across various model complexities.

This high-performance environment significantly accelerated our experimentation and facilitated robust
performance improvements. Model development leveraged Meluxina’s capabilities to execute extensive deep learning
workflows while evaluating trade-offs between segmentation accuracy, memory utilization, and training efficiency.

3.6. Training Configuration

Table 2. Model configuration

Model ID Complexity Parameters (Millions) Batch Size Feasibility
Model 1 Moderate ~27M 64-128

Model 2 Moderate-High ~46M 64-128

Model 3 High ~72M 64-128

Model 4 Very High >100M <16

3.7. Batch Size and Memory Considerations

Models 1-3 were successfully trained with batch sizes of 64 and 128 using 4 A100 GPUs. Model 3, despite being
the most complex, remained within resource limits due to distributed training. Model 4 exceeded feasible memory
thresholds and was not fully explored due to time-limited HPC access and its extreme memory demands.

Although advanced techniques such as gradient checkpointing and mixed-precision training were explored, they
were not sufficient to enable successful training of the largest model within the current HPC resource constraints.
These approaches, along with further optimization strategies, will be considered in future work on more powerful
systems to address the demands of very high-complexity architectures. All models followed a consistent training
workflow, including online data augmentation, hyperparameter tuning, and multi-GPU acceleration, with
segmentation metrics and GPU usage tracked for performance evaluation.

4. Result and Discussions

When evaluating segmentation models for fire, smoke, and water localization, standard metrics such as mean
Average Precision (mAP) and Intersection over Union (IoU) are commonly used [14]. In pixel-level tasks like
segmentation, even slight annotation inconsistencies—such as faint smoke boundaries or partially visible fire—can
lead to variations in performance scores. These minor discrepancies, particularly in ambiguous regions (e.g., smoke
blending with clouds or background haze), may result in small metric fluctuations that do not necessarily reflect the
model’s actual qualitative performance.

4.1. Quantitative Evaluation

The models were evaluated using (mAP), a standard metric for object detection and segmentation accuracy.
mAP(B) is the mean Average Precision for bounding box predictions and mAP(M)is defined as the mean Average

252 Jini Cheriyan et al. / Procedia Computer Science 267 (2025) 246-255

Precision for segmentation mask predictions. The mAP is calculated by finding Average Precision (AP) for each class
and then average over a number of classes.

N
1
AP=—ZAP' 1
m N.l i @8]
i=

We report mAP at IoU = 0.50 (a lenient threshold) and the averaged mAP across IoU = 0.50-0.95 (in 0.05
increments), which offers a more robust evaluation of model performance. These metrics provide a comprehensive
understanding of model performance in both localizing objects (bounding boxes) and segmenting their shapes (masks).

The table below summarizes their accuracy:

Table 3. Quantitative evaluation results

Model ID mAP@50(B) mAP@50-95(B) mAP@50 (M) mAP@50-95 (M)

Model 1 0.895 0.695 0.885 0.576
Model 2 0.905 0.713 0.890 0.592
Model 3 0.890 0.691 0.879 0.569

4.1.1. Accuracy Trend During Training

Model 1 (Moderate Complexity):

This model exhibited stable and gradual convergence, with both training and validation loss curves decreasing
steadily throughout the training process. The smooth alignment between the two curves indicates consistent learning
and minimal overfitting. However, it required 227 epochs to reach its best performance, making it the slowest
converging model among the three. This highlights its reliability, albeit at the cost of extended training time.

Model 2 (Moderate-High Complexity):

Moderate-High Complexity achieved the highest mAP scores across all IoU thresholds. Its training curve showed
a balanced and efficient convergence, with the validation loss closely mirroring the training loss, indicating strong
generalization capability. The model reached peak performance at epoch 208, representing a good trade-off between
accuracy and training duration, making it ideal for balanced resource-accuracy scenarios.

Model 3 (High Complexity):

Despite being the deepest model, converged the fastest, with optimal weights saved at epoch 125. While this
indicates superior learning speed, the training process displayed slightly more fluctuation in validation loss, potentially
due to sensitivity to data variance or minor overfitting. Nevertheless, the model maintained competitive mAP scores,
showecasing its potential in time-critical deployments where faster convergence is preferred.

These results highlight how deeper and more complex models can achieve high accuracy with fewer training epochs
but may require more careful tuning to prevent overfitting.

Jini Cheriyan et al. / Procedia Computer Science 267 (2025) 246-255 253

train/seg_loss train/seg_loss train/seg_loss

2.8 E —e— results = k —— results = —— results

smooth smooth
smooth 26

] 2.4
24

2.2
2.2
2.0

20

0 i o 100 200 0 100

valfseg_loss
valfseg_loss 9. valfseg_loss

3.25 3.5

m’l
E

3.0

22514 {

201\ mew?“k‘mm

) 200 0 100 200 0 100

Fig. 1 Training and validation segmentation loss curves for all three models. Top row: training loss. Bottom row: validation loss.

Fig 1 provides detailed training graphs for each model, showing the trajectory of training and validation losses,
showing the convergence behavior of each model confirm the quantitative analysis discussed in Section 4.1.

4.2 Qualitative Evaluation

To assess the real-world performance of the models beyond numerical metrics, qualitative evaluations were
conducted on 60 videos from diverse environments and 2,000 real-world images. The primary objective was to
determine how effectively each model detects and segments fire, smoke, and water regions under varying conditions,
including:
¢ Different lighting conditions (day/night scenarios)

Obstructed views (e.g., behind trees, structures, or smoke-covered regions)
Long-range fire/smoke and water visibility

Varying levels of fire intensity (small flame ignition to large-scale fire outbreaks)
Challenging backgrounds such as fog, reflections, raindrops, and streetlights

Key Observations: Model 1 & 2 performed well in detecting flames but struggled to capture faint or distant smoke,
particularly in noisy or obscured scenes. Model 3 demonstrated superior capability in detecting subtle smoke cues,
even under low contrast, foggy, or nighttime conditions, while also significantly reducing false detections caused by
non-fire elements like streetlights, reflections, and raindrops.

In categories like small smoke and faint smoke, Model 3 achieved the highest detection accuracy (80% and 99%
respectively), outperforming the other models by a notable margin. Conversely, false positive rates in visually
confusing scenarios were also lowest in Model 3—for instance, only 8% misclassification for streetlights and 20% for
night lighting, compared to 10-28% in the other models.

Real-Time Performance: All models were tested in real-time deployment. Model 3 in particular provided timely
and reliable alerts for early-stage events, making it the most practical candidate for real-world surveillance systems.

These findings emphasize the value of high-capacity models in early detection tasks. Although quantitative metrics
like mAP showed only marginal differences, qualitative evaluations revealed clear distinctions in robustness,
generalization, and real-world utility. This supports the use of deeper networks in critical applications, while
acknowledging that their higher resource demands must be balanced against deployment constraints—particularly on
edge devices with limited hardware.

254 Jini Cheriyan et al. / Procedia Computer Science 267 (2025) 246-255

4.3 Scalability and Resource Utilization Analysis

A critical aspect of this study was evaluating memory efficiency and scalability when training on huge number of
images using HPC infrastructure. Scalability analysis showed that Models 1-3 scaled well on the HPC infrastructure,
with resource demands increasing with complexity. Model 4 was not explored due to time-limited access to the HPC
system and its significantly higher memory requirements.

Table 4. Scalability analysis results

Model ID Memory Utilization Batch Size Total GPU Hours Node hours Convergence
(4GPUS) speed
Model 1 ~9 GB 64 ~38 ~9.5 Slowest
Model 2 ~12 GB 64 ~32 ~8.0 Moderate
Model 3 ~16 GB 64 ~17 ~4.25 Fastest
Model 4 >40 GB <16 NA NA NA

Despite being the most complex, Model 3 achieved the fastest convergence, making it the most time-efficient in
terms of total GPU hours. Model 4, requiring over 40 GB per GPU, could not be trained under standard conditions,
underscoring the need for advanced memory optimization techniques for extremely deep models. Model 3 (the most
complex trained model) required ~8 minutes per epoch on a single GPU, while multi-GPU training reduced this to ~2
minutes per epoch, yielding a 4x speedup. This corresponds to ~95% parallel efficiency considering communication
overhead. Training was conducted using a single Meluxina node equipped with 4 A100 GPUs. GPU hours were
calculated as the product of wall-clock training time and the number of GPUs, while node hours reflect actual node
usage. For example, Model 3 consumed approximately 17 GPU hours, equating to ~4.25 node hours.

5. Conclusion and Future Work
5.1. Conclusion

This study explored and evaluated advanced deep learning architectures for large-scale natural event detection
using image segmentation techniques. The investigation focused on models with varying architectural complexity and
depth, trained on a diverse dataset of several thousands of images, representing different fire and water conditions and
environments. The experimental results demonstrated that Higher-complexity models with deeper architectures
achieved marginally higher segmentation accuracy but faced significant memory limitations, requiring smaller batch
sizes and longer training durations. Moderate-complexity models provided a balanced trade-off between accuracy,
training efficiency, and computational feasibility, enabling training with larger batch sizes without resource
constraints. Real-world qualitative testing highlighted the effectiveness of lightweight architectures in event detection,
particularly in scenarios requiring fast response and high scalability.

5.2. Future Work

While this study provides valuable insights into model performance and computational trade-offs, future research
will explore even more complex architectures exceeding 100M parameters. Key optimizations include Gradient
checkpointing for reducing memory overhead during backpropagation, Mixed-precision training to enhance
computational efficiency, Model parallelization and distributed training for improved scalability. By addressing these
challenges, the system can fully leverage high-capacity architectures while maintaining scalability, faster training
times, and improved segmentation performance.

Jini Cheriyan et al. / Procedia Computer Science 267 (2025) 246-255 255

Acknowledgements

The authors extend their sincere gratitude to all team members for their invaluable contributions and support
throughout this project. The majority of model training was conducted on the MeluXina supercomputer in
Luxembourg, managed by LuxProvide and funded by the EuroHPC JU. The authors also acknowledge the invaluable
support provided by both the EuroHPC and LuxProvide teams.

References

[1]1D. M. J. S. Bowman et al., "Fire in the Earth system," Science, vol. 324, no. 5926, pp. 481-484, 2009. DOI: 10.1126/science.1163886

[2] B. C. Ko, K. H. Cheong, and J. Y. Nam, "Fire detection based on vision sensor and support vector machines," Fire Safety Journal, vol. 44, no.
3, pp. 322-329, 2012. DOI: 10.1016/j.firesaf.2008.07.006

[3] K. Muhammad, J. Ahmad, I. Mehmood, S. Rho, and S. W. Baik, "Convolutional neural networks-based fire detection in surveillance videos,"
IEEE Access, vol. 6, pp. 18174-18183,2018. DOI: 10.1109/ACCESS.2018.2812835

[4]). Dean et al., "Large scale distributed deep networks," in Proc. Advances in Neural Information Processing Systems (NeurIPS), vol. 25,2012.
[5] EuroHPC Joint Undertaking, "MeluXina Supercomputer," [Online]. Available: https://www.eurohpc-ju.europa.eu/systems/meluxina
[6] LuxProvide, 2024. System overview - meluxina user documentation. URL: https://docs.Ixp.lu/system/overview/. Accessed: July, 2024.

[7]1 M. A. Finney, "The challenge of quantitative risk analysis for wildland fire," Forest Ecology and Management, vol. 211, no. 1-2, pp. 97-108,
2005.

[8] Eduardo R. Oliveira et al. " The Detection of Small-Scale Open-Burning Agriculture Fires Through Remote Sensing,"(2025). DOL:
https://doi.org/10.3390/rs17010051

[9] R. Girshick, J. Donahue, T. Darrell, and J. Malik, "Rich feature hierarchies for accurate object detection and semantic segmentation," in Proc.
CVPR, pp. 580-587,2014.DOI: 10.1109/CVPR.2014.81

[10] L. C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, "DeepLab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected CRFs," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 40, no. 4, pp. 834-848,
2018.DOTI: 10.1109/TPAMI.2017.2699184

[11] A. Krizhevsky, 1. Sutskever, and G. E. Hinton, "ImageNet classification with deep convolutional neural networks," Communications of the
ACM, vol. 60, no. 6, pp. 84-90, 2017.DOI: 10.1145/3065386

[12] Y. You, Z. Zhang, C. Hsieh, J. Demmel, and K. Keutzer, "ImageNet training in minutes," in Proceedings of the 47th International Conference
on Parallel Processing (ICPP), 2018.DOI: 10.1145/3225058.3225069

[13] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, et al.,
"PyTorch: An imperative style, high-performance deep learning library," in Advances in Neural Information Processing Systems
(NeurIPS),vol.32,2019.https://papers.nips.cc/paper_files/paper/2019/file/bdbca288fee7192{2bfa9f7012727740-Paper.pdf

[14] Rayed, M.E., Islam, S.M.S., Niha, S.I., Jim, J.R., Kabir, M.M. and Mridha, M.F., 2024. Deep learning for medical image segmentation: State-
of-the-art advancements and challenges. Informatics in Medicine Unlocked, 47, p.101504. https://doi.org/10.1016/j.imu.2024.101504

[15] Garcia-Garcia, A., Orts-Escolano, S., Oprea, S., Villena-Martinez, V., & Garcia-Rodriguez, J. (2017). A review on deep learning techniques
applied to semantic segmentation. arXiv preprint arXiv:1704.06857.

[16] Ben-Nun, T., & Hoefler, T. (2019). Demystitying parallel and distributed deep learning: An in-depth concurrency analysis. ACM Computing
Surveys (CSUR), 52(4), 1-43.

Available online at www.sciencedirect.com

ScienceDirect PrOCQdiCI

Computer Science

CrossMark

Procedia Computer Science 267 (2025) 256-270

www.elsevier.com/locate/procedia
Proceedings of the Third EuroHPC user day

The European High Performance Computing Joint Undertaking
Infrastructure and Access Modes State-of-Play

Krishnakshi Bhuyan?, Dora Marton®, Catarina Guerreiro®, Klara Mestrovic¢?

“The European High Performance Computing Joint Undertaking, 12E rue Guillaume Kroll, L-1882, Luxembourg

Abstract

This paper presents the current state of play of the European High Performance Computing Joint Undertaking (EuroHPC JU)
infrastructure with special emphasis on the access mechanisms and the projects that benefit from the allocated HPC resources. The
EuroHPC JU procures world-class supercomputing, quantum computing and Artificial Intelligence (AI) Factories infrastructure in
order to provide access to users whose research outputs and innovations contribute to societal benefits and industrial
competitiveness. In 2025, the procurement of new systems and the launch of additional access calls were undertaken as part of an
initiative to support projects using Al technologies in their applications, especially targeting industry, small and medium-sized
enterprises (SMEs) and startups. Besides this new initiative, the EuroHPC JU continues to support all types of research coming
from academia, industry and public sector with the existing well-established access mechanisms. In this context, an overview of
the available and upcoming infrastructure is presented and an analysis of access mechanisms together with the projects accessing
the infrastructure is showcased.

© 2025 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY 4.0 license (https://creativecommons.org/licenses/by/4.0)
Peer-review under responsibility of the scientific committee of the Proceedings of the Third EuroHPC user day

Keywords: High Performance Computing (HPC), Infrastructure, Supercomputers, Quantum Computers, Al Factories, Access calls; Artificial
Intelligence (Al); HPC resources, node hours; research domains

1. The European High Performance Computing Joint Undertaking (EuroHPC JU)

The European High Performance Computing Joint Undertaking (EuroHPC JU) was established in 2018 in
Luxembourg and it runs as a legal and funding entity whose main purpose is to make Europe a world leader in the
field of supercomputing. In order to achieve this, the European Union (EU), together with the EuroHPC JU
participating states, pool their resources to boost Europe’s scientific excellence and industrial capabilities, support the
digital transformation of its economy, and ensure its technological independence. Currently, there are 36 member
states and associated countries that are members of the EuroHPC JU.

The key goal of the EuroHPC JU is to procure world-leading infrastructure (supercomputers, quantum computers,
Al Factories) and to deploy, extend and maintain the corresponding ecosystem. The ecosystem is supported by a robust

1877-0509 © 2025 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY 4.0 license (https://creativecommons.org/licenses/by/4.0)
Peer-review under responsibility of the scientific committee of the Proceedings of the Third EuroHPC user day
10.1016/j.procs.2025.08.252

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2025.08.252&domain=pdf

Krishnakshi Bhuyan et al. / Procedia Computer Science 267 (2025) 256-270 257

supply chain that ensures components, technologies and knowledge supporting a wide range of applications optimized
to run on the procured infrastructure. With the availability of infrastructure, the EuroHPC goal is also to widen the use
of the available systems to public and private users across Europe and to support the development of high-performance
computing (HPC) skills for science, industry and public sector.

2. The EuroHPC JU Infrastructure

The EuroHPC JU has to date procured five (5) petascale systems — Vega in Slovenia, Karolina in Czechia,
MeluXina in Luxembourg, Discoverer in Bulgaria and Deucalion in Portugal; three (3) pre-exascale systems — LUMI
in Finland, Leonardo in Italy and MareNostrum 5 in Spain; and one (1) exascale system — JUPITER in Germany. In
2025, in addition to the existing supercomputers, access to JUPITER exascale system in Germany was made available
to users, expanding the list of operational EuroHPC JU supercomputers. Additionally, in 2025, there were upgrades
of two of the existing systems: Discoverer was upgraded to Discoverer+ with new functionalities enhancing its
performance and Al capabilities, while Leonardo was upgraded to Leonardo Improved Supercomputing Architecture
(LISA), which will incorporate an Al-optimized partition into Leonardo, providing greater support for the development
of Large Language Models and multi-modal generative AL

The most recent editions of the TOP500 and Green500 lists were released on 10 June 2025, where JUPITER ranked
number 4 in the TOP500 list. With an intermediate computing power of nearly 800 petaflops, equivalent to 800 million
billion calculations per second, JUPITER is currently Europe’s fastest supercomputer. Soon to be capable of delivering
1 ExaFLOP of computing power, or over 1 trillion operations per second, JUPITER will become Europe’s first
Exascale supercomputer. Its first installed module, JEDI, has dominated the Green500 list since its debut in May 2024,
maintaining a leading position. With more than 60 thousand millions operations per watt, the JUPITER Booster ranks
21st on the Green500 list of the world’s most energy-efficient supercomputers. Once again, all operational EuroHPC
supercomputers are featured on the TOP500 list of the world’s most powerful systems, with two systems - LUMI
(ranked 9th) and Leonardo (ranked 10th) - positioned in the global top 10.

s et
* *
A 500
* *

LI The List.
JUNE 2025 TOP500 Green500
JUPITER #4 #1(JEDI) #21(Booster)
LUMI #9 #36
LEONARDO #10 #70
MARENOSTRUM 5 #14 a4
MELUXINA #136 #79
KAROLINA #196 #76
DISCOVERER #260 #244
DEUCALION #299 #116
VEGA #307 #287

Fig. 1: The June 2025 rankings of TOP500 and Green500 supercomputers lists

Additionally, the procurement process for the second exascale system, Alice Recoque in France, as well as two
mid-range systems — Arrhenius in Sweden and Daedalus in Greece — are currently underway.

Apart from these developments, on 17 June 2024, EuroHPC JU received a new mandate to develop and operate Al
Factories at locations surrounding EuroHPC supercomputing facilities. These Al Factories are dynamic ecosystems
that will build around Al-optimized supercomputers, providing computing resources and support services to both

258 Krishnakshi Bhuyan et al. / Procedia Computer Science 267 (2025) 256-270

European industries and scientific users. With this new pillar of activities now formally integrated into its Regulation,
the EuroHPC Joint Undertaking is able to acquire and operate dedicated Al-optimized supercomputers. This will
include not only the procurement of new systems but also upgrading some existing EuroHPC supercomputers with
enhanced Al capabilities. Since September 2024, three cut-offs have been launched for call for applications in order
to facilitate the establishment of these AI Factories, of which, evaluations from the first two cut-offs have been
finalized so far. Up until now, the JU has signed hosting agreements with 13 Al Factories, marking a major step
forward in Europe’s ambition to lead in artificial intelligence and supercomputing. The selected Hosting Entities
include: LUMI Al Factory (Finland), HammerHAI and JAIF (Germany), Pharos (Greece), ITALIA (Italy), L-Al
Factory (Luxembourg), BSC Al Factory(Spain), MIMER (Sweden), AI:AT(Austria), BRAIN++ (Bulgaria), AI2F
(France), PIAST(Poland), and SLAIF(Slovenia). Out of these, 11 sites will deploy new Al-optimized supercomputers,
while France and Germany will operate alongside Europe’s first exascale supercomputers, Alice Recoque and
JUPITER respectively. Meanwhile, Spain’s Al Factory will be established through the upgrade of the existing
EuroHPC MareNostrum 5 system, and Greece will develop an Al Factory linked to DAEDALUS, the EuroHPC
supercomputer currently being deployed.

Further, EuroHPC JU launched a call for proposals for the selection of entities or consortia of entities to establish
Al Factory Antennas linked to selected Al Factories across Europe. The Antennas will ensure remote computing access
to Al-optimized supercomputing resources from the linked Al Factory. The aim of the Antennas is to provide an
opportunity to the EuroHPC JU Participating States to have access to Al Factory resources and services without having
to invest in an establishment of a fully-fledged Al Factory.

In addition to this, the EuroHPC JU has invested in ten quantum computers offering 6 different quantum
technologies, located across Europe. The procured system offering trapped-ions technology is Piast-Q in Poland; the
systems offering the neutral atoms technology are Ruby in France, Jade in Germany and EuroQCS-Italy in Italy; the
systems offering spin qubits technology are EuroSSQ-HPC in Netherlands and MeluXina-Q in Luxembourg; the
system offering annealing technology is EuroQCS in Spain; the system offering star-shaped technology is VQL in
Czechia; the system offering crystal technology is Euro-Q-Exa in Germany; and the system offering photonics
technology is Lucy in France. Out of these ten, the inauguration of the first EuroHPC quantum computer, PIAST-Q in
Poland, was undertaken on June 2025. PIAST-Q will offer a performance of 20 physical qubits along with several
other unique features for European users. Like all other EuroHPC quantum computers currently under deployment,
this system will be integrated with high-performance computing (HPC) infrastructure.

In order to connect all infrastructure, a platform for the federation of EuroHPC supercomputers, quantum computers
and Al Factories is under development, which will act as a one-stop shop access point for users. This integration will
enhance user access to advanced technologies and facilitate federated access to data lakes and data spaces across
Europe to create a more connected and innovative supercomputing ecosystem in Europe.

3. Access to the EuroHPC JU Infrastructure

The EuroHPC JU offers a variety of access opportunities within different access modes. At the moment, the JU
offers eight access calls, including calls for applications that use traditional HPC and calls for applications using Al
From 2021, the JU started offering access to the procured infrastructure by introducing the first calls that were
Benchmark Access and Development Access, followed by the Regular Access and Extreme Scale Access. After a
growing demand for access modalities for proposals using Al, the JU introduced in 2024 the AI & Data-Intensive
Applications Access call. With the announcement of the upcoming Al Factories in 2025, the JU restructured its existing
calls into Calls for Traditional HPC and additionally introduced Al Factories Access calls. Calls for Al Applications
includes a call for scientific applications, called the Al for Science and Collaborative EU projects Access and three
calls for Industrial Innovation — the Playground Access, Fast Lane Access and the Large Scale Access call.

Krishnakshi Bhuyan et al. / Procedia Computer Science 267 (2025) 256-270 259

/ EUROHPC JU ACCESS MODES \

TRADITIONAL HPC Al APPLICATIONS

AlIFOR SCIENCE & COLLABORATIVE EU
PROJECTS ACCESS

BENCHMARK ACCESS

DEVELOPMENT ACCESS

PLAYGROUND ACCESS

REGULAR ACCESS FAST LANE ACCESS

EXTREME SCALE ACCESS

LARGE SCALE ACCESS

Nl

Fig. 2: EuroHPC JU Access Modes from April 2025

3.1. Access Modes for Traditional HPC Applications

The EuroHPC JU Access Modes for Traditional HPC Applications define the different modalities through which
EuroHPC JU computing resources are made available to scientists and researchers for conducting fundamental
research activities based on classical HPC usage. These access modes are categorized according to several criteria,
such as the volume of computational resources offered, the complexity of the associated evaluation process, the type
and maturity of applications targeted by each mode, and the frequency of submission cut-off dates. The EuroHPC JU
allocates up to 45% of the current system resources dedicated to the EU share of access for the purposes of Traditional
HPC Applications for all the categories of access presented in this section.

Taking into consideration calls for production activities (Extreme Scale Access, Regular Access and Al and Data-
Intensive Applications access), in the cut-offs from December 2021 until April 2025, there were 691 proposals
submitted out of which, the EuroHPC JU awarded 471 projects, with an overall of 112,516,283 node hours distributed
to the successful applicants.

Table 1:EuroHPC JU awarded projects and resources throughout access modes for production activities in the period December 2021 — April
2025

Proposals Proposals Node hours
Access call awarded awarded % Node hours awarded awarded %
Extreme Scale Access o o
(Dec 2022-Oct 2024) 99 21% 72,719,646 65%
Regular Access (Dec g3 62% 36,530,037 32%

2021-Mar 2025)

Al And Data-Intensive
Applications Access 79 17% 3,266,600 3%
(Apr 2024-Apr 2025)

Total 471 100% 112,516,283 100%

260

Krishnakshi Bhuyan et al. / Procedia Computer Science 267 (2025) 256-270

Table 2: EuroHPC JU Awarded resources in different partitions throughout access modes for production activities in the period December 2021 —

April 2025
Partition/call Regular Access Extreme Scale Access Al al}d D.ata-Intenswe
Applications Access
Vega CPU 5,932,132 - -
Vega GPU 313,978 - 7,100
MeluXina CPU 3,002,316 - -
MeluXina GPU 1,475,775 - 100,000
Karolina CPU 2,755,099 - -
Karolina GPU 361,750 - 7,500
Discoverer CPU 4,927,471 - -
LUMI-C 8,674,022 14,035,287 -
LUMI-G 1,961,312 27,872,119 280,000
Leonardo Booster 2,706,696 20,435,010 2,200,000
Leonardo DCGP 1,227,989 994,400 -
MareNostrum5 GPP 1,665,698 5,860,630 -
MareNostrum5 ACC 596,092 3,522,200 672,000
Deucalion ARM - - -
Deucalion x86 365,214 - -
Deucalion GPU 37,840 - -
JUPITER Booster 526,654 - -
Total node hours 36,530,037 72,719,646 3,266,600

Among the 471 awarded projects, 107 projects (22,7%) are from Chemical Sciences and Materials, Solid State
Physics, 31 projects (6.58%) are from Earth System Sciences & Environmental Studies, 161 projects (34.18%) are
from Engineering, Mathematics and Computer Sciences, 118 projects (25.05%) are from Computational Physics:
Universe Sciences, Fundamental Constituents of Matter, 52 projects (11.04%) are from Biochemistry, Bioinformatics,
Life Sciences, Physiology and Medicine and 2 projects (0.42%) are from Socio-Economic Sciences and Humanities:
Economics, Finance and Management, Linguistics, Cognition and Culture domain.

Research domains distribution of awarded projects - Extreme Scale Access, Regular
Access & Al and Data-Intensive Applications Access (December 2021 - April 2025)

0.42% = Chemical Sciences and Materials, Solid State Physics
11.04%

= Earth System Sciences & Environmental Studies

o,
25.05% < 6580

34.18%

Engineering, Mathematics and Computer Sciences
Computational Physics: Universe Sciences,
Fundamental Constituents of Matter

= Biochemistry, Bioinformatics, Life Sciences,
Physiology and Medicine

Fig. 3: Research domains distribution of awarded projects throughout access modes for production activities in the period December 2021 — April

2025

Krishnakshi Bhuyan et al. / Procedia Computer Science 267 (2025) 256-270 261

The Principal Investigator (P]) affiliation country distribution within these 691 submitted and 471 awarded projects
shows that most of the projects are coming from PIs affiliated in Italy (22.93% awarded projects), Germany (10,62%
awarded projects), Spain (10,19% awarded projects), France (8,28%) and Sweden (7,01% awarded projects). The
remaining 40,97% of PI affiliation countries taking into consideration only awarded projects, are Austria, Belgium,
Croatia, Cyprus, Czechia, Denmark, Estonia, Finland, Greece, Hungary, Ireland, Israel, Latvia, Luxembourg,
Netherlands, Norway, Portugal, Romania, Slovakia, Switzerland, Tiirkiye and United Kingdom.

PI affiliation countries distribution - awarded and submitted proposals numbers -
Extreme Scale Access, Regular Access & Al and Data-Intensive Applications Access
(December 2021 - April 2025)

140
120
100
80
60

- ‘| |‘
20
IIlll || Il i d I- a ol II II

AT BE HR CY CZ DK EE FI FR DE EL HU IS IE IL IT LV LT LUMFNO PL PT RO SK 9[ES SE CH NLTN TR UK
® Awarded projects 10 18 1 6 3 18 1 5 395012 5 0 8 6108 1 0 1 0 12/ 0 18 3 6 0 48 33 13 13 0 13 20
B Submitted projects 16 24 6 10 6 23 5 12 53 76 18 6 1 11 121133 1 1 1 1 14 527 5 8 2 79 52 13 17 1 23 29

Fig. 4: Principal Investigator affiliation country distribution — awarded and submitted proposals throughout access modes for production activities
in the period December 2021 — April 2025

When analyzing the PI gender of awarded projects, 84.71% were from male PIs, while 14.44% belong to the female
PIs. The remaining 0.85% PIs preferred not to specify their gender.

PI gender distribution of awarded projects - Extreme Scale Access, Regular Access &
Al and Data-Intensive Applications Access (December 2021 - April 2025)

0.85%

|

14.44%

= Male = Female = Unspecified

Fig. 5: Principal Investigator gender distribution — awarded proposals throughout access modes for production activities in the period December
2021 — April 2025

262 Krishnakshi Bhuyan et al. / Procedia Computer Science 267 (2025) 256-270

From December 2021 until April 2025, 131 projects that use Al technologies were awarded 12,891,481 node hours
which is 11% of overall awarded resources of the calls for production activities.

Table 3: Awarded Al proposals throughout access modes for production activities in the period December 2021 — April 2025

Call ;‘x:?:;;is Resources awarded ;{;;T:iziei ”
Extreme Scale Access 18 7,112,121 55%
Regular Access 34 2,512,760 19%

Al and Data-Intensive Applications Access 79 3,266,600 25%

Total 131 12,891,481 100%

Within these 131 projects, 52 projects belong to Extreme Scale Access and Regular Access calls which is 40% of
the total awarded Al projects. In 2025 within the first cut-off of the Regular Access call there was an increase of 29%
of awarded Al projects. The growing trend of Al projects within the traditional HPC access calls shows the need for
a special access mode for Al related applications.

The observed Al technologies used in these awarded projects are Machine Learning, Natural Language Processing,
Generative Language Modeling, Deep Learning, Vision (image recognition, image generation, text recognition OCR,
etc.), Audio (speech recognition, speech synthesis, etc.), Robotic process automation, Virtual agents, Decision
management: Classified and statistical learning methods. The most represented technologies were Deep Learning
(25,6%), Machine Learning (19,5%) and Generative Language Modeling (18,4%).

Al Technologies distribution of awarded projects in Extreme Scale Access,
Regular Access & AI and Data-Intensive Applications Access (December 2021
- April 2025)

Decision management: Classified and statistical learning

] 0,
methods 0.7%
Virtual agents
& = 1.1%
Robotic process automation ' 0.4%
Audio (speech recognition, speech synthesis, etc.
(sp g p y) 29

Vision (image recognition, image generation, text recognition o
. I | 5.5%,
OCR, etc.)

Deep Learning C—)5 6,
. 0

Generative Language Modeling
enre e E——__ ERPLA

Natural Language Processing 15.9%
T |5 9%

Machine Learning 19.5%
T |9 5%,

Fig. 6: Al technologies distribution within awarded Al proposals throughout access modes for production activities in the period December 2021
— April 2025

Krishnakshi Bhuyan et al. / Procedia Computer Science 267 (2025) 256-270 263

3.1.1. The Benchmark Access call

The Benchmark Access mode is intended for all categories of users who want to collect performance data or test a
method, such as machine learning training, on a target system in order to document the technical feasibility of their
applications to be submitted to other access modes.

Access is provided through a continuously open call with monthly cut-offs. All submitted proposals undergo an
eligibility check and a Technical Assessment performed by the Hosting Entity of the selected partition(s). Access
period is granted up to three (3) months.

In 2025 cut-off period (from 1st to 6th cut-off of 2025), 166 proposals were submitted in the call of which 147
(89%) have been awarded with a total of 465,400 node hours. Out of these 147 proposals, 47 were submitted by
Principal Investigators (PIs) affiliated to Academia (32%), 33 were from Industry (22%) and 67 projects were from
PIs affiliated to Public Sector (46%). Out of these 147 projects, 67 of them used Al technologies in their applications
(46%).

Table 4: Benchmark Access proposal numbers from st to 6th cut-off of 2025

Academia Industry Public Sector

Total Involvement (PI) Involvement (PI) Involvement (PI) AT Applications
Submitted ¢ 53 37 76 76
proposals
Awarded 147 47 33 67 67
proposals

The distribution of awarded computational resources across the various systems that are available under the call is
the following: SofiaTech (BG) 2%, MACC, FCT (PT) 4%, BSC (ES) 22%, CINECA (IT) 38%, CSC (FI) 22%,
IT4Innovations (CZ) 4%, LuxProvide (LU) 3% and IZUM (SI) 4%.

3.1.2. The Development Access call

The Development Access mode is meant for projects focusing on code and algorithm development, development
of workflows, HPC trainings, as well as Natural Language Processing, Foundation Models and other methods for Al
applications. This access mode is mostly targeting medium size executions that do not target large scale production
runs and is aiming for code and algorithmic validation before requesting access to an Extreme Scale Access or Regular
Access call. Development access is provided through continuously open calls with monthly cut-offs. All submitted
proposals undergo an eligibility check and a Technical Assessment performed by the Hosting Entity of the selected
partition(s). Access period is granted for up to six (6) or twelve (12) months.

In the first two quarters of 2025, i.e., from January until June, 291 proposals were submitted in the call of which
259 (89%) have been awarded have been awarded with a total of 1,433,600 node hours. Out of these 259 proposals,
81 were from Principal Investigators (PIs) affiliated to Academia (31%), 52 were from Industry (21%) and a 126
projects were from Pls affiliated to Public Sector (47%). Out of these 259 projects, 153 of them used Al technologies
for their application (59%).

264 Krishnakshi Bhuyan et al. / Procedia Computer Science 267 (2025) 256-270

Table 5: Development Access proposal numbers from 1st to 6th cut-oft of 2025

Total Academia Industry Public Sector AI Applications
Involvement (PI) Involvement (PI) Involvement (PI) pp
Submitted 5, 91 62 138 173
proposals
Awarded 259 81 52 126 153
proposals

The distribution of awarded computational resources across the various systems that are available under the call is
the following: SofiaTech (BG) 3%, MACC, FCT (PT) 4%, BSC (ES) 24%, CINECA (IT) 28%, CSC (FI) 24%,
IT4Innovations (CZ) 7%, LuxProvide (LU) 6% and IZUM (SI) 4%.

3.1.3. The Al and Data-Intensive Applications Access call

The Al and Data-Intensive Access mode was introduced in 2024 in order to accommodate the growing number
submissions and requests related to Artificial Intelligence. The call is supposed to accommodate requests coming from
all sectors with an emphasis on industry, SMEs and startups.

This access mode was established with faster evaluation process and overall quicker access to the resources
considering the fast-paced environment of Al developments, with the results being communicated one (1) month after
the cut-off date. The call had six (6) cut-off dates per year, with allocations granted for six (6) months or one (1) year.
The submitted applications were peer-reviewed, and the process contained the following: an administrative check,
technical assessment, expert evaluation and consolidation of the results.

From April 2024 until April 2025 cut-off period, there were 122 submitted proposals, out of which 79 were
awarded. In total 3,266,600 node hours were distributed to successful applicants.

Al and Data-Intensive Applications Access - submitted, administratively accepted and
awarded proposals (Apr 2024-Apr 2025)

34

7

Apr-24 Jun-24 Oct-24 Nov-24 Feb-25 Apr-25

=@=—SUBMITTED PROPOSALS ==@==ADMIN ACCEPTED PROPOSALS AWARDED PROPOSALS

Fig. 7: Al and Data-Intensive Access mode-submitted, administratively accepted and awarded proposals (Apr 2024-Apr 2025)

Krishnakshi Bhuyan et al. / Procedia Computer Science 267 (2025) 256-270 265

Out of 79 awarded projects, the PI affiliation type distribution is the following: 38% (30 proposals) PIs are coming
from an university, 25% (20 proposals) from an SME, 14% (11 proposals) from a research institute, 11% (9 proposals)
from a startup, 6% (5 proposals) from a public entity and 5% (4 proposals) from a large enterprise.

Al and Data-Intensive Applications Access - PI affiliation type distribution (Apr
2024-Apr 2025)

5%
6%

m University = Startup = SME = Research institute Public entity Large enterprise

Fig. 8: Al and Data-Intensive Applications Access - PI affiliation type distribution (Apr 2024-Apr 2025)

3.1.4. The Regular Access call

The Regular Access call is open to all fields of science, industry and the public sector, and invites applications
which present compelling cases that will enable scientific innovation in the domains covered. The expected impact in
the application’s domain should justify the need for large allocations in terms of compute time, data storage and
support resources. This access mode allocates resources through a continuously open call for applications associated
with two (2) cut-off dates per year, with allocations granted for a period of one (1) year.

Regular Access call allocate resources from all EuroHPC systems via a peer-review process for assessment of
submitted proposals. The proposals undergo an evaluation process of four (4) months that entails an administrative
check, technical assessment, rapporteur reporting and evaluation, domain based discussions and Super Panel (SP)
meeting where all proposals are ranked, followed by a Resources Allocation Panel (RAP) meeting where the resources
are distributed.

The Regular Access call is the longest running access mode for production activities. From December 2021 until
March 2025, 293 proposals were awarded 36,530,037 node hours via the Regular Access calls. In the first cut-off of
2025, a total of 87 proposals were submitted in the call requesting a total of 11,872,706 node hours, of which 67 were
awarded with 5,887,458 node hours.

Due to severe oversubscription within the March 2025 cut-off, in order to award more proposals, 7 proposals were
suggested to be moved to the JUPITER Booster partition making them first projects being awarded on JUPITER
(526,654 node hours). The allocation start for these projects will be slightly delayed until the system becomes fully
operational.

266 Krishnakshi Bhuyan et al. / Procedia Computer Science 267 (2025) 256-270

Regular Access - Submitted, administratively accepted and awarded proposals (Dec
2021-Mar 2025)

100 %7
90
80
70
60
50
40
30
20
10

Dec-21 Mar-22 Jul-22 Nov-22 Mar-23 Jul-23 Nov-23 Mar-24 Sep-24 Mar-25

=@=SUBMITTED PROPOSALS «=@==ADMIN ACCEPTED PROPOSALS ==@==AWARDED PROPOSALS

Fig. 9: Regular Access - Submitted, administratively accepted and awarded proposals (Dec 2021-Mar 2025)

The projects awarded within the Regular Access call come from different research domains and the distribution
can be observed in the chart below.

Regular Access - Research domains distribution of awarded proposals (Dec 2021-Mar
2025)

= Chemical Sciences and Materials, Solid State Physics

.8%’

27%

= Earth System Sciences & Environmental Studies

26%

Engineering, Mathematics and Computer Sciences

Computational Physics: Universe Sciences, Fundamental Constituents of Matter
= Biochemistry, Bioinformatics, Life Sciences, Physiology and Medicine

Fig. 10: Regular Access - Research domains distribution of awarded proposals (Dec 2021-Mar 2025)

3.1.5. The Extreme Scale Access call

This access mode calls for applications with high-impact, high-gain innovative research, open to all fields of
science, industry and public sector justifying the need for and the capacity to use extremely large allocations in terms
of compute time, data storage and support resources. Flagship scientific applications that are able to exploit the full
scale of EuroHPC exascale and pre-exascale supercomputers are the main target for Extreme Scale Access. Resources
are allocated through a continuously open call for applications with two (2) cut-offs per year, with allocations granted
for a period of one (1) year. Extreme Access calls allocate resources from the high-end EuroHPC systems, i.e., pre-
exascale and exascale. All submitted applications under the call are peer reviewed. The proposals undergo an
evaluation process of six (6) months that entails an administrative check, technical assessment, scientific evaluation,

Krishnakshi Bhuyan et al. / Procedia Computer Science 267 (2025) 256-270 267

response to reviews stage, rapporteur reporting and evaluation, Access Resource Committee (ARC) meeting where
all proposals are ranked, followed by a Resources Allocation Panel (RAP) meeting where the resources are distributed.

The first cut-off of 2025 was on 24 April 2025, with total of 44 proposals administratively approved, requesting
36,207,203 node hours across the offered infrastructure, the EuroHPC JU’s pre-exascale systems LUMI, Leonardo
and MareNostrum 5, as well as the exascale system JUPITER, the Booster partition that is offered for the first time
within the JU’s access calls. The 44 proposals are undergoing evaluation and the results are expected to be
communicated in late September/early October 2025.

The Extreme Scale Access call remains to be the call that offers and allocates most of the JU access time, which is
visible from the overall resources distribution across different access modes, with a notice that the last submissions
belonging to the April 2025 cut-off are not taken into consideration.

Extreme Scale Access - Submitted, administratively accepted and awarded proposals
(Dec 2022-Apr 2025)

50

40

30

Dec-22 May-23 Oct-23 Apr-24 Oct-24 Apr-25
e=@==SUBMITTED PROPOSALS «=@==ADMIN ACCEPTED PROPOSALS AWARDED PROPOSALS
Fig. 11: Extreme Scale Access - Submitted, administratively accepted and awarded proposals (Dec 2022-Apr 2025)

The projects awarded within the Extreme Scale Access call come from different research domains and the
distribution of these domains can be observed in the chart below.

Extreme Scale Access - Research domains distribution of awarded proposals (Dec
2022-Oct 2024)

2%
= Chemical Sciences and Materials, Solid State Physics
= Earth System Sciences & Environmental Studies
40%
‘7—0/- Engineering, Mathematics and Computer Sciences
0
S
. Computational Physics: Universe Sciences, Fundamental
26% Constituents of Matter

= Biochemistry, Bioinformatics, Life Sciences, Physiology and
Medicine

Fig. 12: Extreme Scale Access - Research domains distribution of awarded proposals (Dec 2022-Oct 2024)

268 Krishnakshi Bhuyan et al. / Procedia Computer Science 267 (2025) 256-270

3.2. Al Factory Access Modes

During 2025, the EuroHPC JU is in the process of selecting the Hosting Entities that will establish the Al Factories.
In order to serve the immediate needs of the European Al industrial and scientific users, EuroHPC JU will rely on the
existing operational supercomputers (pre-exascale and petascale systems) capable to support Al applications, to offer
resources to the European Al users until the newly procured Al Factories are operational. For that purpose, the
EuroHPC JU introduced different Al Factories Access modes. The available partitions within these modes are the
following: Vega GPU, MeluXina GPU, Discoverer GPU, LUMI-G, Leonardo Booster and MareNostrum 5 ACC.

The Al Factories Access modes Al for Science and for Collaborative EU Projects and Al for Industrial Innovation
aim to support ethical Artificial Intelligence, using a spectrum of different Al technologies such as machine learning
and generative Al. These access modes allocate:

e Al for Science and Collaborative EU Projects: up to 25% of the overall EuroHPC share of access time;
e Al for Industrial Innovation: up to 30% of the overall EuroHPC share of access time.

3.2.1. The Al for Science and Collaborative EU Projects Access

This access mode supports Al applications for science, covering all types of scientific users, users from public
sector, as well as industrial users participating in R&I projects funded by EU Programmes such Horizon Europe or
the Digital Europe Programme.

This access mode allocates resources from the existing EuroHPC partitions with Al capabilities and allocates
resources through a continuously open call for applications with six (6) cut-off dates per year (one cut-off date every
two months). The allocations are granted for six (6) months after undergoing a peer review process for assessment of
submitted proposals. The peer-review process entails an administrative check, technical assessment, expert evaluation
and consolidation of the results.

The first proposals submitted to this call (within the June 2025 cut-off) are under evaluation and will not be
presented in this paper.

3.2.2. The Al for Industrial Innovation Access calls

The Al Factories Industrial Innovation Access calls are intended for users coming from industry, SMEs and startups
that need HPC resources for Al applications. These calls offer up to 30% of the EU share of the access time. The Al
Factories Industrial Innovation Access calls include three access modes, targeting different users and compute needs:

. Playground Access, providing fixed resources per application (5,000 GPU hours) for entry-level users, with
allocation results communicated within two (2) working days. This call is continuously open with no cut-off
dates. All submitted proposals undergo an eligibility check and a technical assessment.

. Fast Lane Access, for users already familiar with HPC requiring up to 50,000 GPU hours, with allocation
results communicated within four (4) working days. This call is continuously open with no cut-off dates. All
submitted proposals undergo an eligibility check and a technical assessment.

. Large Scale Access, intended for applications requiring more than 50,000 GPU hours, with allocation results
communicated within ten (10) working days after the cut-off date. This call is continuously open with two
(2) cut-offs date per month. All submitted proposals undergo an administrative check, technical assessment,
Industrial Innovation Group evaluation and ranking performed by the selected Al Factory.

From April 2025 until July 2025, a total of 82 proposals were submitted out of which 50 were awarded resources.
Overall, 10,616,560 GPU hours have been allocated to successful projects (93% resources were allocated within the
Large Scale Access call).

Krishnakshi Bhuyan et al. / Procedia Computer Science 267 (2025) 256-270 269

Table 6: Al for Industrial Innovation Access calls - submitted and awarded proposals (April 2025 — July 2025)

Call Proposals submitted Proposals awarded Awarded %
Playground Access 31 24 48%

Fast Lane Access 32 16 32%

Large Scale Access 19 10 20%

Total 82 50 100%

3.3. Strategic Access

The EuroHPC JU can allocate up to 10% of its resources share to strategic initiatives of public interest. The
percentage limit is aggregated across all Strategic Access initiatives and these projects so not need to undergo a
submission and peer-review process due to their nature.

Within this framework, from 2022, the European Commission’s flagship project Destination Earth (DestinE) has
access to the available EuroHPC JU infrastructure. The DestinE project is advancing the development of highly-
accurate, high-resolution, digital model of the Earth, a Digital Twin, in order to monitor, model, simulate and predict
natural phenomena (e.g. natural disasters) and to tackle environmental challenges. The project has access to LUMI,
Leonardo, MareNostrum5, MeluXina, and also on the upcoming exascale system JUPITER. At present, over 300
scientists, analysts, and HPC professionals are engaged in DestinE project, creating an integrated, cross-disciplinary
research and innovation environment. This collaborative initiative exemplifies how strategic support can transform
scientific advances into operational climate intelligence for the benefit of society.

3.4. Experts involved in the peer-review process

The Access calls intended for production activities involve engagement of several experts in each cut-off of the
respective calls and over the past years, the EuroHPC JU has established an extensive collaboration with these experts.
The EuroHPC JU engages high level professionals in High Performance Computing across different domains who
conduct an unbiased and transparent evaluation of submitted proposals. In total, since establishment of the first access
call in 2021, more than a 1000 experts were involved in the review process till date, of which 81 have worked as
Chairs, 543 as Rapporteurs and 412 as external referees (Scientific Reviewers). 49% of these experts were involved
in the Extreme Scale call, 38% in the Regular Access call and 3% in the Al and Data-Intensive Applications Access
call.

3.5. Application Support Team (AST)

Under the EuroHPC JU EPICURE project, the proposals awarded via the Access calls are able to have additional
support up to 6 months for application porting, optimization and scalability improvements. The aim of the project is
to improve the user support services for successful applicants, to ensure an efficient and timely execution of the
applications. In addition, the project includes the development of a single point of contact (in the form of a European
HPC Application Support portal) that will allow European HPC users from public and private sector including SMEs,
to retrieve information on the systems offered by the Joint Undertaking, their architectures, their access mechanisms,
and the support services available. Applicants can include in their proposal if they would need assistance from the
Application Support Team (AST) while submitting their application to one of the EuroHPC JU Access calls or the
respective Hosting Entities might suggest them during the evaluation process, if they see a need for it in a proposal.

270 Krishnakshi Bhuyan et al. / Procedia Computer Science 267 (2025) 256-270

AST service was launched in second half of 2024 for the access calls and since then, 165 proposals were supported
via the EPICURE project in the Benchmark and Development call, 22 proposals were supported under the Regular
Access call, 15 proposals under the Extreme Scale Access call and 37 proposals were supported under the Al and Data
Intensive Applications call.

AST awards distribution across all access modes (March 2024-June 2025)

= Benchmark Access

= Development Access
Regular Access
Extreme Scale Access

= Al and Data-Intensive Applications Access

Fig. 13: Application Support Team awards distribution across all access modes (March 2024-June 2025)

4. Conclusion

Overall, in the first two quarters of 2025, it was observed that the number of submitted proposals have increased
taking into account the previous years average; Regular Access with more than 100% increase in submitted proposals
and Extreme Scale Access with approximately 35% increase in submitted proposals. Observing Benchmark and
Development Access calls, in comparison with 2024, within the 2025 cut-off period (until June 2025) it is noted that
the number of submitted proposals is already 70% of the total submitted proposals in 2024. If we consider the same
numbers to project the next quarters of 2025, we can estimate the submission numbers to grow by 40% until the end
of the year. In addition, proposals using Al technologies have substantially increased in comparison to 2024 across all
calls, despite having a designated access call for Al applications. Due to this increase and interest to support industry
in this sector, the EuroHPC JU additionally introduced Al Factories access calls for industrial innovation in 2025
which already show interest from the community in the few months that the calls have been opened. The impact of
these newly introduced access calls will be better observed in the near future.

EuroHPC JU welcomes the increasing interest in applications submitted across various calls and remains
committed to supporting groundbreaking and innovative research initiatives spanning diverse sectors.
Acknowledgement

The authors would like to thank their colleagues from the EuroHPC JU Infrastructure Unit, especially members of
the Peer-Review Sector for their valuable contributions in the access calls management and their continous dedication.

	Contents_2025_Procedia-Computer-Science
	Preface_2025_Procedia-Computer-Science
	Editorial-Board_2025_Procedia-Computer-Science
	The-QCD-crossover-line-in-a-finite-volume_2025_Procedia-Computer-Science
	Benchmarking-lattice-quantum-field-theory-codes-across-Euro_2025_Procedia-Co
	accLB--A-High-Performance-Lattice-Boltzmann-Code-for-Mult_2025_Procedia-Comp
	Multi-GPU-porting-of-a-phase-change-cascaded-lattice-Boltz_2025_Procedia-Com
	Hierarchical-Dynamic-Load-Balancing-Strategy-for-a-p-adap_2025_Procedia-Comp
	Enabling-Ginkgo-as-Numerics-Backend-in-nekRS-Employing-A_2025_Procedia-Compu
	An-efficient-multigrid-solver-for-finite-element-meth_2025_Procedia-Computer
	Large-scale-simulations-of-lattice-QCD-for-nucleon-struct_2025_Procedia-Comp
	Production-scale-Performance-Analysis-and-Optimizat_2025_Procedia-Computer-S
	Towards-Exascale-Computing-for-Astrophysical-Simulation-_2025_Procedia-Compu
	Tailoring-AI-for-Turkish-Law--Domain-Specific-Fine-Tuning_2025_Procedia-Comp
	Porting-Epistasis-Detection-Methods-to-EuroHPC-Sup_2025_Procedia-Computer-Sc
	Pleias-1-0--the-First-Ever-Family-of-Language-Models-T_2025_Procedia-Compute
	Automatic-detection-of-agricultural-field-boundaries-and-see_2025_Procedia-C
	Dynamic-Resources-Management-for-Exascale-in-ADMIR_2025_Procedia-Computer-Sc
	Enhancing-Financial-NLP-with-Supercomputing--Spell-Corre_2025_Procedia-Compu
	An-accelerated-implementation-of-Extended-Cellular-Potts_2025_Procedia-Compu
	Investigation-of-novel-epigenetic-signals-through-combin_2025_Procedia-Compu
	Transforming-Computational-Power-into-Environmental-Solutio_2025_Procedia-Co
	Quantum-Emulators--CPU--single-GPU-and-multiple-GPUs-_2025_Procedia-Computer
	Improving-the-scalability-of-a-high-order-atmospheric-dy_2025_Procedia-Compu
	Towards-efficient-high-resolution-simulations-of-dust-stor_2025_Procedia-Com
	Scalable-Detection-of-Environmental-Events-on-Euro_2025_Procedia-Computer-Sc
	The-European-High-Performance-Computing-Joint-Undertaking_2025_Procedia-Comp

